
D5: Databases and Information Systems
Tensors in Data Analysis, WS 2017–18
Homework #4: Tucker decompositions
Tutorial: 13 October 2017 at 14:30

Problem 1 (Tucker1). In the lecture it was stated that the Tucker1 decomposition vG;A, I, Iw such
that ‖T ´ vG;A, I, Iw‖ is equivalent to standard least-squares matrix factorization. Show that this is the
case.

Solution. The mode-1 matricization is∥∥T p1q ´AGp1qpI b IqT
∥∥ “ ∥∥T p1q ´AGp1q

∥∥ ,

as IJ bIK “ IJK . Hence, we can solve the problem perfectly by looking only at the mode-1 matricization.
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Problem 2 (Tucker3). Let G be a 2-by-2-by-2 defined by its frontal slices as

G1 “

ˆ

1 2
´2 1

˙

and G2 “

ˆ

´2 1
1 2

˙

,

and let

A “

¨

˝

1 4
2 5
3 6

˛

‚, B “

¨

˝

´2 2
3 ´3
´4 ´4

˛

‚, and C “

ˆ

1 0
0 ´1

˙

Calculate G ˆ1 Aˆ2 B ˆ3 C.

Solution. Let T “ G ˆ1 Aˆ2 B ˆ3 C. The frontal slices of T are

T 1 “

¨

˝

26 ´39 4
34 ´51 ´4
42 ´63 ´12

˛

‚ and T 2 “

¨

˝

14 ´21 ´44
22 ´33 ´52
30 ´45 ´60

˛

‚ .
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Problem 3 (Inverses in tensor-matrix product). Let G P RPˆQˆR with P ď I, Q ď J , and R ď K,
and let A P RIˆP , B P RJˆQ, and C P RKˆR. Assume that A, B, and C are column-orthogonal, that
is, ATA “ I etc.

Let T “ G ˆ1 Aˆ2 B ˆ3 C. Prove that

G “ T ˆ1 A
T
ˆ2 B

T
ˆ3 C

T .

Solution.

G “ G ˆ1 pA
TAq ˆ2 pB

TBq ˆ3 pC
TCq

“ pG ˆ1 Aˆ2 B ˆ3 Cq ˆ1 A
T
ˆ2 B

T
ˆ3 C

T

“ T ˆ1 A
T
ˆ2 B

T
ˆ3 C

T .
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Problem 4 (Vectorization and Kronecker). To solve

arg min
Gk

∥∥∥T k ´AGkA
T
∥∥∥ ,

we wrote it as
arg min

Gk

∥∥vecpT pkqq ´ pAbAq vecpGkq
∥∥ .

Prove that this re-writing is correct. That is, show that for any matrices A P RIˆK and B P RKˆK ,
we have

vecpABAT
q “ pAbAq vecpBq .

Solution.

vecpABAT
q “

¨

˚

˚

˚

˝

pABAT
qp:, 1q

pABAT
qp; , 2q

...

pABAT
qp:, Iq

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

xAp1, :q, pBAT
qp:, 1qy

xAp2, :q, pBAT
qp:, 1qy

...

xApI, :q, pBAT
qp:, 1qy

xAp1, :q, pBAT
qp:, 2qy

...

xApI, :q, pBAT
qp:, Iqy

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a11xAp1, :q,Bp1, :qy ` a12xAp1, :q,Bp2, :qy ` ¨ ¨ ¨ ` a1KxAp1, :q,BpK, :qy
a21xAp1, :q,Bp1, :qy ` a22xAp1, :q,Bp2, :qy ` ¨ ¨ ¨ ` a2KxAp1, :q,BpK, :qy

...
aI1xAp1, :q,Bp1, :qy ` aI2xAp1, :q,Bp2, :qy ` ¨ ¨ ¨ ` aIKxAp1, :q,BpK, :qy
a11xAp2, :q,Bp1, :qy ` a12xAp2, :q,Bp2, :qy ` ¨ ¨ ¨ ` a1KxAp2, :q,BpK, :qy

...
aI1xApI, :q,Bp1, :qy ` aI2xApI, :q,Bp2, :qy ` ¨ ¨ ¨ ` aIKxApI, :q,BpK, :qy

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˝

a11A a12A ¨ ¨ ¨

a21A a22A ¨ ¨ ¨

...
...

. . .

˛

‹

‚

¨

˚

˚

˚

˝

Bp:, 1q
Bp:, 2q

...
Bp:,Kq

˛

‹

‹

‹

‚

“ pAbAq vecpBq
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