Problem 1 (Maximum rank). It was stated in the lectures that the rank of a tensor $\mathcal{T} \in \mathbb{R}^{I \times J \times K}$ is never more than

 $\min\{IJ, IK, JK\}$.

Let I, J, and K be that $JK = \min\{IJ, IK, JK\}$ and let $\mathcal{T} \in \mathbb{R}^{I \times J \times K}$ be arbitrary. Your task is to construct $A \in \mathbb{R}^{I \times JK}$, $B \in \mathbb{R}^{J \times JK}$, and $C \in \mathbb{R}^{K \times JK}$ such that

$$\boldsymbol{T}_{(1)} = \boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^T$$
.

Hint: Construct \boldsymbol{B} from identity matrices.

Solution. Let

$$A = T_{(1)}$$

$$B = \underbrace{\left[I_J I_J \cdots I_J\right]}_{K \text{ times}}$$

$$C = \begin{pmatrix} j_J^T & 0 & \cdots & 0\\ 0 & j_J^T & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & j_J^T \end{pmatrix} (K \text{ rows}),$$

where I_J is J-by-J identity matrix and j_J^T is J-dimensional row vector of all 1s. Now

$$C \odot B = \begin{bmatrix} c_1 \otimes b_1 & c_2 \otimes b_2 & \cdots & c_{JK} \otimes b_{JK} \end{bmatrix}$$
$$= \begin{pmatrix} I_J & 0 & \cdots & 0 \\ 0 & I_J & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I_J \end{pmatrix}$$
$$= I_{JK} = (C \odot B)^T.$$

Hence, $\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^T = \boldsymbol{A} \boldsymbol{I}_{JK} = \boldsymbol{A} = \boldsymbol{T}_{(1)}.$

One can also show that this construct admits $T_{(2)} = B(C \odot A)^T$ and $T_{(3)} = C(B \odot A)^T$, though those proofs require much more complex subscripting.

Problem 2 (Nonnegative INDSCAL). Present an algorithm for nonnegative 3-way INDSCAL. That is, given a nonnegative 3-way tensor $\mathcal{T} \in \mathbb{R}_{\geq 0}^{I \times J \times K}$ and an integer R, find matrices $\mathbf{A} \in \mathbb{R}_{\geq 0}^{I \times R}$, $\mathbf{B} \in \mathbb{R}_{\geq 0}^{J \times R}$, and $\mathbf{C} \in \mathbb{R}_{\geq 0}^{K \times R}$ that aim at minimizing

$$\|\mathcal{T} - [\![A, B, C]\!]\|$$
 .

Solution. The problem statement is wrong. The real problem should be: Given $\mathcal{T} \in \mathbb{R}_{\geq 0}^{I \times I \times K}$, find $A \in \mathbb{R}_{\geq 0}^{I \times R}$ and $C \in \mathbb{R}_{\geq 0}^{K \times R}$ that minimize $\|\mathcal{T} - [\![A, A, C]\!]\|$. One option is to use the multiplicative update rules for NCP. If we let $\mathcal{Q} = [\![A, A, C]\!]$, we have

$$a_{ir} \leftarrow a_{ir} \frac{\sum_{j,k} a_{jr} c_{kr}(t_{ijk}/q_{ijk})}{\sum_{j,k} a_{jr} c_{kr}}$$
$$c_{kr} \leftarrow c_{kr} \frac{\sum_{i,j} a_{ir} a_{jr}(t_{ijk}/q_{ijk})}{\sum_{i,j} a_{ir} a_{jr}}.$$

The initialization of the factor matrices requires some attention. They should naturally be nonnegative, and we should aim to have them in a correct scale. For multiplicative update rules we also cannot have zero entries. For example, we can sample from uniform distribution over (0, u), where we set u so that the expected value of the CP product of the random matrices, $\mathbb{E}[[A, A, C]]_{ijk}]$, is equal to the average value in the tensor, $\frac{1}{IJK}\sum_{i,j,k} t_{ijk}$. We can obtain this by setting

$$u = \frac{2}{R\sqrt[3]{IJK}} \sqrt[3]{\sum_{i,j,k} t_{ijk}} .$$

Problem 3 (CP-APR for KL-divergence). In CP-APR, we need to find a matrix A that minimizes

$$L(\boldsymbol{A}) = \boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^T - \boldsymbol{T}_{(1)} * \log(\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^T) .$$

This is a type of a KL divergence. In nonnegative matrix factorization (NMF), we are given a nonnegative matrix $\boldsymbol{A} \in \mathbb{R}_{\geq 0}^{I \times J}$ and an integer K and we have to find nonnegative matrices $\boldsymbol{W} \in \mathbb{R}_{\geq 0}^{I \times K}$ and $\boldsymbol{H} \in \mathbb{R}_{\geq 0}^{K \times J}$ such that $\boldsymbol{A} \approx \boldsymbol{W} \boldsymbol{H}$.

