
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 284. Number I, July 1984

COMPLEXITY OF SUBCASES OF PRESBURGER ARITHMETIC

BY

BRUNO SCARPELLINI

Abstract. We consider formula subclasses of Presburger arithmetic which have a

simple structure in one sense or the other and investigate their computational

complexity. We also prove some results on the lower bounds of lengths of formulas

which are related to questions on quantifier elimination.

1. Introduction. The table on pp. 3,4 in the monograph [3] of J. Ferrante and

C. W. Rachkoff shows that most of the known decidable theories are so complex

that they may as well be considered as undecidable. It thus makes sense to

investigate subclasses of formulas of such theories which distinguish themselves e.g.

by a simple structure or otherwise. The hope is to find a formula class which is

decidable in deterministic polynomial time and is of interest because interesting

statements can be expressed by formulas of this class. Here we investigate Pres-

burger arithmetic from this point of view. We thereby work with Presburger

arithmetic which contains a function symbol <¡>2, representing multiplication by 2, i.e.

<¡>2(x) = 2x. The presence of <¡>2 has no influence on complexity, as far as the theory

as a whole is concerned but can make a difference for certain subclasses. Presburger

arithmetic is a decidable theory of high complexity, as has been shown by M. J.

Fischer and M. O. Rabin in [5]. Subclasses of high complexity are obtained by

considering formulas of bounded quantifier alternation; these have been investigated

by M. Fürer in [4].

In order to describe some formula classes considered here let M be the set of all

quantifierfree formulas. We then fix a list QX,...,QS of quantifiers and consider

classes of formulas of the form:

(1) (Oí*,) • " • (Qsxs)(Eyx) ■ ■ ■ (Ey,)L, LeM,

(2)(Qxxx)---(Qsxs)L,L<EM,

(3)(Eyx)---(Ey,)L,L<EM,
(4) (Eyx) ■ ■ ■ (Eyk)L, L e M and k fixed.

It turns out that only class (4) is possibly decidable in deterministic polynomial time.

Class (3) is NP-complete and for suitable choice of the quantifiers QX,...,QS class

(2) is NP-hard while class (1) admits an exponential lower bound.

In addition to questions of this kind we also consider problems about lengths of

formulas of the sort treated by L. Hodes and E. Specker in [8], with the difference

Received by the editors February 25, 1982 and, in revised form, August 5, 1983.

1980 Mathematics Subject Classification. Primary 68C01, 68C25; Secondary 03B25, 03F20.
Key words and phrases. Presburger arithmetic, complexity of decidable theories, complexity of formulas,

lower bounds for lengths of formulas, NP-hard problems, quantifier elimination.

©1984 American Mathematical Society

0002-9947/84 $1.00 + $.25 per page

203

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

204 BRUNO SCARPELLINI

that here we obtain lower bounds while in [8] upper bounds are derived. For a

precise formulation of the problem and the results we refer to §5. The methods used

here are not restricted to Presburger arithmetic but apply to other theories of

sufficiently high complexity.

2. Preliminaries. In the sequel we consider two versions of Presburger arithmetic.

The first contains besides the logical symbols the two place predicate constant <

("smaller than or equal"), the function symbol + (addition) and the constants 0, 1.

The second version contains also the function symbol <i>2 denoting multiplication by

2 (i.e. $2(x) = 2x). We denote by Th any of these two theories, and when necessary

we state explicitly whether Th contains <j>2 or not. Equality = and < ("strictly

smaller") are of course expressible by < , + and are used as abbreviations only. The

standard model for Th is the set N of natural numbers, with < , +, 0, 1 interpreted

in the obvious way. A term t without variables has a well-defined natural number as

value, denoted by [/]. For n a positive integer, bin(n) denotes its binary expansion.

Since the language of Presburger arithmetic has to be generated from finitely many

symbols we take the expression xbin(n) as the nth individual variable and abbreviate

it by x„.

3. A class of functions. In order to formulate our results on lengths of formulas it

is necessary to introduce a class of functions which behave like polynomials but

which are situated between polynomials and the exponential functions. We put

exp(x) = exp,(jc) = 2X, exp^+^x) = expiexp^.*)). We define inductively log,(x)

= log(x), logk+x(x) = logilog^x)), where log(x) is the logarithm of x with respect

to base 2; in order to avoid pathologies we put log(l) = 1.

Definition 1. (1) Fk is the class of functions defined as follows: / e Fk iff there

are integers/? > 1, a, b > 0 such that/(x) = expk(a(logk(x))p + b), (2) F = (Jk Fk.

The classes Fk have simple closure and asymptotic properties which due to their

elementary character will be stated without proof.

Lemma 1. (l)limn/(zz)zz~J = oo for alls > 0 andf e Fx,

(2)lim„ f(n)g(n)-x = 0 for all f e Fk, g e Fk+X,

Ci) for allfx,f2 e Fk there is a g <= Fk with fx(f2(n)\ fx(n)f2(n) andfx(n) + f2(n)

< g(n)foralln,

(4) the same as (3) but with F in place of Fk,

(5) for every f e Fk, a > 0, 0 < p < 1 we have lim„ f(n) exp(-a • np) = 0. D

In order to get an insight into the growth strength of functions /GFt we put

fi(n) =/(«), /m+i(«) =/m(/("))• One then easily shows that asymptotically /„(zz)

^ exp^^zz) holds.

4. Some lower bound results. (A) In this section we prove two lower bound results,

both concerning subclasses of formulas from Presburger arithmetic. The first of

these results is proved because of its independent interest, the second result plays a

basic role in the next section.

(B) A formula is called existential if it has the form (Eyx) ■ ■ -(Eyt)A with A

quantifierfree; the prefix (Eyx) ■ ■ ■ (Eyt) is allowed to be empty. A formula is called

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

COMPLEXITY OF PRESBURGER ARITHMETIC 205

universal if it has the form (Vvj) • • • (Vyt)A with A quantifierfree and the prefix

possibly empty. The first result is

Theorem 1. There is a list Qi,---,Qsof quantifiers and an e > 0 with the property:

(*) there is no y2en(X°i,") -bounded nondeterministic Turing machine which accepts

precisely the set S of all true closed formulas of the form (Qxxx) ■ ■ ■ (Qsxs)A, where A

is an existential formula. D

The proof uses a trivialized form of the Fischer-Rabin construction [5] and is

based on that version of this construction which is described in [7]. It is convenient

to split the construction into a series of steps (S1)-(S7).

(51) According to well known time hierarchy theorems [14], speed up theorems

and the relationship between one tape and multitape machines there is a nonde-

terministic, 25"-time bounded one tape Turing machine T with the property:

(P) there is no nondeterministic, y2n-time bounded one tape Turing machine T*

which accepts precisely the same binary strings as T.

