
Tensorrankan
N -

way tensor I is rankle if
it is an outer product of N vectors

I=u→%a→' Do
.  .

. OEM
.

Tensor I has eh if it is a sum

of R rank -1 tensors ( and no less ) , e.g.

I= alibi of + ii. Isoiia . .  . + iiribjoin

EI.EE?*EIa+...iE.ib.
Equivalently,

the rank of a tensor I is

the least R such that I has exact

( p decomposition to R components .

If

I is all - zero tensor
,

ifs rank is agreed
to he 0

.

(
compare this definition with that of

matrix rank
.

The vectors don't have



to be linearly independent
,

but the

formulation ig analogous to the so - called

Schein rank of a matrix : the rank of

a matrix M is the least R s .t
.

M

has decomposition M=AB with A having
R columns

.

tenor
-

rude
-

oddities

While seemingly similar to matrix rank
,

tensor rank behaves very differently in

many cases
.

!o.mp.u.t.at#.al...o.m.ple.xIt.y
Matrix rank is easy to compute

,
save

precision issues
, using ,

for instance
,

SVD
.

Tensor rank is NP . hard to compute .

This also means that deciding whether

a tensor has an exact rank . R decomposition

is NP . hard
.



M
 

is:
.

!C
.

Rank of a matrix MER
" '

is the same

irrespective of whether we take the

factorization over IR or ¢
.

With tensors
,

this is not the case
.

Consider

Tito 4 ) t2=(1! ) .

This tensor has rank 3 over IR
,

but rank

2
over

E
.

For example

A- toYH . 134:911 , and al;
^

.9)
over IR

,

but over ¢ we have

A # I! ) , B=tsHIt ,
and tfi!| .

Maximal
.  .

rank
.

If MGIR
" '

,

we know that mnklm)<hin{H}
.

With tensors
,

this is not necessarily the

case
,

as we see above
.

For IEIR
' "×k

,

We only know the weak upper bound



rank ( I ) c- min { Is
,

IK
,

JK }
.

Typical
.

.

tank
.

Iypicadmnkn is any
rank that occurs

with probability greater than zero if
we sample over RM 's " it

.

( Notice that

this is not the same as sampling over

the tensors represented by the floating
point numbers - the set of all of

those tensors has measure zero )
.

With

matrices MEIR
' "

, typical rank is again
min { 1. J }

,

that is
,

all random matrices

have a full rank
.

With tensors
,

this is

not the case
.

For instance
,

tensors in

1122×2×2 have typical ranks 2 and 3 over

IR ( experiments suggest that about 79%

of 2. by . 2- by -2 tensors have rank 2 and 27%

have rank 3 ; rank . 7 tensors occur with

zero probability .



tliniquenessofthrankdecomposition

Matrix factorization s are generally not

unique : if M=XY
,

we can always have

M=X
'

Y
'

,

where XEXZ and Y '=Z' Y

for some invertible 2
.

SVD is unique only
because of the orthogonality constraints

and the scaling matrix E
.

( P decomposition
,

on the other hand
,

is

often unique ( up to self . cancelling

scaling and permutation of the factors )
.

It is always possible to scale

I= ⇐ kriirlolpib
.)oHrI )

,

provided that d. pry ,
=1 for all rE[R]

.

We can adsc permute the components

I § einnibocnoiocr)

for any permutation 5 :[ R]→[R]
.



A sufficient condition for the uniqueness
of the exact CP decomposition can

be expressed using the concept of a

k.ru#: the K - rank of a matrix A
,

denoted ka
,

is the largest k such that

any
k columns of A are linearly

independent ( cf. normal rank
,

that

requires that sound k columns are tin
.

independent) .

The condition for 3-
way

( P decomposition I= EA
, 13 CD is

katk
,

the >-2R +2
.

As Max {ka
,

k
,} ,

kig< R
,

it's enough that
, eg,

A and 13 have full rank and C has the 2
.

For N -

way tensors
,

the sufficient
condition is

§
,

Kan)
22 R + ( N . 7)

.

A
necessary

condition in 3- way case is

min { ran KCAOB)
,

rank ( Aoc )
,

mnkl BODY = R .



Border rank

÷
approximate decompositions ,

the

situation is reversed
. The Eckart -

Young theorem States that the best

rank . R approximation of a matrix is

its rank . R truncated SUD
.

This provides
a hierarchy : best rank - ( R - 1) factorization
is a part of the best rank - R

approximation
.

( P decomposition doesn't have

such hierarchy : the best rank - 7

approximationmight not be part of any
higher . rank optimal approximations, for

example.

The Eckart . Young theorem also shows

that there's a clear difference between

the best rank - CR - 7) and tank - R

decomposition:

Hun
. ,En

.

.VE
,

- Ursrvntllg =

on for § a- { 2
,

FB
.



With tensors
,

it is possible to get

arbitrarily close to the one higher
rank decomposition . For an example

,

Consider IER
' "×k

with

I=EoIoea+qoIsoE + esib
. op

,

where the columns of A. 13
,

and ( are

linearly independent .
Hence rank ( I ) =3

.

lets =afait£a→dotbi+I's. )oEi+÷→d - aaiibioii
Now rank (1) =2 and

III. stktallaiibioiirajbioijiiiboisttiiaibaoidl #
.

Hence
,

we can make 1 arbitrarily close to

I. Such I are called degenerate
.

The

degenerate matrices have positive

Lebesgue measure ( positive probability)
for at least some ranks

.

Thus
,

the

problem is not
"

rare
"

.



The borderland is defined as the

minimum number of rank -1 tensors

needed to obtain arbitrarily good

approximation of the tensor
.

Tensor

I in the previous example has border

tank 2
.

Notice that this does not contradict the

Uniqueness of the rank decomposition : the

exact decomposition is unique ,
even if

the approximate ones are not
.


