
Automated knowledge

base construction

2. Design considerations,

crawling and scraping

Simon Razniewski

Summer term 2022

1

Notes

• Central communication: Mailing list

• Assignment results

• Late submissions, format

• Rooms

• Survey

• Missed DSAI (57% other)? →MSc. mostly

• NLP 50/50

• ML: 75/25

• Semantic Web, Wikidata: 25/75

• 80% Python

• Oral exam 50/50 →assignments, last tutorial test session

• Comments

• Recordings: Noted

• Rooms: see above

• Builds from core?

2

Outline

1. AKBC - Design considerations

2. Crawling

3. Scraping

3

AKBC design considerations

Fundamental questions:

1. What should be the output?

2. What is the best suited input?

3. How to get from 2. to 1.?

4

What should be the output?

• Err, a KB?

• What kind of KB?

• Canonicalized entities?

• Canonicalized relations?

• Importance of precision vs. recall?

• Typically approached as several subtasks

• Entity extraction

• Entity canonicalization

• Entity set expansion

• Entity typing

• Relation extraction

• Relation canonicalization

• Constraint extraction

• Knowledge cleaning

…

Each subtask may need different input, different method

5

Inputs

Outputs

Premium Sources
(Wikipedia, IMDB, …)

Semi-Structured Data
(Infoboxes, Tables, Lists …)

Text Documents
& Web Pages

Conversations
& Behavior

Online Forums
& Social Media

Queries
& Clicks

Entity Names,
Aliases & Classes

Entities in
Taxonomy

Relational
Statements

Rules &
Constraint

Canonicalized
Statements

Difficult Text
(Books,

Interviews …)

High-Quality Text
(News Articles,
Wikipedia …)

Methods
Rules &
Patterns

Logical
Inference

Statistical

Inference
Deep

Learning
NLP
Tools

Web collections
(Web crawls)

6

Inputs

Outputs

Premium Sources
(Wikipedia, IMDB, …)

Semi-Structured Data
(Infoboxes, Tables, Lists …)

Text Documents
& Web Pages

Conversations
& Behavior

Online Forums
& Social Media

Queries
& Clicks

Entity names,
aliases & classes

Entities in
Taxonomy

Relational
Statements

Rules &
Constraint

Canonicalized
Statements

Difficult Text
(Books,

Interviews …)

High-Quality Text
(News Articles,
Wikipedia …)

Methods
Rules &
Patterns

Logical
Inference

Statistical

Inference
Deep

Learning
NLP
Tools

Web collections
(Web crawls)

Crawling

7

Inputs

Outputs

Premium Sources
(Wikipedia, IMDB, …)

Semi-Structured Data
(Infoboxes, Tables, Lists …)

Text Documents
& Web Pages

Conversations
& Behavior

Online Forums
& Social Media

Queries
& Clicks

Entity names,
aliases & classes

Entities in
Taxonomy

Relational
Statements

Rules &
Constraint

Canonicalized
Statements

Difficult Text
(Books,

Interviews …)

High-Quality Text
(News Articles,
Wikipedia …)

Methods
Rules &
Patterns

Logical
Inference

Statistical

Inference
Deep

Learning
NLP
Tools

Web collections
(Web crawls)

Scraping

8

Outline

1. AKBC design considerations

2. Crawling

3. Scraping

9

Acknowledgment

• Material adapted from Fabian Suchanek and Antoine

Amarilli

10

Crawling: Task

• Given: One or several source URLs

• Return: Document corpus obtained by transitive

hyperlink closure (bounded)

11

12

13

14

15

16

Crawling: The fine print

1. How to find hyperlinks?

2. How to decide when to revisit/how often to

revisit?

3. Denial of service

4. Captchas

5. Deep web

6. Existing crawl corpora

17

18

19

→ Firefox: Developer tools/Network/Response

header

https://en.wikipedia.org/wiki/Max_Planck_Institute_for_Informatics

https://en.wikipedia.org/wiki/Max_Planck_Institute_for_Informatics

Freshness problem (2)

• Prediction problem: Estimate page change

frequency

• From previous change behavior

• Or from page content

• Optimization problem: Decide crawl frequency

• Fixed budget → How to distribute them

• Flexible budget → Cost-benefit framework needed

20

Estimating change frequencies

• Cho and Molina, TOIT 2003

• Model changes as Poisson processes (i.e., memoryless/

statistically independent)

• Extrapolate change frequency from previous visits

→ Daily visit for 10 days, 6 changes detected

→ Change frequency: 0.6 changes/day?

• Extrapolation underestimates change frequency due to

multiple change possibility

• Wijaya et al., EMNLP 2015

• Wikipedia-specific

• Learn state-change-indicating terms

• E.g., engage, divorce

21

Wijaya et al., EMNLP 2015

22

Optimization problem

[Razniewski, 2016]

• Resources flexible

• Ingredients:

• Benefit of an up-to-date website

• Alternatively: cost of outdated website

• Cost of a crawl action

• Decay behavior

→ Page-specific recrawl frequency that maximizes

benefit minus cost

23

Decay behaviour

24

Observed decay behaviour

25

Average freshness F

26

Net income NI

27

B…Benefit/time unit

F…Average freshness

Λ… decay coefficient

u…update interval length

C…cost of an update

→ Standard algebra:

Finding function maximum

Examples for address updates:

NI over u

28

Assumption: benefit over one year = 100 x cost of single crawl

Actual ratio magnitudes lower, e.g., 0.003 Cents/crawl

[http://www.michaelnielsen.org/ddi/how-to-crawl-a-quarter-billion-webpages-in-40-hours/]

(and for 580 $ on Amazon EC2)

