

Universität des Saarlandes FR Informatik

Christoph Weidenbach

November 18, 2020

Tutorials for "Automated Reasoning WS20/21" Exercise sheet 2

Exercise 2.1: Convert the following formulas in CNF using both \Rightarrow_{BCNF} and \Rightarrow_{ACNF} .

1. $[(P \to S) \land \neg Q] \leftrightarrow [R \lor (\neg S \to Q)]$

2.
$$[\neg(\neg P \lor (Q \land R))] \rightarrow [P \land (\neg Q \leftrightarrow \neg R)]$$

3.
$$\neg [(P \land (P \to Q)) \leftrightarrow (P \lor Q)]$$

Exercise 2.2:

Prove that the following formula is valid via resolution:

 $(P \to Q) \to [(R \lor P) \to (R \lor Q)]$

apply \Rightarrow_{ACNF} to the negated formula and the resolution calculus to the resulting clauses until you derive the empty clause.

Exercise 2.3:

We call a set N of clauses exhausted if the result of any inference with clauses from N is already in the set N or is subsumed by a clause in N. Compute an exhausted equivalent set of clauses for: $\{\neg P \lor Q \lor \neg S, \neg P \lor Q \lor S, P \lor S, P \lor \neg Q \lor \neg S, \neg P \lor \neg Q \lor \neg S, Q \lor \neg S \lor P\}$ by using \Rightarrow_{RES} .

Exercise* 2.4:

Let N be a finite set of propositional clauses and P a propositional variable. Assume that we don't have duplicate literals in clauses and that no clause contains Q and $\neg Q$ for any propositional variable Q. Let $P \lor C_1, \ldots, P \lor C_k$ be all clauses in N containing the literal P and $\neg P \lor D_1, \ldots, \neg P \lor D_l$ be all clauses in N containing literal $\neg P$. Define the set $\mathcal{E}(P, N) =$ $(N - \{P \lor C_i \mid 1 \le i \le k\} - \{\neg P \lor D_j \mid 1 \le j \le l\}) \cup \{C_i \lor D_j \mid 1 \le i \le k, 1 \le j \le l\}$. Prove that N is satisfiable iff $\mathcal{E}(P, N)$ is satisfiable.

Is is not encouraged to prepare joint solutions, because we do not support joint exams.