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Simon Razniewski

• Senior Researcher at MPII, Department 5

• Heading “Knowledge Base Construction and Quality” area

• Background
• Assistant professor at FU Bozen-Bolzano, Italy, 2014-2017
• Research stays at AT&T Labs-Research, University of Queensland, UC San Diego
• PhD FU Bozen-Bolzano, 2014
• Diplom at TU Dresden, 2010

• Expertise:
• Logics, databases, Semantic Web
• More recently IR, (applied) NLP, ML, …

• Research focus:
 Analyzing what knowledge bases know, and what they don’t
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Cuong Xuan Chu

• Doctoral researcher at D5, MPII

• Focus on information extraction for fictional 
domains and commonsense knowledge
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• Department 5: Database and information systems, ~25 members

• Knowledge discovery: extracting, organizing, searching, exploring
and ranking facts from structured, semi-structured, textual and 
multimodal information sources

• Knowledge Base
 Earliest prominent machine-generated 

knowledge base (2007)

 Contains more than 10 million entities
and more than 120 million facts

 Gerhard Weikum 259th most cited 
computer scientist worldwide
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And you?

• Course of study

• Preknowledge

• …

• Comments?

• https://tinyurl.com/ie-uds
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• Knowledge
• What IE is about (“What”)

• What IE is good for (“Why”)

• What main tasks and challenges in IE are

• What standard approaches to IE are (“How”)

• Skills
• Analyze potentials and limitations of IE approaches

• Learn to choose right datasource and method for right task

• Implement simple solutions for main problems in IE
• Scraping, typing, linking, …

• Abilities
• Build your own IE pipeline for an IE problem

 Very practical focus! 8

Learning outcomes



Prerequisites

• Basics of ML
• We won’t go deep

• Python programming
• Essential

• Still time to learn

• Helpful but not required
• Basic notions of information retrieval (IRDM?)

• Computational linguistics (SNLP?)
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• Credit points: 6, hours: 180 (!)

• Registration
 Subscribe to the mailing list https://groups.google.com/d/forum/ie1920
 Register in HISPOS timely before the exam

• When?
• Lecture (9x): Tuesday 10:00-12:00
• Lab (9x): Tuesday 16:00-18:00

• How to pass this course?
 8 small practical assignments

 Pass/fail

 To be admitted to exam, pass at least 6

 Oral exam
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Assignments

• Published on lecture day (Tuesday)

• Due Saturday 23:59 same week

• Labs are there to start solving the assignments

• Discussing assignments together is allowed, but each student must write their 
own solution

• No sharing of code!
• Plagiarism = course failed for both
• Avoid triangular plagiarism = cite sources

• “Approach for NER adapted from stackoverflow.com/how-to-…”

• Libraries that solve core tasks not allowed
• In doubt ask..

• Weekly assignments are evil!?
• Psychological trick to help you learn and pass!

11



Assignment content

• Coding

• 3/7 are assignments in competition format
• Crisp input/output problem specification

• “From the first sentence of Wikipedia, extract the type of an 
entity”

• Labelled training data set

• Unseen (hidden) evaluation dataset
• To avoid overfitting

 Ranked list by a standard metric, e.g., precision or F1-
score

• But pass/fail does not depend on relative performance
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I. Motivation
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• https://en.wikipedia.org/wiki/Max_Planck_Institute_for_Informatics

• https://www.wikidata.org/wiki/Q565400
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What for?

• One central hub for interlanguage interlinking of 
100+ Wikipedia editions

• Your AI chatbot wants to know where MPII, MIT 
and KAIST are located?  structured query

• A library wants to distinguish which of the 100+ 
literary John Smiths wrote “A description of New 
England”?  Wikidata ID
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Samples of advanced queries

• Who discovered the most planets:
http://tinyurl.com/y7rldyqc

• Distribution of places ending with “-weiler” in 
Germany:
https://w.wiki/67o

• Living relatives of Charlemagne: 
https://w.wiki/67n
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The Semantic Web

• Term coined by Tim Berners-Lee 
for a machine-readable Web

• Crucial for intelligent agents

• Web content originally from humans for humans

 Make machines read human language, or make 
humans write machine-readable structured data?

Machine reading vs.    information extraction/
knowledge base construction
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Definitions

Information extraction is the task of transforming 
semi/unstructured information into a machine 
readable format.

Collections of machine-readable information about 
the general world are called knowledge bases/graphs.
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Common types of machine knowledge

• Lexical knowledge
• <shout, isA, verb>

• <shout, subformOf, communicate>

• Instance knowledge (“Encyclopedic KBs”): 
• <Paris, capitalOf, France>

• <MPII, foundedIn, 1988>

• <Angela Merkel, major, Physics>

• Class knowledge (“Commonsense”):
• <Pizza, is, tasty>

• <Elephant, color, grey>

• <turnOnPC, requires, power>
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Lexical KBs

• WordNet (1995)

• FrameNet (1998)

• (Wiktionary (2002))

• SenticNet (2010)

• …
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FrameNet

• Example Frame – “Revenge”: Because of some injury to 
something-or-someone important to an avenger 
(maybe himself), the avenger inflicts a punishment on 
the offender. The offender is the person responsible 
for the injury. 

