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.

its Tucker 3 -

or just
Tucker - decomposition has a

coretensor_GElRP×9×R and thee factor
matrices AEIR

' "

,
BEIR

'×9

,

and C e1Rk×r
,

and it is defined as
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element wise Tucker is

t.pe#&&..Ypqr9ipbjotckr
.



ETEIE#€¥B
Tucker decomposition is usually applied

only to 3- way tensors
,

but N .

way
version is straight forward to define :

Ia G- x. At "

xz A' ⇒

xsixn AM

teiioiift
,
§

.

" E. grin .
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The core tensor G- can be considered as

a compressed version of the original
tensor I if P4

,

Q< I
,

and R< K
.

If

p=Q=R and G- is 1 hyper . ) diagonal ,

then Tucker 's reduces to the ( Pdecomposition
.

In particular
,

with hyper .

diagonal G- where all diagonal entries

are 1
,

we have that It ; A. 13,01=4,13, #
.



The Tucker decomposition can be

expressed in a matricized form :

Tci ,
a AG

. ,
( ( Q B)

T

Tea ,
a B Ga,

( ( @ A)
T

Ten a ( G ,
l BOAT

.

To gain some intuition
,

let's consider

the first frontal Slice of KG ; A. B ( I
.

$; A B. cD. = A D
"

BT
,

with Dae # e.

rGr
.

Now we have
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= A [ D

"
Bt Da Bt - - . DCMBT]

= A [ &.
Gr Gr) BT '  -

- I E. 4. rGr)Dt ]

4. Bt Cn Bt .  .
. (

µ ,

BT

⇒ anonymityIIIIIIIID
= A Ga ,

( CQBY



In N -

Way case
,

the made . h matricized

version becomes

Tenet
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"
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The Tucker 2 decomposition leaves one

factor matrix as an identity matrix
,

e. g .

It G- x. A×aD=¢E ; A ,B ,
D

,

where IHR
' "×k

and G- c. lpgpxoixk

EIEKFT## #

The Tucker7 decomposition leaves two

factor matrices as identity , for instance

Ia Ex ,A=[ G- ;A ,
1. II

.

This is equivalent to standard least -

squares matrix factorization .



theIrank

Let IEIR
"×↳" h

.

The n±nk of I
,

rankn ( I )
,

is the column rank of Ten
, ,

i.e.
,

the number of linearly independent
columns in In , . If we get Riirankn ( I )

,

then I is rank - ( R.R.
,

... ,RD
,

though
note that fhB definition B not

compatible with the usual tensor

rank
.

Clearly,
Ruth for all he [ N ]

. Finding
a Tucker decomposition of size 1 Rn

,
Ra

,
...

,

Rw ) is easy if rank # =Rn for all n
.

(omputinyTuck=
From now on

,
we enforce that the

columns of the factor matrices are

mutually orthogonal,
that is

,

ATA  = Ip ,
1373=6

,

and CTEIR .
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HOSVD is a simple method to calculate
the Tucker decomposition using SVD :

ferh - 1
,

...

,
Ndg

( v. s ,v ) ← SVD C Tw )
An ) ← Ulijl : Rn )

£f¥Ix
,

At " txaabitx ,
.

.  .

xµ AWIT

In the last tow above
,

we use the fact that

the factor matrices are column - orthogonal :

I - Ex ,
A  ⇒ Th,

= AG , ,⇐s ninth ,
= G.)

IsAt In = Ga ,
⇐ > In At = Ga , ,

where * is due to the column orthogonality .

HOSVD is not very good for finding a

low - error decomposition ,
as it doesn't

take into account the higher - order structure

in the tensor
.

It is
,

however
, useful

for finding an initial solution for other

algorithms .



Higher. order
.

Orthogonal
.

Iteration #00-1)

We know that

_G=Ix
, Atxa Btx

,
et ( × )

is optimal for column - orthogonal A
,

B
,

and C
.

Let us re - write the objective :

III. IE ; a. B. CDIF. HIIRZCIAE; A Bid >

+ HCIE; A. BCDIP
¥ 14712-2 < I ,l[ t ; A. 13 (D) +11-6112

*FHIIP - 2h Ixittxabtxdt
,

-6>+11-6112

*E*1kyp . 2< E. G- > +11-6112
*

¥911112- 111112

= IIIIP - HIX ,AtxaBt×3ctH2+
* We use the column orthogonality

* * We multiply the factors out from |[G ; A. B. ( D
.

* * * We use C x )

* * * We use ( G-
,

-63=11-6112

As HIH is constant
,

we learn that

III. Ice ;A ,
13,01112 & - II Ixatxsbtxsctlp



Hence
,

We Want to Maximize

annoy HIXAI .Btxsctll
,orequivalently

theyHatta,

KOMTI
annoy HBTI. ,

UQAIH
had Hctta,

113×0*1
.

Essentially ,

G- is fully determined by
the factor matrices

,
and we do not have

to take it into account
.

To compute HOOI
,

we again we SVD :

Initialize A
' ' '

,
A

'

7 ... using AOSVD

ret.IO#n=1...,NAdhttxa...xnAMt
I ← In

U
, E. v ← SVD ( Yen

, )
An ← Ul : ,tRn

end
until convergence

G- ← IX. Aatxa '  - - xntt 't



tailItlfortucker

We can also use the standard
ALS approach to solve Tucker
decomposition

.

This does not
, generally

,

yield to orthogonal factor matrices
,

though .

In some cases ,
this R What

we want
.

