
Binary Factorizations in Data Mining

Kick-off meeting 27 October 2016

Today's Agenda

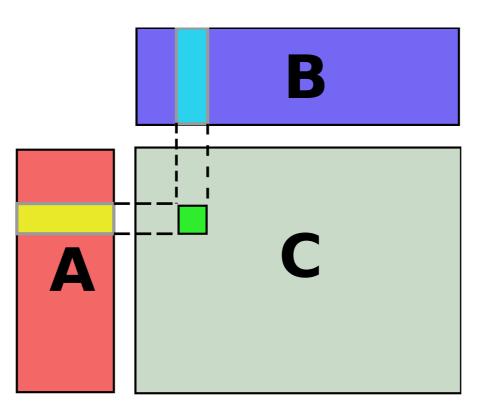
- Short intro to binary factorizations
- Check attendance
- Goals of the seminar
- Organization of the seminar
- Grading & guidelines

First Things First

- A block seminar
 - Preliminary work + one (or two) day(s) of presentations
- 7 ECTS credits
- Meeting all DLs and attending all talks is mandatory for passing the seminar
- Attending this kick-off meeting is mandatory

Short intro

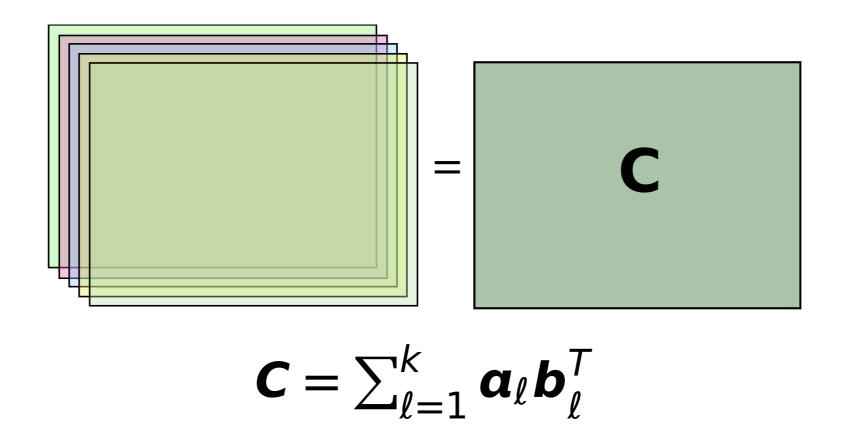
Matrix multiplication


 The product of two matrices, A and B, is defined element-wise as

$$(\boldsymbol{AB})_{ij} = \sum_{\ell=1}^{\kappa} a_{i\ell} b_{\ell j}$$

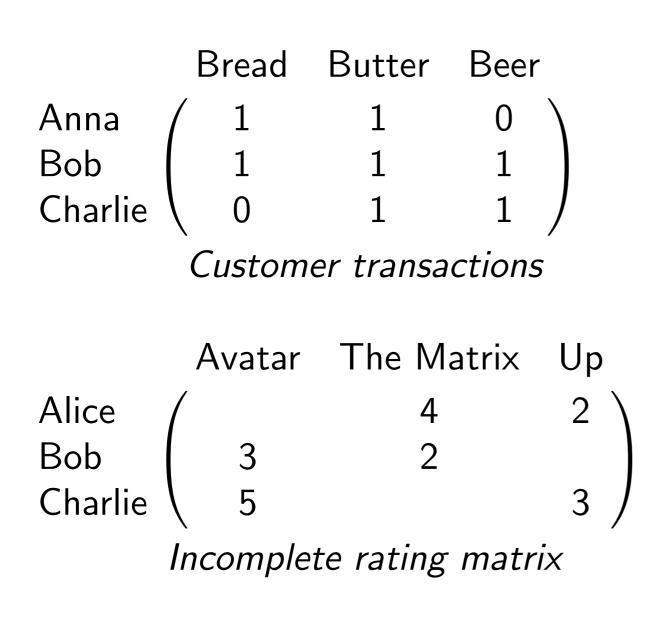
- The number of columns in **A** and number of rows in **B** must agree
 - inner dimension