Henceforth such a machine T is given in a fixed way. Without loss of generality

we may assume that the alphabet AofT consists of the three symbols 0,1, B (blanc).

The formulas of Presburger arithmetic are encoded in a familiar way by 0, 1-strings

(see e.g. [7] for such an encoding); if G is any such formula we denote its encoding

by p(G). The encoding is chosen so as to satisfy \p(G)\ < k length (G) for suitable

k.

(52) With T at hand we proceed to the announced construction. The idea is simply

to replace the predicates Mn(x, y, z) in [5] by their "linearized" version, whose

inductive definition is as follows:

(a) Mx(x, y, z) is (x = 0 A z = 0) V (x = 1 A y = z).

(b)Mn+x(x,y,z)is

(Eu)(Ev)(M„(u,y,v))

A ((x = u + u A z = v + v) V (x = u + u + I A z = v + v + y)).

The semantical properties of Mn which follow by induction on zz are

(c) Mn(x, y, z) holds iff x < 2" A xy = z. Evidently, only A, V, E are used in

the construction of M„. Next, let P be a three place predicate variable. Let A„ be the

product of all primes p < 2". By proceeding as in [7] we construct a formula

F(x, y, z/P) whose semantical property is described by

(d) F(x, y, z/Mn) holds iff x, y, z < An A xy = z.

(53) Next we associate with each word AT e {0,1}* a formula Hx(x) with the

property:

(e) for a constant term t, Hx(t) is true iff bin([?]) = 1 A' (i.e. 1 followed by X).

The definition of Hx is by induction with respect to the length of X and is such

that only atomic formulas, A and E are used in its construction. The formulas Mn

and Hx satisfy certain inequalities:

(f) length(A/„) < a(n + 1) and lengthiT/^-) < b(\X\ + 1) for suitable constants a,

b.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

206 BRUNO SCARPELLINI

This is achieved as in [5] by observing a certain economy of variables. That is, a

certain sufficiently large stock yx,... ,yt is given once and for all and it causes no

difficulties to construct M„ and Hx in such a way that only variables from the stock

yx,...,y, are used. We assume that the setyx,...,y, is disjoint from the set xx,...,xs

of variables to be used in the next section.

(54) By proceeding in the same way as in [7] we end up with:

(1) a set xx,... ,xs of variables,

(2) a string Qx,..., Q5 of quantifiers,

(3) two natural numbers S and t related to the alphabet of T and the prime

number theorem respectively,

(4) a quantifierfree formula F(P,Q) built up from atomic formulas, the three

place predicate variable P, the one place predicate variable Q and the individual

variables xx,...,xs,

(5) a basic lemma, namely

Lemma 2. Let X be a 0,1-string; let G(X) be the formula (Qxxx) •• •

(Qsxs)F(MSn+T, Hx) where n = \X\. Then (1) the formula G(X) is true iff T has an

accepting computation on input X of length < 25",

(2) length(G(A^) < \\X\for a suitable constant X,

(3) there is a deterministic polynomial machine which transforms the input X into

G(X). D

(55) In order to prove Theorem 1 we have to transform the formulas G(X) into

prenex normal form in an appropriate way.

Immediately relevant for the proof of Theorem 1 is

Lemma 3. There are formulas Un(x, y, z), Vx(x) whose properties are:

(1) Un(x, y, z) is equivalent to -,Mn(x, y, z),

(2) Vx(x) is equivalent to -[Hx(x),

(3)length(i/„)<a(zz + l),

(4) length^) < b[X\ (for suitable a, b),

(5) only A, V, E are used in the construction of Un, Vx,

(6) there are polynomial machines, which, given V and X as input, compute Un and

Vx respectively.

Proof. For the construction of Un we need the auxiliary formula P„(x), defined

by: (a) Px(x) is x = 1 + 1, (b) Pn+X(x) is (Ey)(Pn(y) A y + y = x). We then

evidently have: (c) Pn(x) holds iff x = 2". It is clear that a finite set of variables is

sufficient for the construction of all formulas Pn and that a constant c exists with

length(/>„) ̂ c(zz + 1). Now -MR(x, y, z) holds iff x > 2" v (x < 2" A xy * z).

Thus we can take for U„ the formula

(Et)(Pn(t) At ^x) v(Et)(Mn(x,y,t) A((+UzVz + U t)).

It goes without saying that Un satisfies (1), (3), (5), (6) of the lemma. For Vx(x) we

may take the formula

(Ey)(Hx(y) A(x + 1 ^y V y^x + I)). D

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

COMPLEXITY OF PRESBURGER ARITHMETIC 207

Notation. In connection with Lemma 4 we use provisionally the following nota-

tion: if B is -,M„(x, y, z) or -,Hx(x) then B' is Un(x, y, z) or Vx(x) respectively.

(S6) Lemma 3 enables us to introduce a suitable prenex normal form of G(X). By

definition G(X) is the formula (Qxxx) ■ ■ ■ (Qsxs)F(MSn+T, Hx), with n = |Z|, and

with F as in step (S4). Now there is a negationless propositional formula

E(Xx,...,Xa, Yx,..., Yb, Z,,... ,ZC), formulas Ax,... ,Aa of the form MSn+T(x, y, z)

or Hx(x), formulas Bx,...,Bh of the form -lMSn_l_T(x, y, z) or -,Hx(x) (x, y, z g

{xx,...,xs}), and formulas CX,...,CC which are atomic formulas or negations of

atomic formulas such that E(Ax,...,Aa, Bx,...,Bb,Cx,...,Cc) is equivalent to

F(M8n+r, Hx). By Lemma 3 and our notation, E(Ax,...,Aa, B'x,...,B'h, CX,...,CC)

too is equivalent to F(MSn+T, Hx). Due to the positivity of E and by Lemma 3 we

may pass to the prenex normal form by moving all existential quantifiers to the left.

The result is a formula (Eyx) ■ ■ ■ (Ey,)Lx(xx,...,xs, yx,.. .,y,) with Lx and v,,.. .,yt

depending on X, which is still equivalent to F(MSn+r, Hx). Let G(X) be the

formula (Qxxx) ■ ■ ■ (Qsxs)(Eyx) ■ ■ ■ (Ey,)Lx(xx,... ,xs, yx,... ,y,). The formula

G(X) is equivalent to G(X) and it is clear that there is a polynomial machine which

transforms the input X into G(X). However, an easy bookkeeping shows that the

passage from G(X) to G(X) causes an increase in length by a factor log| A']; this is a

consequence of the fact that x„ is an abbreviation for xbin(n). To sum up, G(X)

satisfies (1), (3) of Lemma 2 and in place of (2) the condition

(2*) length(Ö(A)) ̂ LolA'lloglA'l for suitable L0.

