
D5: Databases and Information Systems
Data Mining and Matrices, SS 2017
Homework #6: ICA and spectral methods
Tutorial: 19 July 2017 at 10:15

You can discuss these problems with other students, but everybody must do and present their own answers. You can use
computers etc. to perform the algebraic operations, but you must show the intermediate steps (and “computer said so” is
never a valid answer). You are of course free to use material from the Internet, but again, you must present the intermediate
steps and you must also be able to explain why the steps are valid and why you chose them. You can mark an answer even
if it is not complete or correct, as long as you have made significant progress towards solving it. Note, however, that the
TA does the final decision on whether your solution is complete (or correct) enough for a mark. We continue to apply
more strict evaluation on what constitutes as sufficiently solved problem. You should only mark a problem if you
think you have essentially solved it. This is done to give you a better impression on how the exam questions will
be graded.

Problem 1 (Kurtosis of a sum). Recall that the kurtosis of a random variable X with zero mean is

kurt(X) = E[X4]− 3(E[X2])2 . (1.1)

One way to understand the importance of the factor 3 in (1.1) is to consider a sum of two independent
random variables. Let X and Y be two independent random variables with zero mean and unit variance,
i.e.

E[X] = 0 E[X2] = 1 (1.2)

E[Y ] = 0 E[Y 2] = 1 . (1.3)

Show that

kurt(X + Y ) = kurt(X) + kurt(Y ) . (1.4)

Can you see the importance of factor 3?
Hint: Use binomial formula and linearity of expectation.

Problem 2 (Kurtosis of normal distribution). Another way to see the importance of the factor 3 is to
consider the kurtosis of normal distribution. We will prove that if X is normally distributed with 0 mean,
then kurt(X) = 0. To compute the kurtosis, we need the fourth moment E[X4]. To compute it, we use
very powerful and general technique of moment-generating functions. The moment-generating function of
random variable Y is

MY (t) = E[exp(tX)] = E[etX ] , t ∈ R . (2.1)

One important feature of moment-generating functions is that if we know MY , we can easily compute
the nth moment of Y by differentiating MY n times and evaluating the derivative at origin. In other
words,

dnMY

dtn
(0) = E[Y n] , (2.2)

where dnMY

dtn (0) is the nth derivative of MY evaluated at origin. (Here we assume that the derivative
exists.)

The moment-generating function for normally distributed X with 0 mean and variance σ2 is

MX(t) = exp(σ2t2/2) . (2.3)

Use (2.3) to compute E[X4] and conclude that kurt(X) = 0.

Problem 3 (Traces and eigenvalues). Let A = QΛQT ∈ Rn×n be a matrix and its eigendecomposition.
You can assume that Q is orthogonal and that the eigenvalues are real. Show that

tr(A) =

n∑
i=1

aii =

n∑
i=1

λi = tr(Λ) . (3.1)

1 of 2



D5: Databases and Information Systems
Data Mining and Matrices, SS 2017
Homework #6: ICA and spectral methods
Tutorial: 19 July 2017 at 10:15

Problem 4 (Laplacian is positive semi-definite). Let G = (V,E) be an undirected graph and let A be
its adjacency matrix and ∆ its degree matrix. Let L = ∆−A be the Laplacian of G. Recall that the
incidence matrix P of G (for some fixed but arbitrary ordering of the edges) is the |V | -by- |E| matrix
with

pij =


1 if edge j starts from node i

−1 if edge j ends to node i

0 otherwise.

(4.1)

Show that
L = PP T (4.2)

and conclude that the Laplacian is positive semi-definite.

Problem 5 (Normalized cut). Show that the solution for the relaxed normalized cut is obtained by
taking the k least eigenvectors of the symmetric normalized Laplacian Ls similarly as the ratio cut is
solved by taking the k least eigenvectors of the Laplacian.

Hint: Express normalized cut using the symmetric Laplacian by re-writing the equation

Jnc(C) =

k∑
i=1

cTi Lci
cTi ∆ci

using the facts that ∆ = ∆1/2∆1/2, ∆1/2∆−1/2 = I, and ∆ = ∆T (as ∆ is diagonal).

Problem 6 (Nuclear norm). Let A ∈ Rn×m be an arbitrary matrix, and let (σi)
min{m,n}
i=1 be its singular

values. The nuclear norm of A, denoted ‖A‖∗, is defined as

‖A‖ =

min{m,n}∑
i=1

σi . (6.1)

Show that
‖A‖∗ ≥ ‖A‖F . (6.2)
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