Λ

0.4

6

0.3

2

0.1

6

0.1

0

29

and later Google)

30

31

Crawler traffic

[Yuan et al., CCN 2002]

“We estimate that approximately 40% of Internet

traffic is due to Web crawlers”

32

https://www.mpi-inf.mpg.de/robots.txt

https://www.google.de/robots.txt

https://www.mpi-inf.mpg.de/robots.txt
https://www.google.de/robots.txt

33

34

35

→ Try often enough

36

37

Deep web / dark web

38

enWikipedia 5m 30 GB

Dresden web 125m

table corpus

Twitter dumps

2016 US election 280m

Reddit dumps …

Wikia dumps …

…

https://dumps.wikimedia.org/enwiki/
https://wwwdb.inf.tu-dresden.de/misc/dwtc/
https://wwwdb.inf.tu-dresden.de/misc/dwtc/
https://gwu-libraries.github.io/sfm-ui/posts/2017-09-14-twitter-data
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/PDI7IN

Insights from crawling mpi-inf.mpg.de

• URL ending inclusion/exclusion criteria need thought

• Long (machine-generated URLs) need exclusion

• Beyond that no issues

• 35 lines in Python

• Sequential runtime for 2000 pages: ~10 minutes

• Completeness?

39

Outline

1. Design considerations

2. Crawling

3. Scraping

40

Inputs

Outputs

Premium Sources
(Wikipedia, IMDB, …)

Semi-Structured Data
(Infoboxes, Tables, Lists …)

Text Documents
& Web Pages

Conversations
& Behavior

Online Forums
& Social Media

Queries
& Clicks

Entity names,
aliases & classes

Entities in
Taxonomy

Relational
Statements

Rules &
Constraint

Canonicalized
Statements

Difficult Text
(Books,

Interviews …)

High-Quality Text
(News Articles,
Wikipedia …)

Methods
Rules &
Patterns

Logical
Inference

Statistical

Inference
Deep

Learning
NLP
Tools

Web collections
(Web crawls)

Crawling

41

Inputs

Outputs

Premium Sources
(Wikipedia, IMDB, …)

Semi-Structured Data
(Infoboxes, Tables, Lists …)

Text Documents
& Web Pages

Conversations
& Behavior

Online Forums
& Social Media

Queries
& Clicks

Entity names,
aliases & classes

Entities in
Taxonomy

Relational
Statements

Rules &
Constraint

Canonicalized
Statements

Difficult Text
(Books,

Interviews …)

High-Quality Text
(News Articles,
Wikipedia …)

Methods
Rules &
Patterns

Logical
Inference

Statistical

Inference
Deep

Learning
NLP
Tools

Web collections
(Web crawls)

Scraping

42

43

44

45

46

47

Scraping aims to reconstruct the KB

48

49[https://www.w3schools.com/xml/xml_xpath.asp]

[https://devhints.io/xpath]

50
https://www.freeformatter.com/xpath-tester.html

<html>

<body>

Shrek

Creator: W. Steig

Duration: <i>84m</i>

</body>

</html>

https://www.freeformatter.com/xpath-tester.html

Scraping: Browser

Website: https://lotr.fandom.com/wiki/Bilbo_Baggins

• “Try XPath” Firefox addin

• //h3[@class='pi-data-label pi-secondary-font']

• Firefox console

• $x('//h3[@class=\'pi-data-label pi-secondary-font\']')

• //h3[@class='pi-data-label pi-secondary-font'] |

//div[@class='pi-data-value pi-font']

51

Scraping in Python - XPath

52

53

54

55

Crescenzi et al., VDLB 2001

http://www.vldb.org/conf/2001/P109.pdf

Finds least upper bounds in regex lattice

56

Crescenzi et al., VDLB

2001

http://www.vldb.org/conf/2001/P109.pdf

57

Alternative Scraping in Python –

BeautifulSoup

• Python library for

• Treating HTML structure as a Python object

• Effective search inside this object

58

<html>

<head>

<title>

The Dormouse's story

</title>

</head>

<body>

Once upon a time there were

three little sisters; and their

names were <a class="sister"

href="http://ex.com/elsie"

id="link1">Elsie , <a

class="sister"

href="http://ex.com/lacie"

id="link2"> Lacie and …

soup.title

<title>The Dormouse's story</title>

soup.title.string

'The Dormouse's story'

soup.title.parent.name

‘head'

soup.a

<a class="sister" href="http://ex.com/elsie"

id="link1">Elsie

soup.find_all('a')

[<a class="sister" href="http://ex.com/elsie"

id="link1">Elsie,

<a class="sister" href="http://ex.com/lacie"

id="link2">Lacie

Alternative Scraping in Python –

BeautifulSoup (2)

59

XPath vs. BeautifulSoup vs …

• XPath: Generic query language to select nodes in

XML (HTML) documents

• Queries can be issued from Python, Java, C, …

• BeautifulSoup

• Python library to manipulate/search websites as Python

objects

• Scrapy

• Python library to crawl websites

• Selenium

• Actual scripted browser interaction

→ To get around Javascript etc.

60

https://www.udemy.com/tutorial/scrapy-tutorial-web-scraping-with-python/scrapy-vs-beautiful-soup-vs-selenium/

Assignment 2

• No crawling (practicality/ethics…)

• 1x Wikia infobox extraction

• XML format, but essential content not structured by XML

tags → BeautifulSoup/pattern matching/regex

• 1x LSF-scraping

• XPath/BeautifulSoup should both work

61

Take home

1. Considerations about output, input, method go

first

2. Crawling

• BFS to achieve coverage

• Challenges with captchas, traps, deep web

3. Scraping

• Reverse-engineering of template-based websites

• Next week: (Textual) entity typing

62

