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2. Entity disambiguation

2



Recap: Entity types

• Einstein: Physicist, Nobel prize winner, ETH alumni

• Dudweiler: Village, municipality

• RCH
2
OH: chemical formula, psychoactive substance

• Why organize them?

• Observations are usually sparse

• Upper classes may be needed for queries:

• German locations ending in –weiler

• Scientists born in 1879

• Class relations needed for constraint checking

• graduatedFrom(Person, educationalInstitution)

• UdS -> University -> OK?
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Inputs

Outputs

Premium Sources
(Wikipedia, IMDB, …)

Semi-Structured Data
(Infoboxes, Tables, Lists …)

Text Documents
& Web Pages

Conversations
& Behavior

Online Forums
& Social Media

Queries
& Clicks

Entity Names, 
Aliases & Classes

Entities in
Taxonomy

Relational
Statements

Rules &
Constraint

Canonicalized
Statements

Difficult Text
(Books,

Interviews …)

High-Quality Text
(News Articles,  
Wikipedia …)

Methods
Rules & 
Patterns

Logical
Inference

Statistical

Inference
Deep

Learning
NLP
Tools

Web collections
(Web crawls)
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Taxonomy induction: Goal
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Taxonomy induction: 

General approach

• Hypernymy candidates are “cheap”

→ Start with large noisy candidate graph, 

clean it up
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Candidates #1: Hearst-patterns 

• Hearst-style patterns (below: WebIsALOD for Frodo)
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Candidates #2: Sub-category 

relations in Wiki systems
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Challenges

• Noise

• Meta-categories

• Ambiguous terms

• Structural oddities

• Cycles

• Upward branching

• Redundancy (transitive edges)

• Imbalance in observations and 

scoring

• Score-based thresholding discards 

entire regions
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Text-based taxonomy induction 

challenge [Semeval 2016, Bordea et al.]

• Input: Set of domain terms

• Tofu, pizza, garlic

• Computer, smartphone, printer

• Task: Induce a taxonomy over these terms

• Potential evaluation measures

• #nodes

• #edges

• Acyclicity

• Recall w.r.t. gold standard

• Precision w.r.t. gold standard

• Connectedness (#connected components / #c.c)

• Categorization (#intermediate nodes / #i.i)
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Taxi [Panchenko et al., 2016]

1. Crawl domain-specific text corpora in addition to WP, 

Commoncrawl

2. Candidate hypernymy extraction 

1. Via substrings

• “biomedical science” isA “science”

• “microbiology” isA “biology”

• “toast with bacon” isA “toast”

• Lemmatization, simple modifier processing

• Scoring proportional to relative overlap

2. Candidate hypernymy from 4 Hearst-Pattern extraction works

3. Supervised pruning

1. Positive examples: gold data

2. Negative examples: inverted hypernyms + siblings

3. Features: Substring overlap, Hearst confidence (more features 

did not help)

11



Taxi [Panchenko et al., 2016]

4. Taxonomy induction

• Break cycles by random edge removal

• Fix disconnected components by attaching 

each node with zero outdegree to root
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- too many hypernyms in English



Taxonomy induction using 

hypernym subsequences [Gupta 

et al., 2017]

• Looking at edges in isolation ignores important 

interactions

• Hypernym candidates typically contain higher-level 

terms that help in predicting whole sequence

• Crucial as abstract term hypernym extraction

empirically harder (e.g., “company” → “group of 

friends”?)
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Taxonomy induction using 

hypernym subsequences [Gupta 

et al., 2017]

• Joint probabilistic model that estimates 

true hypernymy relations from skewed 

observations

• Break cycles by removing edges with 

minimal weight

• Induce tree from DAG by a min-cost-flow 

model
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Taxonomy induction using 

hypernym subsequences [Gupta 

et al., 2017]

• Method: Find cheapest way to send flow 

from leaves to root

• Cost inversely proportional to edge weight
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Wiki[pedia | a]- based taxonomy 

induction: TiFi [Chu et al., WWW 2019]
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Observations:

• Wikia category systems are noisy

• Wikia category systems lack 

abstractions

Approach: Supervised filtering + WordNet 

reuse



TiFi: Category cleaning

• Challenge:

• Meta-categories (Meta, Administration, Article_Templates)

• Contextual categories (actors, awards, inspirations)

• Instances (Arda, Mordor)

• Extensions (Fan fiction)

• Approach: Supervised classification

• “Featurizes” earlier rule-based category cleaning works, e.g., Marius Pasca

at Google

• Features:

• Lexical

• Meta string dictionary (manual)

• Headword in plural? Dark Orcs, Ring of Power

• Capitalization? Quenya words, Ring bearers

• Graph-based

• #instances

• Supercategory/subcategory count

• Average depth

• Connected subgraph size
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TiFi: Category cleaning -

results

• Most important feature: Plural

• Occasional errors (Food)
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TiFi: Edge cleaning

• Challenge:

• Type mismatches

• Frodo → The Shire

• Boromir → Death in Battle

• Chieftains of the Dúnedain→ Dúnedain of the 

North

• Approach: Supervised classification

• Combination of lexical, semantic and 

graph-based features
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TiFi: Edge cleaning - features

• Lexical

• Head word generalization (c sub𝑐𝑙𝑎𝑠𝑠𝑂𝑓 d?)

- ℎ𝑒𝑎𝑑 𝑐 + 𝑝𝑜𝑠𝑡 𝑐 = ℎ𝑒𝑎𝑑(𝑑) + 𝑝𝑜𝑠𝑡(𝑑) and 𝑝𝑟𝑒 𝑑 𝑖𝑛 𝑝𝑟𝑒(𝑐) Dwarven Realms → Realms

- 𝑝𝑟𝑒 𝑐 + ℎ𝑒𝑎𝑑 𝑐 = 𝑝𝑟𝑒 𝑑 + ℎ𝑒𝑎𝑑(𝑑) and 𝑝𝑜𝑠𝑡 𝑑 𝑖𝑛 𝑝𝑜𝑠𝑡 𝑐 Elves of Gondolin → Elves

• Only plural parents?

• Semantic

• WordNet hypernym relations

• Wikidata hypernym relations

• Text matches

• Wikia first sentence Hearst

• Haradrim: The Haradrim, known in Westron as the Southrons, were a race of Men from Harad in the 

region of Middle-earth.

• WordNet synset headword

• Ex: Werewolves: a monster able to change appearance from human to wolf and back again 

• Distributional similarity

• WordNet graph distance (Wu-Palmer score)

• Diretional embedding scores (HyperVec – directional interpretation of embeddings)

• Distributional inclusion hypothesis: flap is more similar to bird than to animal

• Hypernyms occur in more general contexts

• Graph-based

• #common children

• Parent.#children/parent.avg-depth
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TiFi - WordNet synset

headword
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TiFi – WordNet synset linking
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TiFi: Edge cleaning - results

• Most important features:

• Only plural parent

• Lexical generalization

• Common child support

• Page type matching

 Embedding only

 Rules only
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TiFi: Top-level construction

• Problem: Wikia categories  represent many 

disconnected components

• Solution: Link sinks to WordNet taxonomy and 

import further top level
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TiFi – Top-level construction

• Using same algorithm as for linking in edge 

cleaning

• Birds  is mapped to bird%1:05:00:: 

Subsequent hypernyms: wn_vertebrate → 

wn_chordate → wn_animal → wn_organism

→ wn_living_thing → wn_whole → wn_object

→ wn_physical_entity → wn_entity

• Removal of long paths (nodes with only one child 

and one parent)

• Dictionary-based filtering of ~100 too abstract 

classes (whole, sphere, imagination, …)
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TiFi: Top-level construction -

results
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TiFi – Relevance for entity 

search
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Open: Taxonomy Merging
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~Complex alignment problem requiring joint optimization



Summary: Taxonomy 

induction

• Usually a filtering process on larger candidate 

set

• Structure matters for local decisions

• Local-only decision OK but not optimal

• Top-level situation

• Sparse observations

• Generality makes reuse easier

• Relevance for AKBC:

• Queries for type conditions not explicitly observed

• Constraints on relation arguments
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Outline

1. Taxonomy induction

2. Entity disambiguation
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Ready for fact extraction?

Homer is the main

character of the TV

series “Simpsons”.