From this we infer

(2**) |/x(G(A'))|<L|A|log|A| for suitable L.

(SI) We now reproduce the diagonal argument in [7] as it stands. Let e > 0 satisfy

eL < 1, with L as in (2**) in (S6). Let T be a y2f"(log"rl-time bounded nonde-

terministic machine which accepts precisely those binary strings which have the form

u((Qxxx) ■ • ■ (Qsxs)D), where (Qxxx) ■■■(Qsxs)D is a closed true formula, and

where D is an existential formula. Finally, let M0 be a polynomial machine which

transforms an input X g {0,1}* into p(G(X)). Let T* be a new machine which acts

as follows: it transforms an input X into p(G(X)) with the aid of M0 and then acts

upon p(G(X)) according to the instructions of T. One then easily verifies:

(a) T* is A 2"-time bounded for a suitable constant X,

(b) T* accepts A iff G(X) holds, that is iff T accepts X.

This however contradicts property (P) of machine T stated in (SI), whence

Theorem 1 is proved.

(C) We now come to the second of the mentioned results which is more technical

in nature but which is indispensable for the applications in the next section. In order

to state it we need some simple syntactical preparations which cannot be avoided

since we have to consider a large number of Turing machines over the fixed alphabet

A = {ax,a2,a3}.

(1) We start with the alphabet A = {ax, a2, a3}, where ax, a2, a3 represent in that

order 0, 1 and B respectively. In addition we have three symbols L, N, R (left,

neutral, right) which describe the motion of the scanning eye.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

208 BRUNO SCARPELLINI

(2) Next we fix an integer zz > 1 which plays the role of a parameter in that only

Turing machine computations of length < 2" will be considered. We introduce 2"

states q0,...,qT, rn = 2" - 1. We define a mapping a which maps all these symbols

into (0,1}* as "follows: o{aj) = 10J104"4, o(L) = 10111, a(N) = 11011, a(R) =

11101, o(qj) = O^bin(y), where d} = n - \bin(j)\.

(3) A Turing machine T over the alphabet ax, a2, a3 with states among q0,...,qT

is given by the list 8X,...,8N of its five tuples and will in fact be identified with the

list. A five tuple is thereby as usual an expression 8 = q¡ajqsa,d, d g {L, N, R).

With a we associate the binary string o(8) = a(qi)a(aj)o(qs)a(ar)o(d). We then

codify the Turing machines T = 8X,... ,8N by the binary string o(T) = o(8x) ■ • •

a(8N). If the parameter n is given then it is evident that a binary string £ can be

written in at most one way in the form a(8x) ■ ■ ■ o(8N), and if so, then 8X,... ,8N

can effectively be recovered. We denote by S„ the set of all nondeterministic Turing

machines Tover ax,a2, a3 with states among q0,...,c¡rT whose binary encoding o(T)

has length < 2""4.

(4) Next we have to consider the set of all Boolean functions from {0,1}" into

{0,1}; we denote this set by B„. We encode each / g Bn by a binary string L of

length (zz + 1)2" as follows. Let XX,...,XT be the list of all binary strings of length zz,

ordered lexicographically. As l¡ we take the string X0f(X0)Xxf(Xx) • • • AT /(AT).

Since binary strings of length (n + 1)2" are ordered lexicographically we may speak

in an obvious way about the lexicographically smallest or first Boolean function

having a certain property.

(5) With every Turing machine T g S„ we associate a Boolean function fT g Bn as

follows. For X G {0,1}" we put/r(A) = 1 iff there is an accepting computation of T

on input À of length < 2". Now there is a trivial, but crucial observation. There are

at most 22" machines in S„, but 22" functions in Bn. Thus there is at least one

function / g Bn which is not of the form fT, T g S„. Among these we take the

lexicographically smallest one and denote it by f0. We call f0 the first Boolean

function different from all/r, T g Sn.

(6) If 2" < x < 2"+1 then bin(x) = If for some £ g {0,1}"; we put £ = x*. We

now can state the second lower bound result.

Theorem 2. There is a list QX,..-,QS of quantifiers, a constant C and for every

integer n > 1 a formula En(x)from Presburger arithmetic such that:

(a) En(x) is true iff2"^x< 2"+1 and iff0(x*) = 1, where f0 is the first Boolean

function different from all functions fT, fT g Sn,

(b) En(x) has the form

(QiXi) ■ ■ ■ (Qsxs)(Eyx) ■ ■ ■ (Ey,)G„(x, xx,... ,xs, yx,... ,y,J

where Gn is quantifierfree,

(c) length(£„(x)) < Czzlog zz,

(d) there is a polynomial machine, which, given 1" as input, computes En(x). D

A full proof of Theorem 2, which would amount to a meticulous formalization of

the concepts introduced in (l)-(6) is not within the scope of this paper. However, a

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

COMPLEXITY OF PRESBURGER ARITHMETIC 209

closer look quickly shows that the only building blocks needed in order to formalize

(l)-(6) are, as in the proof of Theorem 1: (1) the formulas M„(x, y, z) and

F(x, y, z/P) introduced in (S2)(B), (2) two sufficiently large constants 8, t related

to the prime number theorem and the alphabet ax, a2, a3. As in [7] we construct the

concatenation predicate Con„(x, y, z) with the aid of F(x, y, z/MSn+T), which

enables us to concatenate sufficiently large binary strings. We then construct

formulas B(y/P), D(x, y/P), T(y/P), L(x, y/P), W(x, y, z/P) with x, y, z

individual variables and P-a. three place predicate variable which have the properties

listed below. Let Bn(y), Dn(x, y), Tn(y), Ln(x, y) and Wn(x, y, z) be short for

B(y/MSn+T),..., W(x, y, z/MSn+T) respectively. The properties in question are:

(1) Bn(y) holds iff y is (the encoding of) a Boolean function,

(2) Dn(x, y) holds iff 2" < x < 2" + 1 and if y is a Boolean function whose value at

x* is 1,

(3) Tn(y) holds iffy is (the encoding of) a Turing machine in Sn,

(4) Ln(x, y) holds iff x, y are Boolean functions and if x is lexicographically

smaller than y,

(5) Wn(x, y, z) holds iff 2" < x < 2"+1, if y is a Turing machine and if z is (the

encoding of) an accepting computation ofy on input x of time length < 2".

Let Hn(w) be the formula

B„(w) A(Vy){T„(y)->

(Ex)((Dn(x,w) A ^(Ez)W„(x, y, z)) v(^Dn(x,w) a(Ez)W„(x, y, z)))).