To update the factor
matrices

,
we have :

A  ← Talk , ,lC @ BY )+
13 ⇐ Ten 1 G.) 1 ( 8 AT )+
e ← To ,

( Ga , IDQATY

To update the core
,

we can use a

vectonzed format of Tucker and solve

G- = argweinllveef) - ( ( 813 @ A) red-411
,

which is just a standard least .

squares problem .

The ALS algorithm is rarely used

due to the large pseudo . inverse
.



'
It can be useful for computing the

Tucker 2 decomposition
, though .

For

Tucker 2
,

we replace ( with theidentitymatrix
,

and solve
A  ← Th, KG, ,(1×01337+13

← Ta 1 G.) 11 @ AYF
,

where We can use the fact that

4×0135=4BE.g)
and that

G.) ( 1×013 )t= [ G
,

Ga " Gif ( 1×013 )I(
"

"

6213T
.

.g
,

¥
The core can be updated separately for
each frontal slice :

Ge ← 13+13 At
.



NonnegativeTucke-
Similarly to NCP

,
we can consider

the nonnegative variant of the

Tucker } decomposition.

We use the

unfolded versions of Tucker

Tap AG
, ,( ( QBT

Tent B Ga,( ( @ A)
T

Tena ( Gnl BOAT
,

and update the factors usingmultiplicativerule $ similar to those in NCP
.

To initialize A. B
, 4 and G- we can run

HOSVD on I and truncate the negative
values in the result to zero

.

We

can also use random initialisation
,

bat this can yield very bad initial

solutions
.



The nonnegative Tucker } algorithm is

Input : Ieltdsld
" " "×h

,
( Rn

,
R

. ,
... ,Rµ )

( E
,

tin
,

...

,
A

" '

) ← Hosv D ( I
,

R
.

,
Ra ...

,
Rn )

G- ← [ ET
+ ; A' n'

← [ A
' "T+ for all new ]

repeat
§ ← G- x. A' "

xs
. .  - xn A

" )

for hit
. .

N de
Fan '

← A' a
* (ten

,
Ahn GI ) !1! (Qa

,
# GI )

Efm ← IF '

Nan 'll

end

I← E * ( IX. At '
x. . .x~Am) !1! (Qin

,
ktnx .  * A.)

Untilconvergence

Here
,

A
.

n
= Amo . .  @ A'

" " '

@ Aching . .  . XA
'?



Applicant er

tensor Eases
.

We can use Tucker decomposition to

separate the effects of different
illuminations

, expressions
, poses,

etc from

pictures ,
provided that we have training

data with all variations for all

subjects .

In Tensor Faces
,

we have photos of  subjects
in different views ( front , left , right ,

. :)
,

under

different illuminations and having different
expressions .

This gives a people - by . views -

by . illuminations . by . expressions - by - pixels
tensor

.

See the next page for some

examples ( image from Vasilescu & Terzo -

Poulos : Multi linear analysis of image
ensembles : Tensor Faces

,

ECCV '

02 ) .





Applying the Tucker decomposition with

no reduction in the dimensions yields

£×^Apeopee×a A
views

×
} Aillums ×4Aexprxs×5A Pixels

The Ain
,

factor matrices encode the

variations in these modes
,

while the

Core tensor governs the interactions
.

This model generalizes Eigenfaces :

we can write

[ pixels )
= A pixels Gcpixedsj (A

express
@ Ailluns @ A

views

QA people )T

to get a standard Eigen faces setting .

Multiplying £ Xg A pixel, gives us a tensor

that shows the primary variations along
the modes

.

Some examples are in the

next page ( Vasile scu & Terzo poulos
,

2002 )
.

On the other hand
,

if we multiple
€X2 Auiews × 5A pixels







We get the variations with the

different viewpoints ,
as depicted in

the picture in the previous page Was:L .

& Teraopoudos
,

2002 ) .

Ending.
fads

.

depend
In openinformationvelr.ua# our

goal is to extract structuredknowledgefrom unstructured data using
unsupervised methods

. Typically ,

we want to extract subject - predicate -

object ( s
, P.o ) triples with disambiguated

entities and relations
. To do that

,
we

can first run standard natural language

parsers to obtain noun phrase - verbal

phrase - noun phrase ( up , up , hp ) triples, eg
Donald I

. Trump
,

is
,

POTUS

Donald

Trump
is the president of ,

USA

The Donald
,

is the prez of
,

'

Marica

Donald
Trump

,

is the son of
,

POTUS



These triples encode two ( s
,

no )

triples
donald

. j . trump ,
is President Of

,

USA

donald
. j .

* rump . jr,

is Son Of
,

donald
. jtrump

To extract these
,

we need to handle

synonyms (President v. s
. Prez ) andhomonyms( Donald Trump [ Jr ] )

, among others
.

We can model this with mappings from
noun phrases fo entities and from
verbal phrases to relations

.ConsideringSubjects and objects separately ,
we

have Ainp → s
,

13 :np→o ,
and Civp → p .

We model these as matrices
. If they

are column orthogonal,
and if our

original ( np , up , np ) triples are stored

in a tensor T
- ,

We can get the true

G. P
,

o ) triples as

IX. AtxaBtxsct .



That is
, if we do Tuckerdecompositionto the tensor containing the

surface triples ,
We find the latent

entities and relations ( though they
might not contain any

" real "

entities or relations ) .

A practical problem With this approach
is that the core tensor has to be Very
big,

making it hard to work with
.

The core should also he sparse ,
which

is not the case if we obtain it with

the multiplication .


