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Tutorials for “Automated Reasoning WS22/23”
Exercise sheet 6 Solutions

Exercise 6.1:
We have to check via CDCL(LRA) whether the clause set

N = { (1) 3x1 + 4x2 − 1 > 0,
(2) −x1 + x2 + 1 ≥ 0,
(3) 2x2 − x3 ≈ 0,
(4) x3 − x1 < −2 ∨ x2 > 1 }

is satisfiable where we consider the linear rational arithmetic theory.

First we have to define the bijection atr from the atoms in the theory to propositional variables
and we define it as follows:

N ′ = atr−1(N) N = atr(N ′)

3x1 + 4x2 − 1 > 0 P1

−x1 + x2 + 1 ≥ 0 P2

2x2 − x3 ≈ 0 P3

x3 − x1 < −2 P4

x2 > 1 P5

and therefore we get the propositional clause set

N = {(1)P1, (2)P2, (3)P3, (4)P4 ∨ P5}.

Now we can apply ⇒CDCL(LRA) and get the following derivation:

(ϵ;N ; ∅; 0;⊤)

⇒Propagate(1)
CDCL(LRA) (P

(1)
1 ;N ; ∅; 0;⊤)

⇒Propagate(2)
CDCL(LRA) (P

(1)
1 P

(2)
2 ;N ; ∅; 0;⊤)

⇒Propagate(3)
CDCL(LRA) (P

(1)
1 P

(2)
2 P

(3)
3 ;N ; ∅; 0;⊤)

⇒Decide(P4)
CDCL(LRA) (P

(1)
1 P

(2)
2 P

(3)
3 P 1

4 ;N ; ∅; 1;⊤)

⇒T -Conflict
CDCL(LRA) (ϵ;N ; {(5)¬P1 ∨ ¬P2 ∨ ¬P3 ∨ ¬P4}; 0;⊤)



From the literals atr−1(P3) = 2x2 − x3 ≈ 0 and atr−1(P4) = x3 − x1 < −2 follows 2x2 <
x1 − 2 and by isolating x2 in the literal atr−1(P2) = −x1 + x2 + 1 ≥ 0 we get x2 ≥ x1 − 1
and therefore combining the two bounds for x2 leads to x1 < 0. Isolating x2 in the literal
atr−1(P1) = 3x1 + 4x2 − 1 > 0 leads to 4x2 > −3x1 + 1 and combinig this with the bound
2x2 < −2+x1 leads to x1 > 1. This contradicts x1 < 0 and therefore T -Conflict is applicable.

(ϵ;N ; {(5)¬P1 ∨ ¬P2 ∨ ¬P3 ∨ ¬P4}; 0;⊤)

⇒Propagate,∗
CDCL(LRA) (P

(1)
1 P

(2)
2 P

(3)
3 ;N ;U5; 0;⊤)

⇒Propagate(5)
CDCL(LRA) (P

(1)
1 P

(2)
2 P

(3)
3 ¬P (5)

4 ;N ;U6; 0;⊤)

⇒Propagate(4)
CDCL(LRA) (P

(1)
1 P

(2)
2 P

(3)
3 ¬P (5)

4 P
(4)
5 ;N ;U7; 0;⊤)

⇒T -Success
CDCL(LRA) (P

(1)
1 P

(2)
2 P

(3)
3 ¬P (5)

4 P
(4)
5 ;N ;U8;−1;⊤)

Ui is the set that we get after applying the i-th derivation step, so it is used to shorten the
notation of our set of clauses after every derivation step. Note that after the application of
T -Conflict there are the same series of Propagation applications done as before.

Note that the literals P1, P2, P3, ¬P4 and P5 satisfy the propostional system and T -Success
is applicable because x1 7→ 3, x2 7→ 2 and x3 7→ 4 is a solution of the literals and therefore
this variable assignment is a solution of the initial problem.

Exercise 6.2:
We have to check via CDCL(LRA) whether the clause set

N = { (1) y < 5 + x ∨ y > 5 + x,
(2) x ≈ z − 3,
(3) y ≤ 3x+ 2− z,
(4) y − 11 + 3x ≥ 2z,
(5) y − z > 4 }

is satisfiable.

First we have to define the bijection atr from the atoms in the theory to propositional variables
and we define it as follows:

N ′ = atr−1(N) N = atr(N ′)

y < 5 + x P1

y > 5 + x P2

x ≈ z − 3 P3

y ≤ 3x+ 2− z P4

y − 11 + 3x ≥ 2z P5

y − z > 4 P6

and therefore we get the propositional clause set

N = {(1)P1 ∨ P2, (2)P3, (3)P4, (4)P5, (5)P6}.