Obviously Hn(w) expresses that w is a Boolean function which differs from all

Boolean functions fT, T g S„. The first Boolean function which is different from all

Boolean functions fT, T g Sn is then described by the formula

2" < x < 2" + 1 A(Ew)(Hn(w) A D„(x,w)A(Vw')(Ln(w',w) ^ ^H„(w'))),

to be denoted by E'n(x). Thus E'n(x) satisfies (a), (b) of Theorem 2 and in addition:

(*) length (E'n(x)) < c0n for suitable c0. We now proceed with E'n(x) in the same

way as with the formula G(X) in (S5) and (S6)(B) of this section, making thereby

use of Lemma 4. We then end up with a formula E„(x) which now indeed satisfies

(a)-(d) of Theorem 2. The construction of the formulas Bn, Dn, T„, Ln and Wn by

means of the concatenation predicate Con„(x, y, z) is essentially routine, but there

are one or two points which require some attention. We will briefly discuss a typical

such point in the appendix. Theorem 2 is more technical than Theorem 1 and

therefore less convincing. It would be possible to derive Theorem 1 from Theorem 2,

but in a somewhat involved way which will not be reproduced here. The full force of

Theorem 2 will become apparent in the next section where it is an indispensable tool

for the proof of Theorem 3.

5. On lengths of formulas. For any natural number p > 0 let py be short for

y + • • • + y p-times; let x/p denote the formula (Ey)(x = py) ("x is divisible by

p "). As is well known [2, 9] one can transform every Presburger formula F into a

logically equivalent formula F' which is a negationless Boolean combination of

atomic formulas and of formulas of the form t/p (t a term). By moving all quantifier

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

210 BRUNO SCARPELLINI

leftwards one obtains an existential formula G which is logically equivalent to F.

However, even if F is universal, G will in general be considerably longer than F. This

situation suggests the following quite natural problem: (*) given a universal formula

F, find a lower bound to the length of existential formulas G which are logically

equivalent to F. Problem (*) arises of course also in connection with other types of

formulas. It is in fact with formulas of the form (Vx)(£y,) • • • (Ey,)L, L

quantifierfree, with which our next result is concerned (Theorem 3). An answer to

question (*) is then provided for by the corollary to Theorem 3.

Theorem 3. Let F be the function class of Definition 1. There is an integer s > 0

with the following property. There is no function f g F which satisfies the condition: (C)

for every formula (Vx)L with at most s free variables and with L existential, there is a

logically equivalent existential formula G such that length(G) < /(length((Vx)L)). D

The proof of Theorem 3 is based on a fact which will be proved in the last section,

namely

Fact 1. The set of all closed existential formulas is NP-complete.

Proof of Theorem 3. We proceed in steps (S1)-(S3).

(51) To start with, let us assume that a function h0 g F exists which has the

property (C) of the theorem. Without loss of generality we may assume that the free

variables of the formula G which is associated with (Vx)L according to condition

(C) occur among the free variables of (Vx)L. Next let QX,...,QS be the fixed list of

quantifiers which appears in Theorem 2. By applying condition (C) at most s times

we infer from the properties of the function class F that there is a function hx g F

such that: (C*) for every formulas (Qxxx) ' ' ' (Qsxs)L with at most one free variable

and with L existential, there is an equivalent existential formula G with

length(G) < hx(\ength((QlXl) • • • (Qsxs)L)).

Again we may assume that if G contains free variables at all then it is the unique free

variable in (Qxxx) ■ ■ ■ (Qsxs)L. Thus by Theorem 2 and condition (C*) there is for

every integer zz > 0 an existential formula E*(x) which is logically equivalent to

E„(x) and such that: (a) length(£*(x)) < hx(Cnlogn).

(52) Next we use Fact 1. According to this fact there is a nondeterministic

polynomial machine M0 which accepts precisely the closed true existential formulas.

We now associate with every existential formula F(x), having only x free, a

nondeterministic machine M(F(x)) which acts as follows. Given an input f e {0,1}*,

M(F(x)) first constructs the formula (Ey)(Hs(y) A F(y)), where H((y) is the

formula introduced in step (S3) of §3. Afterwards, M(F(x)) transforms this formula

into a logically equivalent, closed existential formula F* by moving successively all

(necessarily existential) quantifiers leftwards. M(F(x)) then acts upon F* according

to the instructions of M0. Thus M(F(x)) accepts f iff (Ey)(H^(y) A F(y)) is true. It

is only a matter of routine to show that the mapping F(x) -> M(F(x)) can be

chosen so as to satisfy: (b) there is a polynomial p such that \a(M(F(x)))\ <

p(length(F(x))) (with a the mapping introduced in (3), (C) of §4), (c) there is a

polynomial q(u, v) such that if M(F(x)) accepts f, then it does so in time

< û(length(F(x)), iri).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

COMPLEXITY OF PRESBURGER ARITHMETIC 211

(S3) We now look at the machine M(E*(x)). By combining (a) in (SI) with (b) in

(S2) we obtain: (d) \a(M(E*(x)))\ ^ p(hx(Cnlogn)). From (a) in (SI) and (c) in

(S2) on the other hand we obtain: (e) if M(E*(x)) accepts a binary string of length zz

then it does so in nondeterministic time < q(hx(Cnlogn), zz). Now p, q are

polynomial while hx belongs to F. From Lemma 1 we infer that there is a function

h G f such that p (hx(Cn log zz)) and q(hx(Cnlogn), n) both are < h(n) for all zz.

Now let zz be so large that h(n) < 2"~4 (Lemma 1). The machine M(E*(x)) then

belongs to the set Sn (introduced in (3), (C) of §4), and if it accepts a binary string of

length zz then it does so in nondeterministic time < 2". On the other hand,

M(E*(x)) accepts a string f g {0,1}* of length zz iff (Ey)(H((y) A E*(y)) is true,

that is iff (Ey)(H{(y) A En(y)) is true. By Theorem 2, (Ey)(Ht(y) A En(y)) is true

iff /o(f) = 1, where/0 is the first Boolean function different from all functions fT,

T g S„. Now let/* g B„ be the function with the property: /*(f) = 1 iff M(E*(x))

accepts f. By the above remarks/* belongs to the set/r, T g Sn, and thus/* # /0.

From the just mentioned properties of M(E*(x)) on the other hand we infer that

/*(?) = /o(0 holds for all f with |f| = n, whence /* =/0 follows, leading to a

contradiction. D

Corollary. Let the integer s be as in Theorem 3. There is no function h g F with

the following property: (C) for every universal formula G with at most s + 1 free

variables there is a logically equivalent existential formula L such that length(L) <

/z(length(G)).