Homer is the author

of the Odyssey.

appearsIn(Homer, Simpsons)

wrote(Homer, Odyssey)?
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Inputs

Outputs

Premium Sources
(Wikipedia, IMDB, …)

Semi-Structured Data
(Infoboxes, Tables, Lists …)

Text Documents
& Web Pages

Conversations
& Behavior

Online Forums
& Social Media

Queries
& Clicks

Entity Names, 
Aliases & Classes

Entities in
Taxonomy

Relational
Statements

Rules &
Constraint

Canonicalized
Statements

Difficult Text
(Books,

Interviews …)

High-Quality Text
(News Articles,  
Wikipedia …)

Methods
Rules & 
Patterns

Logical
Inference

Statistical

Inference
Deep

Learning
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Web collections
(Web crawls)
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Also called “Wikification”, 

because everyone links to 

Wiki[pedia | data]
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Who wins?
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Can be computed e.g. from Wiki[pedia | a] 

by link disambiguation or page views
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Local or global solution?

• Features so far local

(one entity mention at a time)

• Context-similarity

• Disambiguation prior

• Do disambiguations influence each 

other?
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Possible implementation (2)

n entity mentions

Each with m candidate KB entities

→ Compute coherence scores for m
n

combinations
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Possible implementation (2)



State of the art

• Pre-trained neural models again

• Encode KB context

• Encode text context

• Predict match likelihood

• …or, predict KB identifier directly (GENRE, 

de Cao, ICLR 2021)

• Automated training data: Wikidata

text links
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Example systems (1): 

Opentapioca
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https://opentapioca.org/



Explicit parameter tuning – no more functioning 

https://gate.d5.mpi-inf.mpg.de/webaida/ 46

Example systems (2): AIDA

https://gate.d5.mpi-inf.mpg.de/webaida/
https://gate.d5.mpi-inf.mpg.de/webaida/


Further solutions

• spaCy can do this

• https://spacy.io/usage/linguistic-

features#entity-linking

• Though more complex setup, KB

• Commercial APIs

• https://try.rosette.com/

• https://cloud.google.com/natural-

language/docs/analyzing-entities

• https://azure.microsoft.com/en-

us/services/cognitive-services/text-

analytics/
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https://spacy.io/usage/linguistic-features#entity-linking
https://try.rosette.com/
https://cloud.google.com/natural-language/docs/analyzing-entities
https://azure.microsoft.com/en-us/services/cognitive-services/text-analytics/
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Disambiguation vs. mention 

typing

• Like for typing, context is decisive

• Unlike typing, no chance for supervised approach

• Can train classifiers that predict “Politician-ness” of a mention

• Cannot train classifier to predict “Einstein-ness”

• Disambiguation is ranking problem (single solution), not 

multiclass classification

• Type predictions can be used as intermediate features for 

context-based disambiguation

• Type prediction can augment disambiguation, if KB has 

sparse content
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Assignment 5 – Taxonomy 

induction

• Given: Set of terms

• Task: Build a small taxonomy that organizes 

them

• Can become both leafs or inner nodes

• Noisy input provided from WebIsALOD

• Cleaning, filtering, etc. highly recommended

• Other inputs allowed too

• Evaluation:

• Two known term sets

• One unseen set (robustness)
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Take home

• Taxonomy induction:

• Structure matters

• Important features: Lexical/semantic matches, 

structural properties

• Entity disambiguation

• Context seen already in typing

• Coherence as additional feature

• Meta-observation:

• Both problems are better approached globally 

than locally

• Both problems are complementary
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Playing with the Wikidata

taxonomy

https://angryloki.github.io/wikidata-graph-

builder/?property=P279&item=Q74359

53