Now we can apply ⇒CDCL(LRA) and get the following derivation:



(ϵ;N ; ∅; 0;⊤)

⇒Propagate(2)
CDCL(LRA) (P

(2)
3 ;N ; ∅; 0;⊤)

⇒Propagate(3)
CDCL(LRA) (P

(2)
3 P

(3)
4 ;N ; ∅; 0;⊤)

⇒Propagate(4)
CDCL(LRA) (P

(2)
3 P

(3)
4 P

(4)
5 ;N ; ∅; 0;⊤)

⇒Propagate(5)
CDCL(LRA) (P

(2)
3 P

(3)
4 P

(4)
5 P

(5)
6 ;N ; ∅; 0;⊤)

⇒Decide(P1)
CDCL(LRA) (P

(2)
3 P

(3)
4 P

(4)
5 P

(5)
6 P 1

1 ;N ; ∅; 1;⊤)

⇒T -Conflict
CDCL(LRA) (ϵ;N ; {(6)¬P1 ∨ ¬P3 ∨ ¬P6}; 0;⊤)

We use atr−1(P3) = x ≈ z− 3 to substitute x in atr−1(P1) = y < 5+ x and get y− z < 3 but
this contradicts atr−1(P6) = y − z > 4 and therefore T -Conflict is applicable.

(ϵ;N ; {(6)¬P1 ∨ ¬P3 ∨ ¬P6}; 0;⊤)

⇒Propagate,∗
CDCL(LRA) (P

(2)
3 P

(3)
4 P

(4)
5 P

(5)
6 ;N ;U6; 0;⊤)

⇒Propagate(6)
CDCL(LRA) (P

(2)
3 P

(3)
4 P

(4)
5 P

(5)
6 ¬P (6)

1 ;N ;U7; 0;⊤)

⇒Propagate(1)
CDCL(LRA) (P

(2)
3 P

(3)
4 P

(4)
5 P

(5)
6 ¬P (6)

1 P
(1)
2 ;N ;U8; 0;⊤)

⇒T -Success(1)
CDCL(LRA) (P

(2)
3 P

(3)
4 P

(4)
5 P

(5)
6 ¬P (6)

1 P
(1)
2 ;N ;U9;−1;⊤)

Ui is the set that we get after applying the i-th derivation step, so it is used to shorten the
notation of our set of clauses after every derivation step. Note that after the application of
T -Conflict there are the same series of Propagation applications done as before.

Note that the literals ¬P1, P2, P3, P4, P5 and P6 satisfy the propostional system and T -
Success is applicable because x 7→ 9, y 7→ 17 and z 7→ 12 is a solution of the literals and
therefore this variable assignment is a solution of the initial problem.

Exercise 6.3:

1.

{f(x, h(x, y)) = f(f(y, z), h(y, z′))}

⇒Decomposition
SU {x = f(y, z), h(x, y) = h(y, z′)}

⇒Decomposition
SU {x = f(y, z), x = y, y = z′}

⇒Substitution
SU {y = f(y, z), x = y, y = z′}

⇒Occurs Check
SU ⊥



{f(x, h(x, y)) = f(f(y, z), h(y, z′))}

⇒Decomposition
PU {x = f(y, z), h(x, y) = h(y, z′)}

⇒Decomposition
PU {x = f(y, z), x = y, y = z′}

⇒Substitution
PU {y = f(y, z), x = y, y = z′}

⇒Occurs Check
PU ⊥

2.

