
theorem

undthethankofateusorllectorouterproduct

of N vectors

En
,

Em
,

...

,

# ' N ) is

an
N .

way tensor

I=u→HoE' no . . .oa→M

with every element defined as the

producer of the corresponding
elements of the vectors

tiniae.io?taYL..aYy .

Effie=f±#¥ Eijiiaibjck



The CP decomposition
.  .  .  - - .

.

The exact CP decomposition
-

of

an N . way tensor

IEIR
" ' # "  "

has the form

I= %Enroatrso. ..o→aY '

,

where REIN andElmer"
for all

are [ n ] and re [RT
.

In the approximate for fixed . rank ) ( P

decomposition
- -

- - -
- -

-

- - - ,

the size R is given ,

and we're looking for the least -

error decomposition

HI- IE,a→YoEYo . .oaY'll
.

For now
,

we concentrate on 3- way

tensors
,

and write

I=§±Erob→roEr
.



Visually .

the 3- way CP is

[#€TEf÷¥7EFI⇒+.

We can gather the vector for each

mode in factortmall.es .

In the 3- way

setting , for IEIR
' "×k

,
we have

A=[ a. E. . .aIT
,

B :[ I.I
.

. In ]
,

CEEI . .→gd
IXR JXR K xp

We can express the 3- way
CP

decomposition
using the frontal slices of I and

the factor matrices :

Tk= ADMBT
,

where D
' "

= diuy KC( k
, :))

,
i.e. a diagonal

matrix with the k . th now of C on

its diagonal .



IEIIEEFEHEFElate

The frontal sl.ee formulation doesn't

generalize easily for more than }

modes
.

For more generalizedrepresentation
,

weneed theKhatri-Ramatrixprodu=
: given matrices

AEIRKK and BEIR
' " '

,

their Khatri - Rao

product is

aonya.mil?ieeiIiiIIHIDeni
" "

.

That is
,

each column of B is copied
1 times

,

and the i. th copy of the K - th

column B multiplied by uik .

The

Khatri . Rao product can be written

more concisely using the



Kroneckermat_rxpoductA@B.lfAelRwandBelRkx4AheirKronecberproducotisanBA.aB

a

top

ftp.adf?IaYsMeai" " "?
Notice that in Kronecker product,

the matrices can be of arbitrary
size

,
whereas in Khatri - Rao

, they must

have the same number of columns
.

The Khatri - Rao product of A e- IR
" "

and

BEIRNK can now be written as

A -013 =[ an @ b? Eaten . .  . Thoth
. ]

,

that is
,

Khatri - Rao is
"

column - wise

knnecker "

product
.

KXR

If AEIR
"

? Better
,

and CEIR are the

factor matrices of a ( P decomposition

of tensor IEIR " '×k

,
then



Tc
, ,=A ( COIDT

Tea
,

=D ( CO A)
T

Ta ,
= CCBCOAT

.

More generally , if I has A modes

and factor matrices A " '

,
An

,
...

,
Am

,

Tcnj At " ) (AMO ... Oakmont " '

no .  . .
OAMF

To garn intuition on the Khatri .

Rao formulation
,

consider the

frontal slice formulation of CP :

Tk=AD
" 'Bt

,

with D
" ' '

.

'

diag ( CCIKD
.

The saume

factor A appears with ale frontal
slices

,
so we can just stuck them :

[ IT
.

" it,d=A[D'
"
at is"Bt ... DK 'M

-

E



ftp..TT-0×0000-0×0I Ta Tk A D
' "

BtD
' "

BT DH BT- E

The first row of E has the first
column of B multiplied by 4 , followed
by the first column of B multiplied
by Ca , ,

and so on
. Hence

E =[ e. Isis ,I . .ge#=lExOI.T
.

Extending this to all rows of 't

we see that

ET= (COBY
and hence

To,
't Its . TEFACCOBYI

The connections in the other modes

can be derived analogously .



One sometimes normalizes the columns

Of the factor matrices to unit length .

The lengths are then stored in factors

Xr = lliirlliltbilltlerll
,

collected in a vector

IELRR
,

or in a matrix ^ .

- diagtxy e IRRM
.

Then Th ,=A^( COBY ete
.

and

It ¥ x.ee?broE
.

A common notation for the CP

decomposition is to write

I. [ A. B. CD :{.nu?oIroI ,

or with the scaling
I=EI ; A. B.CI#..xrii.oIriir .



ALIEN
The

formulations
In ,=AkoBT

etc

provide a way
to solve the ( approximate )

( P decomposition
.

When ( and 13 are

fixed ( GB is a fixed matrix
,

call it D
,

and the problem becomes ;

"

Givenmatrices
Ta ,

and D
, find matrix A that

minimizes 4Th ,
-

ADTHP
"

. This can be

solved using the SVD and pseudo - inverse

as A  = Th ,(DTY
,

where ( it is the Moore -

Penrose pseudo - inverse
,

This leads to

the following algorithm :

sample random 13 and C

repeat
Tear A ← Th , ( ( C 013Mt

let 13 ← Tea,
( ( CoA )t ) +

let C ← Te , )( ( BOAFH
until convergence



The ALS algorithm requires us to

compute the pseudo -

inverses of
( COBY

,

(COAT
,

and ( BOAT
,

which are

R . by - JK
,

R - by . IK
,

and R . by -1J matrices
,

respectively.

This is an expensive

operation ,
but ifthese

matrices have

a full row

rank
-

which is likely ,
as

often R< & min { 1J
,

IK
,

JK } - then we

can use the following equality
T

( to B)
+

= KATA) * (BTBDYAON
,

#
where X * Y is the

HadamartmatrixproductI or element wise product)
between

XEIR
' "

and YEIR
" '

XMYM Xnzynz .
. .

×*4=( ×

manftp.iix#iFb)eR ' "

Xii Yin Xis Yls



The proof of identity (8) is left
as a homework

,

but it involves the

following identity that is also

occasionally useful on itself :

For XEIRN'

and YEIR
'×k

,

we have

(XOYYTXOY) = xtx * Yty
.

Proof : Let X '=XtX and notice that

x '*=cxI ,
# >

. Similarly, for YEYTY
,

wehave

yj*- < ipj , ftp. Now
,

let

2=1×0,44×04)
=LEog .

.in#oxgifIxixoy....xYxogD
,

and consider a single element

zpne
:

zp.e-CxIa@jr.Pex0Fp-ilE.lxikPr.xieFe7-Iexikxa.e
( Fr ,

Be >

=Hate> < ipriye ' = xkeyke ,

and hence Z=X' * Y '=xT×* yty
. p



With equality ( * ) we can write

A = Ta , ELCEBIJ
RXJK

as

A  = Th ,koBj[etc * BTBT
-

,

RXR

and we only have to take the pseudo .

inverse from a much smaller matrix
.

This formulation can
,

however
,

cause

issues with the numerical stability .

ALS is not the only possibility .

We

Can instead use
,

for instance
, gradient .

based methods : each row iii. can he

updated based on the gradient

iii. ← iii. soak '§.nl#i.jHaItcoBstDI
.

ALS is the most commonly used

approach , though .


