

Universität des Saarlandes FR Informatik

Christoph Weidenbach

October 28, 2014

Tutorials for "Automated Reasoning" Exercise sheet 2

Exercise 2.1: (3 P) Consider a strict ordering \prec on a set M and prove or refute by a counter-example:

- 1. if for any elements $m_1, m_2 \in M$ there is an element $m \in M$ so that $m_1 \prec m$ and $m_2 \prec m$ then \prec is total
- 2. if there exists an infinite ascending chain $m_0 \prec m_1 \prec m_2 \prec \ldots$ then \prec is not well-founded
- 3. if \prec is well-founded then \prec is total

Exercise 2.2: (2+2P)

Let \succ be the total ordering on the propositional variables $S \succ R \succ Q \succ P$.

- 1. For each of the following pairs of triples, determine the lexicographic ordering relationship between the first and the second triple: ((P, P, R) ? (P, Q, R)), ((S, P, R) ? (Q, R, S)), ((Q, P, P) ? (P, R, R)), ((P, Q, P) ? (P, P, Q)) generated by the lexicographic extension of \succ .
- 2. Consider the triples from above as multisets and determine the relationship generated by the multiset extension of \succ .

Exercise 2.3: (4 P) For an alphabet Σ with a well-founded ordering $>_{\Sigma}$ let the relation \succ be defined as

 $w \succ w' :\Leftrightarrow |w| > |w'|$ or (|w| = |w'| and $w >_{\Sigma, \text{lex}} w')$.

Prove that \succ is a well-founded ordering on Σ^* .

Exercise 2.4: (3 P)

Let M be the set $\{a, b, c\}$. Provide an ordering \succ of M so that the following statements hold for the multiset extension $(\succ_{mul})_{mul}$ of the multiset extension of \succ .

- 1. $\{\{a, b\}, \{c\}\}(\succ_{mul})_{mul}\{\{a\}, \{b, c\}\}$ and
- 2. $\{\{b\}, \{c, c\}\}(\succ_{\text{mul}})_{\text{mul}}\{\{b, b, b\}, \{c\}\}.$

Are there other possible orderings?

Submit your solution in lecture hall E1.3, Room 002 during the lecture on November 04. Please write your name and the date of your tutorial group (Mon, Thu) on your solution.

Joint solutions are not permitted, please submit individually. However, I encourage you working and solving the exercises in a group.