
D5: Databases and Information Systems
Data Mining and Matrices, SS 2017
Homework #4: CX, CUR, and ICA
Tutorial: 5 July 2017 at 10:15

You can discuss these problems with other students, but everybody must do and present their own answers. You can use
computers etc. to perform the algebraic operations, but you must show the intermediate steps (and “computer said so” is
never a valid answer). You are of course free to use material from the Internet, but again, you must present the intermediate
steps and you must also be able to explain why the steps are valid and why you chose them. You can mark an answer even
if it is not complete or correct, as long as you have made significant progress towards solving it. Note, however, that the
TA does the final decision on whether your solution is complete (or correct) enough for a mark. We continue to apply
more strict evaluation on what constitutes as sufficiently solved problem. You should only mark a problem if you
think you have essentially solved it. This is done to give you a better impression on how the exam questions will
be graded.

Problem 1 (CX and RRQR). Recall that an RRQR decomposition of a matrix A ∈ Rn×m is of form

AΠ = QR = Q

(
R11 R12

0 R22

)
, (1.1)

where Π ∈ {0, 1}m×m is a permutation matrix, Q ∈ Rn×n is an orthogonal matrix, R11 ∈ Rk×k is
upper-triangular with positive values in diagonal, and R12 ∈ Rk×(m−k) and R22 ∈ R(n−k)×(m−k) are
arbitrary.

Let Πk{0, 1}n×k be the first k columns of Π and set C = AΠk ∈ Rn×k. Show that∥∥A−CC+A
∥∥
ξ

= ‖R22‖ξ , (1.2)

where ξ is either F or 2 (i.e. we compute either the Frobenius or spectral norm).
Hint: Use the fact that R11 is guaranteed to be invertible and that both of the studied norms are

orthogonally invariant.

Problem 2 (CX and RRQR again). Let AΠ = QR be the RRQR factorization of A as above. Assume
the factorization admits the following inequalities for some polynomials p1 and p2 over k and m:

σk(A)

p1(k,m)
≤ σmin(R11) ≤ σk(A) (2.1)

σk+1(A) ≤ σmax(R22) ≤ p2(k,m)σk+1(A) . (2.2)

Using (1.2) from Problem 1 and the above inequalities, show that∥∥A−CC+A
∥∥
2
≤ p2(k,m) ‖A−Ak‖2 , (2.3)

where Ak = UkΣkV
T
k is the rank-k truncated SVD of A.

Problem 3 (CX and sparse decompositions). Bob is a big proponent of CX decomposition, and he
claims that if matrix A is sparse and you do a normal CX decomposition to it, the column matrix C
must also be sparse.

a) Prove Bob wrong. Construct matrix A such that A is sparse, but in an optimal rank-k CX
decomposition matrix C is not sparse. Matrix A ∈ Rn×m is sparse if nnz(A)/(nm)� 0.5 and it
is not sparse if nnz(A)/(nm)� 0.5, where nnz(A) = |{(i, j) : aij 6= 0}| is the number of non-zero
elements in A. Your matrix can be of any size, you can choose any rank k > 0 and the non-sparse
optimal decomposition does not have to be unique (i.e. there can be other decompositions that yield
equal reconstruction error, but have sparse C).

b) Bob insists that even if CX doesn’t yield sparse decompositions, NNCX will. Prove Bob wrong
again by constructing sparse nonnegative A that has an NNCX decomposition where C is not sparse.
The rules are as above, but you must construct a new example even if your previous example was
already an NNCX decomposition.
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Problem 4 (Generating CUR data). A standard practise when validating that a proposed matrix
factorization algorithm works in practice is to generate random data that has the kind of structure the
factorization aims at finding, add some random, structure-less noise, and use the resulting matrix as an
input for the algorithm. For example, for NMF, we would first choose some n, m, and k, then we would
generate random matrices W ∈ Rn×k+ and H ∈ Rk×m+ , multiply them to obtain A = WH , and add some
noise to A.

Design a method that creates random synthetic matrices for CUR decomposition. That is, explain
how to generate matrices C ∈ Rn×k, U ∈ Rk×k, and R ∈ Rk×m (k < n,m) such that matrix A = CUR
has k columns that are exactly the columns of C and k rows that are exactly the rows of R. The factor
matrices cannot be completely random, but try to have as much randomness as possible.

Problem 5 (Correlation matrix). Let x = (xi)
n
i=1 be a (column) vector of n zero-centered random

variables. The covariance cov(xi, xj) is defined as

cov(xi, xj) = E[xixj ] , (5.1)

The correlation matrix Σ is defined as

Σ = E[xxT ] =
(
cov(xi, xj)

)
i,j
. (5.2)

What are the requirements for random variables xi that ensure that the covariance matrix is an
identity matrix? Give the requirements, and prove that if all xi satisfy them, Σ is an identity matrix.

Hint: consider what Σi,i = cov(xi, xi) tells about random variable xi.

Problem 6 (Whitening). Most textbooks (and Wikipedia) explain the whitening process as follows:
Given data matrix A (where rows are observations and columns variables), compute the correlation
matrix C = ATA. Then, compute the eigendecomposition of C, C = Q∆QT , where Q is an orthogonal
matrix and ∆ is diagonal matrix with non-negative entries. To whiten A, we multiply A from right with
Q∆−1/2, where (∆−1/2)ii = 1/

√
(∆)ii if (∆)ii 6= 0 and (∆−1/2)ii = 0 otherwise.

In the lectures it was claimed that if UΣV T is the SVD of A, then the whitened A is U . Prove that
these two processes yield the same solution, that is

U = AQ∆−1/2 . (6.1)

Hint: eigendecomposition is unique, that is, if C = Q∆QT for some orthogonal Q and diagonal ∆
with nonnegative entries, then Q∆QT is the eigendecomposition of C. Use the SVD of A to express C
and find a definition of Q and ∆ in terms of SVD of A.
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