Intuition for Matrix Multiplication


Element (AB)_{ij} is the inner product of row i of
 A and column j of B

$$\boldsymbol{C}_{ij} = \sum_{\ell=1}^{k} a_{i\ell} b_{\ell j}$$

Intuition for Matrix Multiplication


Matrix **AB** is a sum of k matrices **a**_l**b**_l^T
 obtained by multiplying the l-th column of **A** with the l-th row of **B**

Matrix decompositions

- A decomposition of matrix A expresses it as a product of two (or more) factor matrices
 - $\cdot A = BC$
- Every matrix has decomposition A = AI (or
 A = IA if n < m)
- The size of the decomposition is the inner dimension of the product

Matrices in data mining

	Data	Matrix	Mining	
Book 1	/ 5	0	3)	
Book 2	0	0	7	
Book 1 Book 2 Book 3	4	6	5 /	
Document-term matrix				

	Jan	Jun	Sep
Saarbrücken	/ 1	11	10 \
Helsinki	6.5	10.9	8.7
Cape Town	\ 15.7	7.8	8.7
.			

Cities and monthly temperatures

Matrix decompositions in data mining

- A common goal in data mining is to find regularities (or patterns) in the data
 - Often, to summarize the data
- A *matrix decomposition* presents the data as a sum of "simple" elements, i.e. patterns
 - but there's also other uses... stay tuned!

Text mining and pLSA

- Consider a document–term matrix A
 - *a_{ij}* is the number of times term *j* appears in document *i*

pLSA example

air	wat	pol	dem	rep	

I				-
0.04	0.03	0.12	0	0
0.01	0.06	0.17	0	0
0	0	0	0.14	0.16
0	0	0	0.12	0.07
0.01	0.01	0.01	0.01	0.01

0.39	0	0.48	
0.52	0	0	
0	0.58		
0	0.36		
0.09	0.06		

air wat pol dem rep

0.15	0.21	0.64	0	0
0	0	0	0.53	0.47

Here, A is normalized

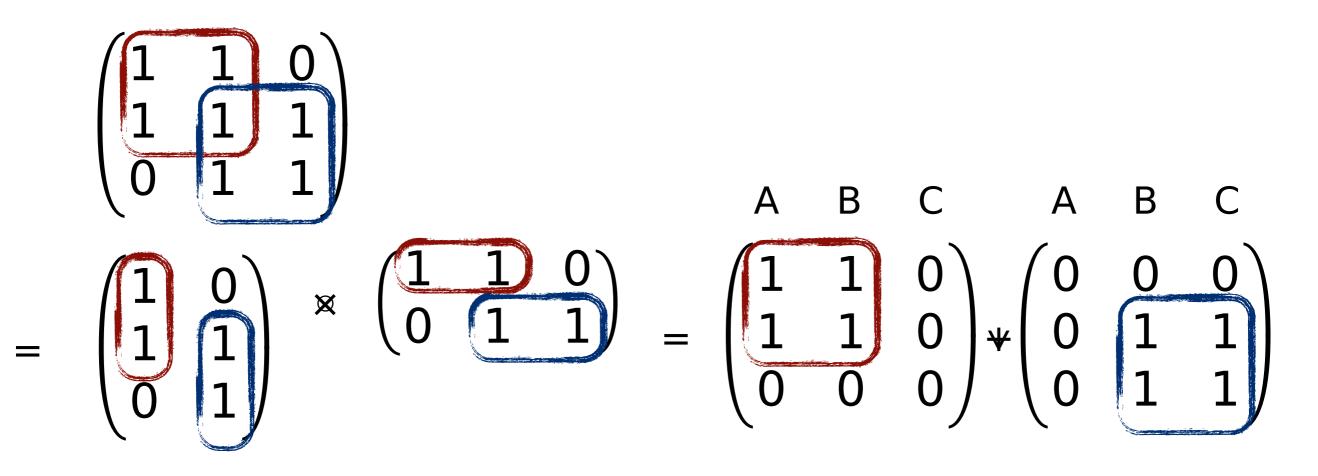
Α

W	Σ	Н
How strong	Overall	How strong the
the topic is	frequency	word is in the
in the document	?	topic?