{h(x, y) = z, g(f(x, x)) = z′, g(g(f(a, y))) = g(z′)}

⇒Orient
SU {z = h(x, y), g(f(x, x)) = z′, g(g(f(a, y))) = g(z′)}

⇒Orient
SU {z = h(x, y), z′ = g(f(x, x)), g(g(f(a, y))) = g(z′)}

⇒Decomposition
SU {z = h(x, y), z′ = g(f(x, x)), g(f(a, y)) = z′}

⇒Substitution
SU {z = h(x, y), z′ = g(f(x, x)), g(f(a, y)) = g(f(x, x))}

⇒Decomposition
SU {z = h(x, y), z′ = g(f(x, x)), f(a, y) = f(x, x)}

⇒Decomposition
SU {z = h(x, y), z′ = g(f(x, x)), a = x, y = x}

⇒Orient
SU {z = h(x, y), z′ = g(f(x, x)), x = a, y = x}

⇒Substitution
SU {z = h(a, y), z′ = g(f(a, a)), x = a, y = a}

⇒Substitution
SU {z = h(a, a), z′ = g(f(a, a)), x = a, y = a}

mgu: {z 7→ h(a, a), z′ 7→ g(f(a, a)), x 7→ a, y 7→ a}

{h(x, y) = z, g(f(x, x)) = z′, g(g(f(a, y))) = g(z′)}

⇒Orient
PU {z = h(x, y), g(f(x, x)) = z′, g(g(f(a, y))) = g(z′)}

⇒Orient
PU {z = h(x, y), z′ = g(f(x, x)), g(g(f(a, y))) = g(z′)}

⇒Decomposition
PU {z = h(x, y), z′ = g(f(x, x)), g(f(a, y)) = z′}

⇒Orient
PU {z = h(x, y), z′ = g(f(x, x)), z′ = g(f(a, y))}

⇒Merge
PU {z = h(x, y), z′ = g(f(x, x)), g(f(x, x)) = g(f(a, y))}

⇒Decomposition
PU {z = h(x, y), z′ = g(f(x, x)), f(x, x) = f(a, y)}

⇒Decomposition
PU {z = h(x, y), z′ = g(f(x, x)), x = a, x = y}

⇒Substitution
PU {z = h(y, y), z′ = g(f(y, y)), y = a, x = y}

mgu: {x 7→ y}{z 7→ h(y, y)}{z′ 7→ g(f(y, y))}{y 7→ a}
= {x 7→ a, z 7→ h(a, a), z′ 7→ g(f(a, a)), y 7→ a}

3.



{h(x, y) = h(x′, y′), y′ = f(x, a), f(g(a), z) = y}

⇒Decomposition
SU {x = x′, y = y′, y′ = f(x, a), f(g(a), z) = y}

⇒Substitution
SU {x = x′, y = f(x, a), y′ = f(x, a), f(g(a), z) = y}

⇒Substitution
SU {x = x′, y = f(x, a), y′ = f(x, a), f(g(a), z) = f(x, a)}

⇒Decomposition
SU {x = x′, y = f(x, a), y′ = f(x, a), g(a) = x, z = a}

⇒Orient
SU {x = x′, y = f(x, a), y′ = f(x, a), x = g(a), z = a}

⇒Substitution
SU {g(a) = x′, y = f(g(a), a), y′ = f(g(a), a), x = g(a),

z = a}

⇒Orient
SU {x′ = g(a), y = f(g(a), a), y′ = f(g(a), a), x = g(a),

z = a}

mgu: {x′ 7→ g(a), y 7→ f(g(a), a), y′ 7→ f(g(a), a), x 7→ g(a), z 7→ a}

{h(x, y) = h(x′, y′), y′ = f(x, a), f(g(a), z) = y}

⇒Decomposition
PU {x = x′, y = y′, y′ = f(x, a), f(g(a), z) = y}

⇒Substitution
PU {x = x′, y = y′, y′ = f(x, a), f(g(a), z) = y′}

⇒Orient
PU {x = x′, y = y′, y′ = f(x, a), y′ = f(g(a), z)}

⇒Merge
PU {x = x′, y = y′, y′ = f(x, a), f(x, a) = f(g(a), z)}

⇒Decomposition
PU {x = x′, y = y′, y′ = f(x, a), x = g(a), a = z}

⇒Orient
PU {x = x′, y = y′, y′ = f(x, a), x = g(a), z = a}

⇒Substitution
PU {x = x′, y = y′, y′ = f(x′, a), x′ = g(a), z = a}

mgu: {z 7→ a}{x 7→ x′}{y 7→ y′}{y′ 7→ f(x′, a)}{x′ 7→ g(a)}
= {z 7→ a, x 7→ g(a), y 7→ f(g(a), a), y′ 7→ f(g(a), a), x′ 7→ g(a)}

Exercise* 6.4:
For a state E = {s1 = t1, . . . , sn = tn} take the measure µ(E) := (M,u, v, k) where M is the
multiset of term sizes of the side with larger term size, so M = {max{|si|, |ti|}|1 ≤ i ≤ n}. u
is the number of unoriented equations t = x in E where t is not a variable. v is the number
of variable equations x = y in E where x ∈ vars(E′) with E = E′ ⊎ {x = y}. k is the number
of equations x = t in E where there is another equation (x = s) ∈ E where t and s are
no variables. The state ⊥ is mapped to (∅, 0, 0, 0). Then we need to show that the measure
µ(E) decreases with each rule application ⇒PU with respect to the lexicographic extension
≻lex of > on the natural numbers and the multiset extension of > on the natural numbers.
After the rules Clash, Occurs Check and Cycle are applied E = ⊥ and therefore the measure
obviously decreases. The rule Tautology removes an equation and therefore decreases M and
the measure. Decomposition replaces an equation with multiple equations where the term size
is smaller than the term size of the original equation by at least 1. Therefore Decomposition



decreases M and also the measure. Applying Orient does not change M but decreases u by
1 and therefore also decreases the measure. The rule Substitution does not change M and
u but decreases v by 1 and therefore also decreases the measure. Applying Merge does not
change M because the right-hand side of the equation that is changed by Merge does not
change and the term size of the right-hand side is larger than the term size of the left-hand
side before and after the rule application. u and v are also not changed by Merge but k
decreases and therefore also the measure decreases. So the measure µ(E) decreases with each
rule application ⇒PU with respect to ≻lex. Therefore ⇒PU terminates.

It is not encouraged to prepare joint solutions, because we do not support joint exams.