The standard NMF algorithm for KL divergence has the following update rule:

$$\boldsymbol{W}_{ik} \leftarrow \boldsymbol{W}_{ik} \frac{\sum_{j=1}^{m} (\boldsymbol{A}_{ij}/(\boldsymbol{W}\boldsymbol{H})_{ij}) \boldsymbol{H}_{kj}}{\sum_{j=1}^{m} \boldsymbol{H}_{kj}}$$
 .

Adapt this update rule for the factor matrix \boldsymbol{A} in the CP decomposition. How does it relate to the update rule

$$\boldsymbol{A} \leftarrow \boldsymbol{A} * (\boldsymbol{T}_{(1)} \oslash (\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^T)) (\boldsymbol{C} \odot \boldsymbol{B})^T,$$

presented in the lecture? (To recap, \oslash is the element-wise division.)

Solution. The NMF KL update rule adapted to matrix \boldsymbol{A} in NCP is

$$a_{ir} \leftarrow a_{ir} \frac{\sum_{j=1}^{J} \sum_{k=1}^{K} \left(t_{ijk} / (\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^{T})_{ijk} \right) (\boldsymbol{C} \odot \boldsymbol{B})_{r,(jk)}}{\sum_{j=1}^{J} \sum_{k=1}^{K} (\boldsymbol{C} \odot \boldsymbol{B})_{r,(jk)}}$$

We can write this in a matrix format:

$$\boldsymbol{A} \leftarrow \boldsymbol{A} * \left(\left(\boldsymbol{T}_{(1)} \oslash (\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^T) \right) (\boldsymbol{C} \odot \boldsymbol{B})^T \operatorname{diag}((\boldsymbol{C} \odot \boldsymbol{B})^T \boldsymbol{1}_{JK})^{-1} \right).$$

Compared to the update rule for CP-APR, this has a normalization factor $\operatorname{diag}((\boldsymbol{C} \odot \boldsymbol{B})^T \boldsymbol{1}_{JK})^{-1}$.

Problem 4 (PARAFAC2). The PARAFAC2 decomposition is another variant of the CP decomposition, defined slice-wise as follows. Given K matrices $X_k \in \mathbb{R}^{I_k \times J}$ and rank R, find K matrices $U_k \in \mathbb{R}^{I_k \times R}$, diagonal matrices $S_k \in \mathbb{R}^{R \times R}$, and a matrix $V \in \mathbb{R}^{J \times R}$ such that

$$\sum_{k=1}^{K} \left\| oldsymbol{X}_k - oldsymbol{U}_k oldsymbol{S}_k oldsymbol{V}^T
ight\|_F$$

is minimized.

- a) PARAFAC2 is related to CP, but how? Under which conditions is PARAFAC2 the same as the CP decomposition?
- b) Consider following kind of health records data: We have longitudinal health records data over K patients and J attributes, such as diagnoses and medication. For each patient, we have collected these attributes over different time span and at different times, and each patient k is represented by a I_k -by-J matrix \mathbf{X}_k , where I_k is the number of observations for this patient, and $(\mathbf{X}_K)_{ij}$ is the value of variable j that observation point i. Notice that the observation points do not align between the users, that is, they correspond to different points in time. Assume we do rank-R PARAFAC2 to the collection of such matrices $\{\mathbf{X}_k\}_{k=1}^K$ and obtain $\{\mathbf{U}_k, \mathbf{S}_k\}_{k=1}^K$, and \mathbf{V} .

We can assume that the columns of the J-by-R matrix V corresponds to some latent *phenotypes*, that is, they encode which diagnoses and medication "go together." How would you interpret the other factors?

Solution.

- a) For PARAFAC2 to be equal to CP, it has to be that (1) $I_1 = I_2 = \cdots = I_K = I$, (2) the rows of X_k correspond to each other, and (3) $U_1 = U_2 = \cdots = U_k = U$. Then we can take the matrices X_k as the frontal slices of tensor \mathcal{X} , set A = U, B = V, and arrange the values in the diagonal of S_k as the kth row of C. In this case $X_k \approx U_k S_k V^T$ for all k is equivalent to $\mathcal{X} \approx [A, B, C]$.
- b) The diagonal matrices S_k indicate the *importance* or *strength* of each of the R phenotypes in the kth subject. The most relevant phenotype is the one with the highest value. Each column of U_k provides a *temporal signature* for each of the phenotypes in patient k, that is, they indicate when the phenotype has been observed and at which level.

