

Universität des Saarlandes FR Informatik

Christoph Weidenbach

October 23, 2018

Tutorials for "Automated Reasoning WS18/19" Exercise sheet 1

Exercise 1.1:

Determine which of the following formulas are valid/satisfiable/unsatisfiable using propositional semantics, i.e., the definition of \models :

- 1. $(P \land Q) \rightarrow (P \lor Q)$
- 2. $(P \lor Q) \to (P \land Q)$
- 3. $\neg (P \rightarrow \neg P)$
- 4. $(P \lor \neg Q) \land \neg (\neg P \to \neg Q)$
- 5. $\neg (P \lor Q) \leftrightarrow (\neg P \land \neg Q)$

Exercise 1.2:

Prove the validity of the following formulas using \Rightarrow_{T} .

- 1. $(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$
- 2. $(P \rightarrow Q) \rightarrow ((R \lor P) \rightarrow (R \lor Q))$

Exercise* 1.3:

Consider a satisfiable formula ϕ with $\mathcal{A} \models \phi$.

- 1. Prove \Rightarrow_{T} to be strongly complete with respect to models: if $\{(\phi)\} \Rightarrow_{\mathrm{T}}^* N$ and N is a normal form then there is a sequence $(\phi, \phi_1, \ldots, \phi_n) \in N$ such that $\mathcal{A} \models \phi \land \phi_1 \land \ldots \land \phi_n$.
- 2. Is \mathcal{A} the only model of $\phi \land \phi_1 \land \ldots \land \phi_n$?

Is is not encouraged to prepare joint solutions, because we do not support joint exams.