Proof. Assume that a function h0 with property (C) exists. Then there is also a

function / g F with the property: (*) for every existential formula G' with at most

s + I free variables there is a logically equivalent universal formula L' with length

(L') </(length(G')). Without loss of generality we may assume that the free

variables of L in (C) and L' in (*) occur among the free variables of G and G'

respectively. Now consider a formula H of the form (Vx)£> with at most s free

variables and with Q existential. From (*) and (C) it follows that there is an

existential formula Q' with at most s free variables which is equivalent to H and

which satisfies

length(ß') < h0(length(H) +/(length(H))).

By Lemma 1, this contradicts Theorem 3 whence the corollary follows. D

Theorem 3 and its corollary are in the spirit of [8], but point in the converse

direction. The main open question is how to rise the lower bound, which is

presumably exponential. On the other hand we have not fully exploited the technical

possibilities contained in the proofs of Theorems 2, 3. By the introduction of

alternating machines one should be able to extend Theorem 3 to other classes of

formulas.

6. Simple formula classes which are NP-hard. (A) In this section we describe two

formula classes of simple structure which are NP-hard. The first is concerned with

formulas having a fixed number of quantifiers, the second with formulas of quanti-

fier depth two. These results show that for decidable theories with high complexity

NP-hardness already occurs at a very low level.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

212 BRUNO SCARPELLINI

Theorem 4. Let the function symbol <b2 occur among the symbols of Presburger

arithmetic. There are quantifiers QX,.,QS such that the set of closed true formulas of

the form (Qxxx) ■ ■ ■ (Qsxs)L, L quantifierfree, is NP-hard.

Proof. (SI) We define formulas Mn(x, y, z) as follows:

(a) Mx(x, y, z) is (x = 0 A z = 0),

(b) Mn+X(x, y, z) is Mn(x, y, z) V (x = n A ny = z), with zz and ny short for

1 + • • • + 1 and y + ■ ■ • + y zz-times respectively. A simple estimate shows that

there is a C such that:

(c) length(M„) < Czz2. The semantical properties of Mn are:

(d) Mn(x, y, z) holds iff x < n A xy = z. Next let A„ be the product of all primes

< zz. Let P be a three place predicate variable. As in [5] one constructs a formula

F(x, y, z/P) with the property:

(e) F(x, y, z/Mn) holds iff x, y, z < A„ A xy = z. Since A„ > 2kn for some k > 0

there is an integer Ô > 0 such that As„ > 2". We thus have:

(f) if x,y, z < 2" then F(x, y, z/MSn) holds iff xy = z.

(52) We note that by Lemma 3 there is a polynomial machine which associates

with every integer a, coded in binary, a constant term ta such that bin([za]) = a. We

now recall a result of Adleman and Manders [1]. Let E be the set of triples (a, b, c)

of integers > 0 coded in binary, such that the diophantine equation ax2 + by = c

has solution in the set of positive integers. The result then says: (*) E is NP-com-

plete. We now associate with every triple (a, b, c) of integers, coded in binary, a

closed formula G*hc. Let u, v ■ ■ ■ < p be short for u^pAv^pA • • • ; let

F(x, y, z/n) be short for F(x, y, z/MSn). The formula G*hc then is

(Ex, y,u,v,w) (x,y,ta,th^ tc A F(x, ta, u/\c\) A F(x,u,v/\c\)

AF(y,th,w/\c\) Av + w = tc).

From the definition of G*bl. and from property (f) of F(x, y, z/n) we infer (**) G*bc

is true iff (a, b, c) g E.

(53) As a last step we transform G*bl. into its prenex normal form Gabc. We then

find quantifiers QX,...,QS, variables xx,...,xs not depending on a, b, c and a

quantifierfree formula Labc(xx,... ,xs) such that Gabc is

(ßi*i)---(ß,*,)£«*c(*i»--.*i)-

Since the mapping (a, b, c) -* Gabc is clearly polynomial, the theorem follows. D

It is not known if Theorem 4 is true for Presburger arithmetic without <t>2. As a

substitute in this case we have Theorem 5 below which is based on the concept of

modular formula.

Let x = z(n) be short for (Ey)(x = z + nyVz = x + ny). In order to state

Theorem 5 we need

Definition 2. A closed formula F is called modular if there is a negationless

propositional formula H(XX,...,XS), positive integers nx,...,ns and constant terms

r,.rs such that Fis (Ex)H(x = tx(nx),...,x = ts(ns)).

Theorem 5. The set of all true modular formulas is NP-complete.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

complexity of presburger arithmetic 213

Proof. (SI) For every prepositional formula F(Xx,...,Xs) we find a negationless

propositional formula PF(XX,...,XS,YX,...,YS) such that F(XX,.. .,Xs)is equivalent

to PF(XX,...,XS,-,Xx,...,XS). With F(XX,...,XS) we associate a modular formula

as follows. Letp1,p2,... be the primes in increasing order, let GF(x) be the formula

/\(x = 0(Pj)Vx = I(Pj))
7 = 1

APF(x = l(px),...,x= l(ps),x = 0(px),...,x = 0(ps)).

The modular formula associated with F(XX,...,XS) is (Ex)GF(x). It is clear that

there is a polynomial machine which transforms F(XX,... ,XS) into (Ex)GF(x).

(S2) The theorem is proved if we can show that F(XX,...,XS) is satisfiable iff

(Ex)GF(x) is true. Let F(XX,.. .,XS) be satisfiable. We then find values ex,.. .,es g

{0,1} such that F(ex,...,es) and hence PF(ex,...,es,ëx,...,ës) are true, where

ë. = 1 - e¡, j = l,...,i. By the Chinese remainder theorem there is a natural

number d such that d = ej(pj),j = l,...,s. Thus the truth value of d = l(p;) is e-,

that of d = 0(Pj) is ëj. From this, the truth of GF(d) and hence of (Ex)GF(x)

immediately follows. Conversely, if GF(d) is true for some d, then there are

ex,... ,es g {0,1} such that d = e-(p-) holds from/ = \,...,s. The truth values of

d = I(Pj) and d = 0(pj) are theney and ^respectively. ThusPF(ex,. ..,es,ëx,...,ës)

is true and hence F(XX,...,XS) satisfiable. D

The class of modular formulas seems to be the structurally simplest formula class

in Presburger arithmetic without (b2 which exhibits NP-hardness. We have in fact

only proved NP-hardness of this class; that it is in NP will be an easy consequence

of the results in the next section.

