

Universität des Saarlandes FR Informatik

Christoph Weidenbach

November 11, 2020

Tutorials for "Automated Reasoning WS20/21" Exercise sheet 1

Exercise 1.1:

Prove by induction that for any propositional formula the number of closing parentheses is equal to the number of opening parentheses (see Definition 2.1.1).

Exercise 1.2:

Determine which of the following formulas are valid/satisfiable/unsatisfiable using propositional semantics, i.e., the definition of \models :

1.
$$\neg (P \lor \neg (P \land Q))$$

$$2. \ (P \lor Q) \to (P \land Q)$$

3.
$$\neg (P \rightarrow \neg P)$$

$$4. \ (P \vee \neg Q) \wedge \neg (\neg P \to \neg Q)$$

5.
$$\neg (P \lor Q) \leftrightarrow (\neg P \land \neg Q)$$

Exercise 1.3:

Prove the validity of the following formulas using \Rightarrow_T .

1.
$$(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$$

2.
$$(P \to Q) \to ((R \lor P) \to (R \lor Q))$$

Exercise* 1.4:

Consider a satisfiable formula ϕ with $\mathcal{A} \models \phi$.

1. Prove \Rightarrow_T to be strongly complete with respect to models: if $\{(\phi)\} \Rightarrow_T^* N$ and N is a normal form then there is a sequence $(\phi, \phi_1, \dots, \phi_n) \in N$ such that $\mathcal{A} \models \phi \land \phi_1 \land \dots \land \phi_n$.

2. Is \mathcal{A} the only model of $\phi \wedge \phi_1 \wedge \ldots \wedge \phi_n$?

Is is not encouraged to prepare joint solutions, because we do not support joint exams.