
D5: Databases and Information Systems
Data Mining and Matrices, SS 2017
Homework #3: Optimization
Tutorial: 7 June 2017 at 10:15

You can discuss these problems with other students, but everybody must do and present their own answers. You can use
computers etc. to perform the algebraic operations, but you must show the intermediate steps (and “computer said so” is
never a valid answer). You are of course free to use material from the Internet, but again, you must present the intermediate
steps and you must also be able to explain why the steps are valid and why you chose them. You can mark an answer even
if it is not complete or correct, as long as you have made significant progress towards solving it. Note, however, that the TA
does the final decision on whether your solution is complete (or correct) enough for a mark.

Problem 1 (More on pseudo-inverse). Let A ∈ Rn×k, where n > k. Remember that the pseudo-inverse
of A, A+, is defined as V Σ+UT , where A = UΣV T is the SVD of A and (Σ+)ii = 1

σi
if σi > 0 and 0

otherwise. Show that A+ = (ATA)−1AT when ATA is invertible.

Problem 2 (Hessians and Jacobians). Let f : Rn → R be a function with a well-defined Hessian (that

is, all partial derivatives ∂2

∂xi∂xj
f(x) exist). Show that H(f(x)) = J(∇f(x))T .

Problem 3 (Jacobian of an affine map). The chain rule for the gradient says that if f : Rn → R and
g : Rm → Rn, then

∇(f ◦ g)(x) = J(g(x))T (∇f(y)) , (3.1)

where y is the value of g at x, y = g(x). This was used in the lecture to calculate the gradient of
1
2 ‖Ax− b‖2F . Calculate the Jacobian of the affine map g(x) = Ax− b.

Problem 4 (Eigendecompositions and positive semidefiniteness). An eigendecomposition of a symmetric
square matrix A ∈ Rn×n has the form QΛQT , where Q ∈ Rn×n is an orthogonal matrix that has the
eigenvectors of A in its columns, and Λ ∈ Rn×n is a diagonal matrix that has the eigenvalues of A in
its diagonal. Eigendecomposition, much like SVD, is unique: if A is symmetric real-valued matrix, and
A = QΛQT for orthogonal Q and diagonal Λ, then QΛQT is the eigendecomposition of A.

In the lecture, it was said that a matrix A ∈ Rn×n is positive semidefinite if zTAz ≥ 0 for all
z ∈ Rn. An equivalent definition for symmetric matrices is that all of its eigenvalues are nonnegative. Let
A ∈ Rn×k be an arbitrary real-valued matrix. Show that matrices B = AAT and C = ATA are positive
semidefinite. (Hint: One way to do this is to use SVD and the uniqueness of the eigendecomposition.)

Problem 5 (Convexity of least-squares regression). Let A ∈ Rn×k and b ∈ Rn be given. Show that

the problem of finding x ∈ Rk that minimizes 1
2 ‖Ax− b‖22 is convex. You can use the semidefiniteness

results of Problem 4 even if you didn’t solve the problem.

Problem 6 (More merry gradients). In most real-world matrix factorization applications, we want to
regularize the factor matrices. For example, we might want to find matrices that have a low Frobenius
norm. In these cases, our loss function takes the form

L(B,C;A, λ1, λ2) =
1

2
‖A−BC‖2F + λ1 ‖B‖2F + λ2 ‖C‖2F , (6.1)

where λi ∈ R are the regularization coefficients. Show that the loss function L is convex when either B or
C is fixed, and calculate the corresponding gradients.
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