7. The complexity of existential formulas. (A) In this section we investigate the

complexity of the set E of closed existential formulas. That E is NP-hard follows

immediately from Theorem 5. In order to prove E g NP we need a result on linear

inequalities due to M. Sieveking and J. v. z. Gathen [12, 13]. Let A = (a,), i =

\,...,m, j = 1,...,«, be an integer matrix and b = (b¡), i = 1,... ,m, an integer

vector. Put c = max(|a,7|, \b,[), i = \,...,m,j = l,...,zz; put r = (n + l)zz"(" + 1)c"\

The result in question then says: (*) if the system Ax < b (or Ax > b) has a positive

integer solution x = (xx,...,x„), x¡ > 0, then it has a positive integer solution

x' = (x[,...,x'n), x'j ^ 0, with x'j < r,j = \,...,n.

Theorem 6. (A) Let Th contain (b2. Then there is a X > 0 with the property: if

F = (Exx) • ■ ■ (Exk)L(xx,...,xk) (L quantifierfree) is a closed true formula, if

n = length(F), then there are integers 0 < df < (k + l)jfc*(*+1)2x"*J, / = \,...,k,

such thatL(dx,...,dk)is true.

(B) Let Th not contain <p2. Then there is a X > 0 with the property: if F = (Exx)

■ • • (Exk)L(xx,.. .,xk)(L quantifierfree) is a closed true formula, if n = length(.F),

then there are integers 0 < df < (Â: + I)kk{k + l)(Xn)k~, j = I,... ,k, such that

L(dx,...,dk) is true.

Proof. (A) Let Th contain <J>2. Since -,a < b is equivalent to b + 1 ^ a we may

assume that L(xx,...,xk) is negationaless. Next, by rearranging terms we associate

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

214 BRUNO SCARPELLINI

with every atomic formula t < q occuring in F an equivalent linear inequality

axxx + • • • + akxk < b, with a = (ax,... ,ak) an integer vector and b an integer. It

is not difficult to show that there is a X > 0, independent of F, such that: (I)

max(|a,|,.. .,\ak\, \b\) < 2X". Since F is true, there are integers 0 < d'¡, j = I,...,k

such that L(d'x,...,d'k) is true. Now let L'(xx,...,xk) = Dx v • • • v Dm be the

disjunctive normal form of L(xx,... ,xk), with Z). conjunctions of atomic formulas.

Since L(d[,. ..,d'k)is true, there is a Djt sayï, < g, A ■ • • A /# < g^, which is true

under the assignment of d{,... ,d'k to x,,... ,xk. By our remark above we can replace

D7 by an equivalent system of inequalities: (II) axx < bx,.. .,aNx < bN, with a, =

(ajX,...,ajk) integer vectors, bj integers and with x = (x,,...,xk). Thus d'x,...,d'k is

a solution of system (II). By (I) we have the inequalities: (III) max(|a,7|, \b¡\) < 2A",

j = l,...,k, i = I,...,N. Thus, by the result (*) of Sieveking-v.z. Gathen there is an

integer solutiondx,...,dk of (II) which satisfies: (IV) 0 < d} < (k + l)fc*(*+1>2x"*2,

j = l,...,k. Since i^,...,dk is a solution of (II), /)■ is true under the assignment of

</x,...,dk to x,,...,xk; thus L'(dx,.. .,dk) and finally L(dx,.. -,dk) are true.

(B) If Th does not contain <p2, inequality (I) in (A) is replaced by: (I*)

max(|a,7|, \b¡\) < Xn. Apart from this, the proof is verbally the same. D

Remark. As has been pointed out by the referee, Theorem 6 is hinted at in [11].

Corollary 1. The set E of closed true existential formulas is in NP.

Proof. Put c = max(A,l). There is a nondeterministic polynomial machine T,

which, given a closed formula F = (Fx,) • • • (Exk)L(xx,... ,xk) as input (L quan-

tifierfree), "guesses" the binary representation bin(dx),...,bin(dk) of a positive

integer vector dx,...,dk such that |bin(<i,)| < 3c(zz + l)3 (where zz = length(F)),

and test whether L(dx,...,dk) is true or not; it accepts F if L(dx,. ..,dk) is true. By

Theorem 6(A), T accepts E. D

Corollary 2. Let Th zzoi contain <b2. Let Ek be the set of closed, true existential

formulas F = (Fx,) • • ■ (Exk)L(xx,...,xk), L quantifierfree. Then there is a de-

terministic polynomial machine which accepts Ek.

Proof. Let [logx] be the smallest integer ^ logx. There is a deterministic

polynomial machine Tk, which, given a formula F = (Exx) ■ ■ ■ (Exk)L(xx,... ,xk)

(L quantifierfree) as input, runs through all positive integer vectors dx,...,dk which

satisfy \bm(dj)\ ^ (k + l)3 + zV2([logA] + [log«]) (where n = length(F)) in order

to find one for which L(dx, ...,dk) is true. If it finds one then it accepts F, otherwise

it refutes F. By Theorem 6(B), Tk accepts Ek. D

(B) It remains to discuss the class Ek of Corollary 2 for Th containing <¡>2. To this

end we need a few notions from the theory of convex sets. If F0,... ,PN are points in

Euclidian w-space Rm then [P0,...,PN] denotes their convex hull. We call P0,...,PN

convex independent if Pj € [P0,...,Pj_x, Pj+x,...,PN],j = 0,...,N. The convex set

[P0,...,PN] is zt-dimensional if it is contained in a /c-dimensional hyperplane but in

no hyperplane of lower dimension. A zt-dimensional simplex is a zt-dimensional

convex set of the form [F0,... ,Pk\. A point P g Rm is called a lattice point if it has

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

complexity of presburger arithmetic 215

integer coordinates. Below we need

Lemma 4. Let P0,...,PN g Rk be convex independent points and [P0,.. .,PN] a

d-dimensional convex set. Let Sx,...,SMbe the list of all d-dimensional Simplexes which

can be formed with points from the list P0,...,PN. Then [P0,...,PN] = Uy-5-, 1 </ <

M. D

The proof is by an elementary induction with respect to A^; for lack of space we

have to omit it. In what follows, rational numbers y are coded by ordered pairs

(±bin(a),bin(b)), with a, b positive integers (b > 0) such that y = ±ab~1. Points

P g Rk are coded as ordered zc-tuples of rationals, convex sets [P0,...,PN] as

sequence of points P0,...,PN, and likewise with related concepts. It is then clear

what is meant by saying that a Turing machine T is given a simplex S as input. Free

use will be made of the fact, proved in [12], that all familiar questions on linear

systems of diophantine equations such as existence and uniqueness of solutions can

be decided by deterministic polynomial machines. Our main result depends on a

hypothesis whose status will be discussed after the proof of Theorem 7.

