

Universität des Saarlandes FR Informatik

Christoph Weidenbach

November13, 2018

Tutorials for "Automated Reasoning WS18/19" Exercise sheet 4

Exercise 4.1 (2.98):

Check satisfiability of the below propositional clauses using $\Rightarrow_{\text{CDCL}}$.

(1)	$\neg P4 \lor P3$	(2)	$\neg P3 \lor P4$	(3)	$P1 \lor P2 \lor P4$
(4)	$\neg P3 \lor \neg P4$	(5)	$\neg P1 \lor \neg P4 \lor P2$	(6)	$\neg P2 \vee \neg P4 \vee P1$
(7)	$\neg P1 \vee \neg P2 \vee P4$				

Exercise 4.2 (2.55):

Demonstrate the Superposition partial model construction on the following set of clauses

 $N = \{ \neg Q_0 \lor \neg P_2 \lor Q_1, \neg Q_1 \lor Q_2, P_0 \lor Q_0, \neg Q_0 \lor P_1, Q_0 \lor P_1 \}.$

Use the atom ordering $Q_2 \succ P_2 \succ Q_1 \succ P_1 \succ Q_0 \succ P_0$.

Exercise* 4.3 (2.54):

Which of the following statements are true or false? Provide a proof or a counter example.

- 1. If $N_{\mathcal{I}} \models N$ then N is saturated.
- 2. If $\delta_C = \{P\}$ while constructing $N_{\mathcal{I}}$ then for all clauses $D = P \lor D'$ with $C \neq D$ we have $\delta_D = \emptyset, D \in N$.
- 3. If all clauses in N have at most one positive literal and there is no clause in N having only negative literals then $N_{\mathcal{I}} \models N$.

It is not encouraged to prepare joint solutions, because we do not support joint exams.