0

0.52

Binary factorizations


- Often we deal with **binary** matrices
 - presence/absence data, graph adjacency matrices, market basket data, ...
- Such matrices are commonly better decomposed into binary factor matrices
 - Or one matrix binary, other numerical
 - Interpretability, sparsity, speed, ...
- Also the algebra might change to Boolean

Example factorization

Papers in this seminar...

- Factorize binary (or ternary) matrices
- Have at least one factor matrix discrete/ binary
- Either present new binary factorisation methods, or apply the binary factorisations to other problems
 - Or both

Head Count

Goals

- To learn how to read and understand recent research literature
- To learn how to write a concise report of a research article
- To learn how to present research
- To boldly read what no one (at this seminar) has read before
- To keep young people out of streets

Workflow

- 1. You read the paper (+ other papers)
- 2. You write a draft report and send it to me
- 3. I comment your report
- You improve your report and prepare your presentation, which you also send to me
- 5. I comment your presentation
- 6. You improve your presentation and send me the final report
- 7. I distribute the reports to everybody
- 8. You read others' reports
- 9. You present your work and follow and discuss others' presentations

Schedule

Day	Topic
27 October	Kick-off
27 November	Report draft DL
9 December	Slides draft DL
Early January	Report DL
January/February	Seminar

Selecting the dates

- The seminar takes two full days (approx. 9:00–16:00)
 - The days have to be consecutive
- I've created a doodle where you can indicate which days would work with you
 - http://doodle.com/poll/bgst3hwns83vdwqn
 - Fill in the doodle by Wednesday, 2 November
 - Use no if you have hard constraints and *if-need-be* if you have soft constraints
 - The more *no* answers you have, the more likely I'm to violate them

Odds and ends

- Remember to register to HISPOS
 - You can de-register for three weeks from now, but not after that
- The papers are now behind a username and password
 - see whiteboard or contact the lecturer

Grading Overview

- Report (3–5 pages):
 - Correctness, connections, criticism, style
- Slides & presentation (20 min):
 - Delivery, clearness, presentation skills
- Discussion (5–10 min):
 - Participation, correctness, connections

Report

- 3–5 pages
- In your own words
 - No verbatim copy
- Explain the main ideas of the paper
 - Research questions
 - Proposed solutions and their evaluation
- Write to somebody who hasn't read the paper
- Provide also extra connections & criticism towards the approach

More on report

- Length is not a hard constraint
 - As long as needed, but no longer
 - Figures, math, choice of margins, etc. effect the final length
- You must cite your sources using the standard academic practices
 - Everything that's not your own must be cited
- I only accept reports in PDF format
- More information is send later in the semester

Presentation

- 20 minutes (+ 5–10 minutes of discussion)
- Explain the main ideas of the paper
 - What, why, and how
- Build connections and provide criticism where appropriate
- Target to audience that knows CS and basics of DM and ML
 - Some audience knows more on your topic, others less; cater for both groups

Discussion

- After you've followed a presentation, discuss
 - You know the topic a bit: you've read the report
- Ask if something was left unclear
- Tell if you know more on something
- After technical part, give constructive feedback on the presentation itself
- Actually discussing is mandatory

Lecture on giving presentations?

- If there's demand, I might give one lecture on giving presentations
 - No soft-skills seminar, just few tidbits on how to give a presentation and how to prepare slides in this seminar
- Schedule: November