Hypothesis Ak. There is a deterministic polynomial machine Tk which, given a

zt-dimensional simplex S = [P0,...,Pk] Q Rk as input, acts as follows:

(1) if 5 contains no lattice points it transforms S into <b,

(2) if S contains lattice points it transforms S into a lattice point Ps g S. D

There is a seemingly stronger

Hypothesis A'k. There is a deterministic polynomial machine T'k, which, given a

ri-dimensional simplex S = [P0,...,Pd] ç Rk, (d < k), as input, acts according to

(1), (2) in hypothesis Ak. □

It can easily be shown that Ak implies A'k; we use them interchangeably.

Theorem 7. Let Th contain <b2; let Hypothesis Ak be true. Then there is a

deterministic polynomial Turing machine T* which, given a closed formula F = (Exx)

■ ■ ■ (Exk)L(xx,... ,xk) (L quantifierfree) as input, acts as follows:

(1) if F is false then T* transforms F into <£,

(2) if F is true then T% transforms F into the binary representation

(bin(dx),..., bin(dk)) of a positive integer vector (dx,...,dk) for which L(dx,...,dk)

is true.

Proof. We proceed in three steps:

(a) description of an algorithm,

(b) verification that it accomplishes (1), (2) of the theorem,

(c) a brief discussion of its polynomial time character.

(SI) Let F= (Fx,) • • ■(Exk)L(xx,...,xk), L quantifierfree be given; we may

assume that L is negationless. We put n = length(F) and Ckn = k(k + i)*(*+i)2Xw*2

with X as in Theorem 6 and denote by L*(xx,...,xk) the formula A*-_,0 < xy < Ckn

A L(xx,...,xk). By Theorem 6 the formula F is true iff the formula F* = (Fx,)

• • • (Exk)L*(xx,... ,xk) is true. Next let tx < qx,...,tN < qN be the list of all atomic

formulas which occur in L(x,,... .x^). We associate with every formula t} < q} the

corresponding equivalent inequality a¡x < bj, with a]■ = (aJX,... ,ajk) an integer

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

216 BRUNO SCARPELLINI

vector, bj an integer and x = (x,,.. .,xk). As in the proof of Theorem 6 we have: (I)

\aß\, \bj\ < 2Xn. We add to the list a}x < bjfj = 1,.. .,7V the 2zc inequalities 0 < x},

Xj < Ckn, j = l,...,k. These inequalities give rise to a sequence of hyperplanes

üjX = bj, j = 1,...,N, Xj = 0, Xj = Ck„, j = 1,...,k, denoted symbolically by

Hx,...,HN+2k. We now consider all possible zc-tuples (H¡,,...,H¡), 1 < ix < • ■ • <

ik «S N + 2k which can be formed with hyperplanes from this list. Let Cx,...,Ca be

the list of all such zc-tuples. Since N < n, necessarily a <("+k2k). If we intersect all

hyperplanes belonging to one and the same k-tuple the intersection can: (1) consist

of exactly one point, (2) be empty or contain more than one point. By cancelling all

zc-tuples from the list Cx,...,Ca for which (2) holds, we get the list C[,...,C'h of

zc-tuples which satisfy (1). Each CJ determines the unique intersection point Pj of all

hyperplanes in CJ; we thus obtain the list Px,... ,Pb of all such intersection points.

From this list we omit superfluous occurences; thus if Pj = Pk for/ < zc we omit Pk.

We also omit those points which do not lie in the cube 0 < x < Ck„, j = 1,... ,k.

We thus obtain a new list: (II) P{,.. .,P'C. As next step we construct all Simplexes of

dimension d < k whose corners belong to the list (II). To this end we take all

d + 1-tuples (PJ, PJx,... ,PJ), j0 < /, < ■ ■ • < jd, d < k. By retaining those d + 1-

tuples which do describe a ¿-dimensional simplex and by cancelling all others we

obtain the list Sx,...,Se of all Simplexes of dimension d < k whose corners belong to

the list (II). Evidently e < E5=0(</+i)- Since c «s (n+klk), there is a t depending only

on zc such that e < zzT. The last step of the algorithm uses the machine T'k in A'k. With

the aid of T'k we cancel those Simplexes from the list Sx,...,Se which do not contain

lattice points. As a result we obtain the new list: (III) S[,... ,Sg (g < zjt). By using

T'k a second time we determine for every / < g a necessarily positive lattice point

PJ' g SJ, thus giving rise to the list of lattice points: (IV) P[',... ,P". This terminates

the algorithm.

(S2) We now come to (b) of our proof. Let £ = (tx,.. .,CJk) be the coordinate

vector of the lattice point PJ' in (IV); by construction 0 < £ä < Ckn. We claim: (V)

if F* is true then L*(f/1,...,f/A:) is true for some/ < g. In order to verify (V), let

| = (£,,...,Ij.) be an integer vector such that L*(£x,... ,£k) is true. Let L'(xx,.. .,xk)

be the disjunctive normal form of L*(x,,.. .,xk). Since L(xx,.. .,xk) is negationless,

L'(x,,... ,xk) is a disjunction of conjunctions of the form A*=10 < xy *S Ckn A t <

q. Since L*(£,,... ,£k) is true, there is such a conjunction, say

k

Z> - A 0 < *, < Ckn A tx < qx A ■ • • A tm < qm
7 = 1

which is true under the assignment of £x,...,£k to xx,...,xk. Let a}x < b¡ be the

equivalent linear inequality associated with t} < qj,j = l,...,m. Thus ¿lf... ,£k is an

integer solution of the system of inequalities: (VI) 0 < Xjr< Ckn, j — \,...,k,

afx < bj, j = \,...,m. Now the set S of points G Rk which satisfies (VI) is a

¿/-dimensional convex set for some d < zc. Let Qx,...,Qh be the extremal points of

S; as is well known S is their convex hull [Qx,- ■ .,Qh]. On the other hand, each

extremal point Q, is the unique intersection point of zc distinct hyperplanes from the

list Xj = 0, X: = Ck„,j = 1,... ,zc, afx = b,j = 1,... ,m; furthermore every Q¡ lies in

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

COMPLEXITY OF PRESBURGER ARITHMETIC 217

the cube 0 < x} ̂ Ck„, j = 1,... ,k. Thus every point g, occurs in the list (II) of

points P{,. ..,P'C constructed in (SI). Let S*,.. .,S* be the list of all ¿-dimensional

simplexes which have their corners in the list Qx,...,Qh. According to Lemma 4,

S = US*, and since (£x,... ,l-k) g 5 we have (£,,... ,£k) g S* for some/. Since S*

has its corners in the list P[,...,PJ. and contains at least one lattice point, it must

coincide with one of the simplexes S'x,..., S'g in the list (III) of (SI). Let S¡ denote the

simplex in question. We thus have S¡ ç 5 and Pt" g S¡, with Pt" from (IV) in (SI).

