

Universität des Saarlandes FR Informatik

Christoph Weidenbach

July 2, 2019

Tutorials for "Decision Procedures SS19" Exercise sheet 8

Exercise 8.1:

Let $\Lambda_1 \parallel C_1 \lor L_1$ and $\Lambda_2 \parallel C_2 \lor L_2$ be two BS clauses with simple bounds. Let σ be the unifier of L_1 and comp (L_2) . Prove that $(\Lambda_1, \Lambda_2 \parallel C_1 \lor C_2)\sigma$ is a BS clause with simple bounds. This might need some simplification.

Exercise 8.2:

For the pure BS fragment the following rules are sound, complete, and terminate:

Superposition-BS $M \uplus \{ N \uplus \{ P(t_1, \dots, t_n), C \lor \neg P(s_1, \dots, s_n) \} \} \Rightarrow_{\text{SUPBS}} M \cup \{ N \cup \{ P(t_1, \dots, t_n), C \lor \neg P(s_1, \dots, s_n) \} \cup \{ C\sigma \} \}$

where (i) $\neg P(s_1, \ldots, s_n)$ is selected in $(C \lor \neg P(s_1, \ldots, s_n))\sigma$ (ii) σ is the mgu of $P(t_1, \ldots, t_n)$ and $P(s_1, \ldots, s_n)$ (iii) $C \lor \neg P(s_1, \ldots, s_n)$ is a Horn clause

Instantiation $M \uplus \{N \uplus \{C \lor A_1 \lor A_2\}\} \Rightarrow_{\text{SUPBS}} M \cup \{N \cup \{(C \lor A_1 \lor A_2)\sigma_i \mid \sigma_i = \{x \mapsto a_i\}, 1 \le i \le k\}\}$

where x occurs in a variable chain between A_1 and A_2

 $\begin{aligned} \mathbf{Split} & M \uplus \{ N \uplus \{ C_1 \lor A_1 \lor C_2 \lor A_2 \} \} \Rightarrow_{\mathrm{SUPBS}} M \cup \{ N \cup \{ C_1 \lor A_1 \}, N \cup \{ C_2 \lor A_2 \} \} \end{aligned}$

where $\operatorname{vars}(C_1 \lor A_1) \cap \operatorname{vars}(C_2 \lor A_2) = \emptyset$

Discuss to what extend the rules can be turned into a sound, complete and terminating calculus for BS with simple bounds over LRA.