• Frame elements: 
• avenger, offender, injury, injured_party, punishment.

• Invoking terms:
• Nouns: revenge, vengeance, reprisal, retaliation
• Verbs: avenge, revenge, retaliate (against),

get back (at), get even (with), pay back
• Adjectives: vengeful, vindictive
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Encyclopedic KBs (“Instance-oriented KBs”)

• Cyc (1984)

• YAGO (2007)*

• DBpedia (2007)

• Wikidata (2012)

* developed at MPII
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Commonsense KBs (class-oriented)

• Cyc (1984)

• ConceptNet (1999)

• WebChild (2014)*

• TupleKB (2017)

• Quasimodo (2019)*

* Developed at MPII
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ConceptNet
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Facts (triples) and their constituents

• Entities: Objects about which statements can be made
Paris; Trump; Irony

• Property/predicate/relation/attribute: What can be said
locatedIn(entity, location), worksAt(person, organization), 
antonymOf(term, term)

• Fact/statement/claim/triple: Core building block of KBs
<Paris, locatedIn, France>

General form:

<subject, predicate, object>

<s, p, o>
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Subjects and objects

• Machine-generated identifiers
• Wikidata: Q4262, Q67245

• Canonical name strings
• DBpedia, YAGO: “John_Smith_(politician)”

• Internationalized resource identifier (IRI)
• Semantic web: http://dbpedia.org/resource/Max_Planck

• General phrases
• TupleKB: <industry, grow over, past few decade>

• Literals: Attribute values that are no entities 
• www.mpi-inf.mpg.de
• Often with units: 1.63m; 54.85° N

• Same for predicates, sometimes canonicalized, sometimes just 
text
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Classes and class hierarchies

• Classes/types: Allow to group similar entities
Presidents, nouns, Greek gods

• Type/property hierarchy: Tree-like hierarchy 
among types/properties (cf. inheritance in object-
oriented programming)
<Town, subclassOf, Administrative_unit>
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Classes
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Taxonomies
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Embedding-based knowledge

• Apple (0.72 0.35 0.91)

• Pear (0.80 0.33 0.55)

• Penguin (0.12 0.58 0.27)

 Not human-readable

 Limited machine-readable (meaning of dim. 2?)

• Often impressive performance (e.g., analogies)
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How to extract information?
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Possible approaches

A. Humans (CYC, ConceptNet, Wikidata)

B. Structured extraction (YAGO, DBpedia)

C. Text extraction (NELL, Textrunner)

D. Constraints and pattern mining
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A. Humans: Experts

• Potentially best quality

• Difficult to scale
• CYC: “In 1986, Doug Lenat estimated the effort to 

complete the KB to be 250,000 rules and 350 man-
years of effort.”
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Humans: Crowdsourcing/Gamification

44

• Make work fun (?)



Humans: Volunteers

• Wikidata: 18k active users

• Intrinsic motivation achieves great things

• Broad expertise, compared with selected experts or 
paid crowdsourcing

• https://www.wikidata.org/wiki/Wikidata:Database_reports/List_of_properties/all
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Humans: Challenges

• ConceptNet:
• Common knowledge, normalization

• Crowdsourcing: Quality assurance

• Wikidata: Modelling and agreement
• E.g., ethnicity, notable_work, …

• Multilingual concept alignment
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B. Structured extraction

• Wikipedia already provides 
structured data

• All we need to do is harvest…
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Work done?
• Noise
• Canonicalization of entities and predicates
• Usage of category system

Examples: YAGO, DBpedia



C. Text extraction

• In principle most powerful
• No need for humans
• No restriction to Wikipedia

existence

• In practice very noisy
• Canonicalization
• Consistency
• …

• Examples: NELL, Textrunner
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IE demo

• https://www.rosette.com/capability/relationship-extraction/#try-the-
demo

• Merkel is of German and Polish descent. Her paternal grandfather, Ludwik Kasner, was a German 
policeman of Polish ethnicity, who had taken part in Poland's struggle for independence in the 
early 20th century.[22] He married Merkel's grandmother Margarethe, a German from Berlin, 
and relocated to her hometown where he worked in the police. In 1930, they Germanized the 
Polish name Kaźmierczak to Kasner.[23][24][25][26] Merkel's maternal grandparents were the 
Danzig politician Willi Jentzsch, and Gertrud Alma née Drange, a daughter of the city clerk of 
Elbing (now Elbląg, Poland) Emil Drange. Since the mid 1990s, Merkel has publicly mentioned her 
Polish heritage on several occasions and described herself as a quarter Polish, but her Polish 
roots became better known as a result of a 2013 biography.