Thus PJ' g S, that is, f, = (£fl>.. .,Çtk) is an integer vector which solves system (VI).

Hence the conjunction D becomes true under the assignment ffl,... ,Çtk to x,,... ,xfc,

that is, L'(£,i,.. • ,£,*) and thus L*(£fl,.. .,£,*) are true, what proves (V). It is now

clear how to check the truth of F = (Exx) ■ ■ ■ (Exk)L(xx,.. .,xk) with the aid of the

algorithm. One constructs the list (IV) of lattice points P[',... ,F" according to the

prescriptions of the algorithm, with (ÇjX,...,Çjk) the coordinate vector of PJ'. One

then looks for a/ < g such that L(C„,... ,CJk) is true; if there is such a/ then F is

true, otherwise F is false.

(S3) A detailed verification that there is indeed a deterministic polynomial time

machine which transforms the formula F = (Fx,) • • ■ (Exk)L(xx,.. .,xk) into the

list P",...,P'g' of points is quite lengthy and cannot be given here. Nevertheless, a

closer inspection shows that it is routine in view of the already mentioned results of

Sieveking-v.z. Gathen [12] which says that all relevant questions concerning systems

of diophantine equations can be solved in deterministic polynomial time. D

Corollary. There is a deterministic polynomial machine which, given a closed

formula (Ex)L(x) (L quantifierfree) as input, decides whether it is true, and if so

computes an integer f > 0 such that L(f) is true. U

The main problem which remains is the status of Hypothesis Ak, k > 2. Despite

many discussions with experts in lattice point theory the truth of Ak could not be

decided; to every proposed solution a counterexample was found. Thus the question

whether Ak is true for all zc remains open.

Appendix. As stated in §4, (C), the construction of Bn, Dn, Tn, Ln and Wn by means

of concatenation is basically routine. Nevertheless there are some subtler points:

Turing machines of length < 2"~4 require a binary string of length 2""4, Boolean

functions require a string of length (n + 1)2" and computations of length < 2" call

for a string of length a22" + b2", with a, b constants depending only on the

alphabet and the encoding. As an example we discuss the third point; the others are

treated similarly. A string of length a22" + b2" can be constructed as soon as we

have strings of length 22" and 2" at disposal. We thus describe as a typical case the

construction of a string of length 22". For x, y binary strings, let xy be their

concatenation, |x| the length of x and xp short for x • • • x p-times. We define strings

x, y, z by means of the following conditions:

(Cl) x has the form (f)d\f for some d,X>0,

(C2) y admits a "factorization" y = yx • • • y\ with |_y-| = d + \,j = 1,...,A and

such that:

(a)^. = £,.10'1 with |£.| = 2zz,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

218 BRUNO SCARPELLINI

(bH, = O2", fx = l2",
(c) Üj+1 is the lexicographical successor of £,,

(C3) z = zx ■ ■ • zx, with |z -| = d + 1 for/ = 1,... ,A and :

(d) Zj = lfl;0M for some a}, bj > 0,

(e)aj+x =ay+ 1,

(f) a, = 1, bx = 1.

Evidently x, 7, z are uniquely determined by (C1)-(C3), moreover X = 22",

d = 22" + 1 and ax = 22". Thus |x| = \y\ = \z\ = 22"(22" + 2) < 25". If 5, t in

F(u, v, w/MSn+r) are large enough we can handle concatenation by means of

Con„(î<, v, w) for all u, v, w with |bin(w)|, |bin(i;)|, |bin(>v)| < 25". It is then routine
-2/7

to describe the strings x, y, z, zx and 1 by means of Conn(u, v, w).

Acknowledgements. We are indebted for valuable discussions to E. Specker and

V. Strassen and also to the referee who helped us to reorganize the paper.

References

1. L. Adleman and K. Manders, NP-complete decision problems for binary quadratics, J. Comput.

System Sei. 16 (1978), 168-184.
2. D. C. Cooper, Theorem proving in arithmetic without multiplication, Machine Intelligence Workshop

7 (1972), 91-100.
3. J. Ferrante and C. W. Rackoff, The computational complexity of logical theories, Lecture Notes in

Math., vol. 718, Springer-Verlag, Berlin and New York, 1979.

4. M. Fürer, The complexity of Presburger arithmetic with bounded quantifier alternation, Theoret.

Comput. Sei. 18 (1982), 105-111.
5. M. J. Fischer and M. O. Rabin, Super-exponential complexity of Presburger arithmetic, Proc.

Sympos. Pure Math., vol. 7, Amer. Math. Soc, Providence, R. I., 1974.

6. A. Haussier, Polynomial beschränkte nichtdeterministische Turingmaschinen und die Vollständigkeit

des aussagenlogischen Erfüllungsproblems, Lecture Notes in Comput. Sei. 43 (1976), 20-35.

7. J. Heintz, Untere Schranken für die Komplexität logischer Entscheidungs-probleme. Lecture Notes in

Comput. Sei. 43 (1976), 127-137.
8. L. Hodes and E. Specker, Lengths of formulas and elimination of quantifiers. Contributions to Math.

Logic (1968), 175-188.
9. D. C. Oppen, Elementary bounds for Presburger arithmetic, Proc. 5th ACM Sympos. on Theory of

Computing, 1973, pp. 34-37.
10. M. Presburger, lieber die Vollständigkeit eines gewissen Systems ganzer Zahlen, Comptes Rendus, I.

Congrès des Math, des Pays Slaves, Warsaw, 1929, pp. 192-201.

11. C. R. Reddy and D. W. Loveland, Presburger arithmetic with bounded quantifier alternation, ACM.

Symposium on Theory of Computing, 1978.

12. M. Sieveking and J. v. z. Gathen, Weitere zum Erfüllungsproblem polynomial äquivalente kom-

binatorische Aufgaben, Lecture Notes in Comput. Sei. 43 (1976), 49-71.

13. _, A bound on solutions of linear integer equalities and inequalities, Proc. Amer. Math. Soc. 72

(1978), 155-158.
14. J. I. Seiferas, M. J. Fischer and A. R. Meyer, Refinements of nondeterministic time and space

hierarchies, Proc. Fourteenth Annual IEEE Sympos. on Switching and Automata Theory, 1973, pp.

130-137.

Mathematics Institute of the University of Basel, Rheinsprung 21, Basel 4051, Switzerland

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

