
First-Order Logic Modulo Theories

SUP(T) Decides Timed Automata
Reachability

Timed automata [AlurDill94,BouyerEtAl04] are finite automata
extended by clock variables. The clock variables are used in
linear arithmetic formulas to encode location invariants and
guards for transitions. All clocks are initially zero and can be reset
to zero after having taken a transition. They increase
simultaneously at a constant rate as long as location invariants
are satisfied.
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Figure: (8.1) A timed automaton
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Transitions of the automaton are encoded by BSH(LA)
(Bernays-Schoenfinkel Horn) clauses.
Translating the transition from l0 to l1 and the state invariant for
state l1 results in the respective BSH(LA) clauses

(1) x ′ = 0, y ′ = 0, x ′ ≤ 4 ‖ Reach(l0, x , y)→ Reach(l1, x ′, y ′)
(2) t ≥ 0, x ′′ = x ′ + t , y ′′ = y ′ + t , x ′′ ≤ 4 ‖ Reach(l1, x ′, y ′)→
Reach(l1, x ′′, y ′′).
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Performing superposition on Reach(l1, x ′, y ′) yields

x ′ = 0, y ′ = 0, x ′ ≤ 4, t ≥ 0, x ′′ = x ′ + t , y ′′ = y ′ + t , x ′′ ≤ 4 ‖
Reach(l0, x , y)→ Reach(l1, x ′′, y ′′)

which can be simplified by LA constraint simplification
(elimination of t , x ′, and y ′) to

(3) x ′′ ≥ 0, x ′′ = y ′′, x ′′ ≤ 4 ‖ Reach(l0, x , y)→ Reach(l1, x ′′, y ′′).
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8.9.1 Definition (Timed Automaton)
A timed automaton T is a tuple T = (L, start,X , {invl}l∈L,E , final)
where L is a finite set of locations with initial location start ∈ L and
final location final ∈ L, X is a finite set of clock variables,
invl ∈ B(X ) is the invariant of location l ; E ⊆ L× B(X )× 2X × L is
a finite set of edges. An edge (l , φ,Z , l ′) represents a transition
from location l to location l ′. The constraint φ determines when
the edge is enabled, and the set Z contains the clocks to be reset
to zero when taking the edge.
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A state of a timed automaton is a tuple (l , ν) consisting of a
location l ∈ L and a valuation ν ∈ X → Q+ for all clocks. The
initial state is (l0, ν0) where ν0 assigns zero to all clocks. In a
location, the values of all clocks can increase at a fixed rate as
long as the location’s invariant is satisfied. This induces a relation
(l , ν)

δ→ (l , ν + δ) between states, where both ν and ν + δ satisfy
invl . We call the relation

⋃
δ∈Q+

δ→ the timed reachability relation.
For example, in the timed automaton from Figure 8.1, we have
(l1, {x 7→ 0, y 7→ 0}) 4→ (l1, {x 7→ 4, y 7→ 4}).
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When the valuation satisfies the guard of an edge, the edge can
be taken, and a new clock valuation is determined according to
Z . These discrete steps in turn induce a transition relation
(l , ν)

d→ (l ′, ν ′) between states, where ν satisfies the guard of an
edge between l and l ′, and ν ′ is the result of applying the
corresponding clock resets. We call this relation the discrete-step
reachability relation. Considering again the timed automaton from
Figure 8.1, we have (l1, {x 7→ 3, y 7→ 3}) d→ (l1, {x 7→ 0, y 7→ 3}).
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The reachability relation→ is defined as the union of the timed
and discrete-step reachability relations. By→∗ we denote its
reflexive transitive closure. We say that a state l is reachable if
(l0, ν0)→∗ (l , ν) from some ν. It is easy to see that a state l is
reachable if and only if there exists a finite sequence
π = (l0, ν0), (l1, ν1), (l2, ν2), . . . , (ln, νn) of states where
(ln, νn) = (l , ν) and any two consecutive states are contained
either in the timed reachability relation or in the discrete-step
reachability relation. We call such a sequence a run (of T ). A
timed automaton T is non-empty if the final state is reachable.
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8.9.2 Theorem (Timed Automata are decidable [AlurDill94])
It is decidable, PSPACE-complete, whether a timed automaton T
is non-empty.
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Encoding Reachability in FOL(LA)

Let T = (L, start,X , {invl}l∈L,E , final) be a timed automaton, let
the vector ~x contain the variables in X .
The following clause represents reachability of the initial state:

~x =0 ‖→ Reach(start, ~x).
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For every location l ∈ L, the following clause encodes
time-reachability:

t≥0, ~x ′=~x +t , invl [~x ′] ‖ Reach(l , ~x)→ Reach(l , ~x ′).
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For every edge (l , φ,Z , l ′) ∈ E , the following clause encodes
discrete-step reachability:

φ, ~x ′=resetZ (~x), invl ′ [~x ′] ‖ Reach(l , ~x)→ Reach(l ′, ~x ′).

where

resetZ (x) =

{
0 if x ∈ Z ,
x otherwise.
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8.9.4 Theorem (SUP(LA) Decides Timed Automata
[FietzkeWeidenbach12])
Let N be the clause set resulting from the translation from a
timed automaton T . Then T is non-empty iff
NE = N ∪ { ‖ Reach(final, ~x)→} is unsatisfiable. The saturation of
NE by SUP(LA) terminates.
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One important trick of the proof is to consider reachability
backwards by adding an extra argument of a free sort to Reach
making the right hand sides of any implaction maximal in the
ordering. For example, the clause

t ≥ 0, x ′ = x + t , y ′ = y + t , x ′ ≤ 4 ‖ Reach(l1, x , y)→
Reach(l1, x ′, y ′)

becomes

t ≥ 0, x ′ = x + t , y ′ = y + t , x ′ ≤ 4 ‖ Reach(z, l1, x , y)→
Reach(g(z), l1, x ′, y ′)
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