• In 1968, Merkel joined the Free German Youth (FDJ), the official communist youth movement 
sponsored by the ruling Marxist–Leninist Socialist Unity Party of Germany.[30][31][32] 
Membership was nominally voluntary, but those who did not join found it difficult to gain 
admission to higher education.[33] She did not participate in the secular coming of age 
ceremony Jugendweihe, however, which was common in East Germany. Instead, she was 
confirmed.[34] During this time, she participated in several compulsory courses on Marxism-
Leninism with her grades only being regarded as "sufficient".
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Challenges

• Entity identification

• Entity disambiguation

• Relation identification

• Relation normalization

• …

• End-to-end models can alleviate these to some 
extent, but are specific to their training data

• E.g., DeepDive
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D. Constraints

Databases
• Key, foreign key, range, …

Knowledge bases:
• Events start earlier than they end
• Every human must have two parents
• Mayors of cities must be humans
• The parent of a person’s sibling is the person’s parent

• Can be used to…
… reject KB modifications
… indicate missing information
… infer new facts

• But reality is messy..
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Which technologies every 
information extraction 
engineer should know about?
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Technologies (1): Scraping

• BeautifulSoup for Python web scraping
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Technologies (2): Storing

• RDF for representing data
• Resource description framework
• Turtle syntax for triples and data types:

<Mark_Twain> <author> <Huckleberry_Finn>.
<Huckleberry_Finn> <description> “A 19th century classic novel”.

IRIs for unique identification of entities:

<http://yago-knowledge.org/resource/Mark_Twain>

Prefixes for shorthand notation:

@prefix yago: <http://yago-knowledge.org/resource>
yago:Mark_Twain yago:dateOfBirth 30.11.1835
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Technologies (3): Querying

• SPARQL for posing queries
• Query language inspired by SQL

Wikidata cats: https://w.wiki/33a
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What KBs are good for

• Master data

• Data mining

• Search enhancements

• Question answering

• Language generation

• Entity linking

• Learning more knowledge

• ….
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Master data (1)
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(300 more)
https://w.wiki/A4Z



Master data (2)

61

Relevant for:
- Museums
- Libraries
- Scientific publications

….



Data mining

• Use input facts to extract patterns that allow to 
predict new facts

isCitizenOf(John, France)  livesIn(John, France)

• Various approaches based on association rule 
mining and latent models
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Entity linking
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Search enhancements



Question answering

What is the capital of the Saarland?

Try yourself:
• When was Trump born?
• What is the nickname of Ronaldo?
• Who invented the light bulb?
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Question answering (2)

• Knowledge bases key component in question 
answering systems

• E.g., IBM Watson

• AllenAI science challenge: Computers currently in 
8th grade

• Knowledge acquisition still major bottleneck
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Language generation
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• Wikipedia in world’s most spoken language: 
1/10 as many articles as English Wikipedia

• World’s fourth most spoken language: 1/100

 Wikidata intended to help 
resource-poor languages

https://tools.wmflabs.org/autodesc?q=9021&lang=&mode=long&links=reasonator&redlinks=reasonator&format=html

https://tools.wmflabs.org/autodesc?q=9021&lang=&mode=long&links=reasonator&redlinks=reasonator&format=html


Introduction to Information Extraction

I. Motivation

II. Definition and topics

III. Formal foundations

IV. Construction and maintenance

V. Technologies

VI. Applications

VII. Past, present and future

68



1984 20122007

(#$relationAllExists

#$biologicalMother

#$ChordataPhylum

#$FemaleAnimal)

Cyc

2001

Knowledge Graph
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2018
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Present

• IE and KBs at most major tech companies and beyond
• Google, Microsoft, Alibaba, Bloomberg, …

• Feb 2018: $125 million investment by Microsoft 
cofounder Paul Allen into non-profit research on 
common sense knowledge extraction and reasoning

• Research: Major part of NLP conferences taken up by IE 
research
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Future

• ?
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Lab 1

• Information extraction where from?
• Actual web crawling nontrivial
• Wikipedia a popular high-quality resource

• For a change, we work on a Wiki about Game of 
Thrones (data dump)

• Task 1: Find pages of certain types

• Task 2: Find the different surface forms of links to a 
page

• Task 3: Formulate and run some SPARQL queries 
over Wikidata
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Regular expressions

• Search patterns for String data

74https://www.w3schools.com/python/python_regex.asp



Take home

• Information extraction translates
unstructured/semistructured content 
into machine-readable structured formats

• Structured data is relevant for a range of 
knowledge-intensive and AI tasks

• More about how to do IE follows..
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