
D5: Databases and Information Systems
Tensors in Data Analysis, WS 2017–18
Homework #3: Variations and applications of the CP decomposition
Tutorial: 12 October 2017 at 14:30

Problem 1 (Maximum rank). It was stated in the lectures that the rank of a tensor T P RIˆJˆK is
never more than

mintIJ, IK, JKu .

Let I, J , and K be that JK “ mintIJ, IK, JKu and let T P RIˆJˆK be arbitrary. Your task is to
construct A P RIˆJK , B P RJˆJK , and C P RKˆJK such that

T p1q “ ApC dBqT .

Hint: Construct B from identity matrices.

Solution. Let

A “ T p1q

B “ rIJ IJ ¨ ¨ ¨ IJ s
looooooomooooooon

K times

C “

¨

˚

˚

˚

˝

jTJ 0 ¨ ¨ ¨ 0

0 jTJ ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ jTJ

˛

‹

‹

‹

‚

(K rows) ,

where IJ is J-by-J identity matrix and jTJ is J-dimensional row vector of all 1s. Now

C dB “ rc1 b b1 c2 b b2 ¨ ¨ ¨ cJK b bJKs

“

¨

˚

˚

˚

˝

IJ 0 ¨ ¨ ¨ 0
0 IJ ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ IJ

˛

‹

‹

‹

‚

“ IJK “ pC dBqT .

Hence, ApC dBqT “ AIJK “ A “ T p1q.

One can also show that this construct admits T p2q “ BpC dAqT and T p3q “ CpB dAqT , though
those proofs require much more complex subscripting.
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Problem 2 (Nonnegative INDSCAL). Present an algorithm for nonnegative 3-way INDSCAL. That is,
given a nonnegative 3-way tensor T P RIˆJˆK

ě0 and an integer R, find matrices A P RIˆR
ě0 , B P RJˆR

ě0 ,

and C P RKˆR
ě0 that aim at minimizing

‖T ´ vA,B,Cw‖ .

Solution. The problem statement is wrong. The real problem should be: Given T P RIˆIˆK
ě0 , find

A P RIˆR
ě0 and C P RKˆR

ě0 that minimize ‖T ´ vA,A,Cw‖.
One option is to use the multiplicative update rules for NCP. If we let Q “ vA,A,Cw, we have

air Ð air

ř

j,k ajrckrptijk{qijkq
ř

j,k ajrckr

ckr Ð ckr

ř

i,j airajrptijk{qijkq
ř

i,j airajr
.

The initialization of the factor matrices requires some attention. They should naturally be nonnegative,
and we should aim to have them in a correct scale. For multiplicative update rules we also cannot have
zero entries. For example, we can sample from uniform distribution over p0, uq, where we set u so that the
expected value of the CP product of the random matrices, ErvA,A,Cwijks, is equal to the average value
in the tensor, 1

IJK

ř

i,j,k tijk. We can obtain this by setting

u “
2

R 3
?
IJK

3

d

ÿ

i,j,k

tijk .
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Problem 3 (CP-APR for KL-divergence). In CP-APR, we need to find a matrix A that minimizes

LpAq “ ApC dBqT ´ T p1q ˚ logpApC dBqT q .

This is a type of a KL divergence. In nonnegative matrix factorization (NMF), we are given a
nonnegative matrix A P RIˆJ

ě0 and an integer K and we have to find nonnegative matrices W P RIˆK
ě0

and H P RKˆJ
ě0 such that A «WH.

The standard NMF algorithm for KL divergence has the following update rule:

W ik ÐW ik

řm
j“1pAij{pWHqijqHkj

řm
j“1 Hkj

.

Adapt this update rule for the factor matrix A in the CP decomposition. How does it relate to the update
rule

AÐ A ˚
`

T p1q m pApC dBqT q
˘

pC dBqT ,

presented in the lecture? (To recap, m is the element-wise division.)

Solution. The NMF KL update rule adapted to matrix A in NCP is

air Ð air

řJ
j“1

řK
k“1

`

tijk{pApC dBqT qijk
˘

pC dBqr,pjkq
řJ

j“1

řK
k“1pC dBqr,pjkq

We can write this in a matrix format:

AÐ A ˚
´

`

T p1q m pApC dBqT q
˘

pC dBqT diagppC dBqT1JKq
´1

¯

.

Compared to the update rule for CP-APR, this has a normalization factor diagppC dBqT1JKq
´1.
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Problem 4 (PARAFAC2). The PARAFAC2 decomposition is another variant of the CP decomposition,
defined slice-wise as follows. Given K matrices Xk P RIkˆJ and rank R, find K matrices Uk P RIkˆR,
diagonal matrices Sk P RRˆR, and a matrix V P RJˆR such that

K
ÿ

k“1

∥∥∥Xk ´UkSkV
T
∥∥∥
F

is minimized.

a) PARAFAC2 is related to CP, but how? Under which conditions is PARAFAC2 the same as the CP
decomposition?

b) Consider following kind of health records data: We have longitudinal health records data over K
patients and J attributes, such as diagnoses and medication. For each patient, we have collected
these attributes over different time span and at different times, and each patient k is represented by
a Ik-by-J matrix Xk, where Ik is the number of observations for this patient, and pXKqij is the
value of variable j that observation point i. Notice that the observation points do not align between
the users, that is, they correspond to different points in time. Assume we do rank-R PARAFAC2 to
the collection of such matrices tXku

K
k“1 and obtain tUk,Sku

K
k“1, and V .

We can assume that the columns of the J-by-R matrix V corresponds to some latent phenotypes,
that is, they encode which diagnoses and medication “go together.” How would you interpret the
other factors?

Solution.

a) For PARAFAC2 to be equal to CP, it has to be that (1) I1 “ I2 “ ¨ ¨ ¨ “ IK “ I, (2) the rows of Xk

correspond to each other, and (3) U1 “ U2 “ ¨ ¨ ¨ “ Uk “ U . Then we can take the matrices Xk

as the frontal slices of tensor X , set A “ U , B “ V , and arrange the values in the diagonal of Sk

as the kth row of C. In this case Xk « UkSkV
T for all k is equivalent to X « vA,B,Cw.

b) The diagonal matrices Sk indicate the importance or strength of each of the R phenotypes in the
kth subject. The most relevant phenotype is the one with the highest value. Each column of Uk

provides a temporal signature for each of the phenotypes in patient k, that is, they indicate when
the phenotype has been observed and at which level.
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