D5: Databases and Information Systems Tensors in Data Analysis, WS 2017–18 Homework #4: Tucker decompositions Tutorial: **13 October 2017** at 14:30

Problem 1 (Tucker1). In the lecture it was stated that the Tucker1 decomposition $[\mathcal{G}; A, I, I]$ such that $||\mathcal{T} - [\mathcal{G}; A, I, I]||$ is equivalent to standard least-squares matrix factorization. Show that this is the case.

Solution. The mode-1 matricization is

$$\| \boldsymbol{T}_{(1)} - \boldsymbol{A} \boldsymbol{G}_{(1)} (\boldsymbol{I} \otimes \boldsymbol{I})^T \| = \| \boldsymbol{T}_{(1)} - \boldsymbol{A} \boldsymbol{G}_{(1)} \|$$
,

as $I_J \otimes I_K = I_{JK}$. Hence, we can solve the problem perfectly by looking only at the mode-1 matricization.

1 of 4

Problem 2 (Tucker3). Let \mathcal{G} be a 2-by-2-by-2 defined by its frontal slices as

$$G_1 = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
 and $G_2 = \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix}$,

and let

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 2 \\ 3 & -3 \\ -4 & -4 \end{pmatrix}, \quad \text{and} \quad C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Calculate $\mathbf{\mathcal{G}} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C}$.

Solution. Let $\mathcal{T} = \mathcal{G} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C}$. The frontal slices of \mathcal{T} are

$$T_1 = \begin{pmatrix} 26 & -39 & 4 \\ 34 & -51 & -4 \\ 42 & -63 & -12 \end{pmatrix}$$
 and $T_2 = \begin{pmatrix} 14 & -21 & -44 \\ 22 & -33 & -52 \\ 30 & -45 & -60 \end{pmatrix}$.

Problem 3 (Inverses in tensor-matrix product). Let $\mathcal{G} \in \mathbb{R}^{P \times Q \times R}$ with $P \leq I$, $Q \leq J$, and $R \leq K$, and let $A \in \mathbb{R}^{I \times P}$, $B \in \mathbb{R}^{J \times Q}$, and $C \in \mathbb{R}^{K \times R}$. Assume that A, B, and C are column-orthogonal, that is, $A^T A = I$ etc.

Let $\mathcal{T} = \mathcal{G} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C}$. Prove that

$$\mathcal{G} = \mathcal{T} \times_1 \mathbf{A}^T \times_2 \mathbf{B}^T \times_3 \mathbf{C}^T$$
.

Solution.

$$G = G \times_1 (A^T A) \times_2 (B^T B) \times_3 (C^T C)$$

$$= (G \times_1 A \times_2 B \times_3 C) \times_1 A^T \times_2 B^T \times_3 C^T$$

$$= \mathcal{T} \times_1 A^T \times_2 B^T \times_3 C^T.$$

Problem 4 (Vectorization and Kronecker). To solve

$$\underset{\boldsymbol{G}_k}{\operatorname{arg\,min}} \left\| \boldsymbol{T}_k - \boldsymbol{A} \boldsymbol{G}_k \boldsymbol{A}^T \right\| \ ,$$

we wrote it as

$$\operatorname*{arg\,min}_{\boldsymbol{G}_k} \left\| \operatorname{vec}(\boldsymbol{T}_{(k)}) - (\boldsymbol{A} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{G}_k) \right\| \ .$$

Prove that this re-writing is correct. That is, show that for any matrices $\mathbf{A} \in \mathbb{R}^{I \times K}$ and $\mathbf{B} \in \mathbb{R}^{K \times K}$, we have

$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{A}^T) = (\boldsymbol{A} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{B})$$
.

Solution.

$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{A}^T) = \begin{pmatrix} (\boldsymbol{A}\boldsymbol{B}\boldsymbol{A}^T)(:,1) \\ (\boldsymbol{A}\boldsymbol{B}\boldsymbol{A}^T)(:,2) \\ \vdots \\ (\boldsymbol{A}\boldsymbol{B}\boldsymbol{A}^T)(:,I) \end{pmatrix} = \begin{pmatrix} \langle \boldsymbol{A}(1,:),(\boldsymbol{B}\boldsymbol{A}^T)(:,1) \rangle \\ \langle \boldsymbol{A}(2,:),(\boldsymbol{B}\boldsymbol{A}^T)(:,1) \rangle \\ \vdots \\ \langle \boldsymbol{A}(I,:),(\boldsymbol{B}\boldsymbol{A}^T)(:,1) \rangle \\ \vdots \\ \langle \boldsymbol{A}(I,:),(\boldsymbol{B}\boldsymbol{A}^T)(:,1) \rangle \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}\langle \boldsymbol{A}(1,:),\boldsymbol{B}(1,:) \rangle + a_{12}\langle \boldsymbol{A}(1,:),\boldsymbol{B}(2,:) \rangle + \dots + a_{1K}\langle \boldsymbol{A}(1,:),\boldsymbol{B}(K,:) \rangle \\ a_{21}\langle \boldsymbol{A}(1,:),\boldsymbol{B}(1,:) \rangle + a_{22}\langle \boldsymbol{A}(1,:),\boldsymbol{B}(2,:) \rangle + \dots + a_{2K}\langle \boldsymbol{A}(1,:),\boldsymbol{B}(K,:) \rangle \\ \vdots \\ a_{I1}\langle \boldsymbol{A}(1,:),\boldsymbol{B}(1,:) \rangle + a_{I2}\langle \boldsymbol{A}(1,:),\boldsymbol{B}(2,:) \rangle + \dots + a_{IK}\langle \boldsymbol{A}(1,:),\boldsymbol{B}(K,:) \rangle \\ a_{11}\langle \boldsymbol{A}(2,:),\boldsymbol{B}(1,:) \rangle + a_{12}\langle \boldsymbol{A}(2,:),\boldsymbol{B}(2,:) \rangle + \dots + a_{IK}\langle \boldsymbol{A}(2,:),\boldsymbol{B}(K,:) \rangle \\ \vdots \\ a_{I1}\langle \boldsymbol{A}(I,:),\boldsymbol{B}(1,:) \rangle + a_{I2}\langle \boldsymbol{A}(I,:),\boldsymbol{B}(2,:) \rangle + \dots + a_{IK}\langle \boldsymbol{A}(I,:),\boldsymbol{B}(K,:) \rangle \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}\boldsymbol{A} & a_{12}\boldsymbol{A} & \dots \\ a_{21}\boldsymbol{A} & a_{22}\boldsymbol{A} & \dots \\ a_{21}\boldsymbol{A} & a_{22}\boldsymbol{A} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \boldsymbol{B}(:,1) \\ \boldsymbol{B}(:,2) \\ \vdots \\ \boldsymbol{B}(:,K) \end{pmatrix} = (\boldsymbol{A}\otimes \boldsymbol{A})\operatorname{vec}(\boldsymbol{B})$$

