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Introduction

Our goal in the next two lectures is to identify decidable FOL(T)
fragments beyond Bernays–Schönfinkel with simple bounds.

Since our approach will use model-theoretic arguments, we start
with some basics illustrating the model-theoretic way of thinking:
(1) reminder of FOL semantics
(2) finite and infinite models
(3) the finite model property for BS sentences
(4) domain constraints and the Löwenheim–Skolem Theorem
(5) the finite model property for monadic FO sentences
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1. Some Basics from Model Theory
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Reminder: Semantics of FOL formulas
Let Σ = (Π,Ω) be a single-sorted signature, where
Π is a finite set of predicates
Ω is a finite set of functions

FO formulas over Σ are interpreted by Σ-structures.

Definition (Σ-algebra / Σ-interpretation / Σ-structure)
A Σ-structure A comprises
(1) a nonempty set UA, called universe or domain,
(2) for every P ∈ Π with arity m a set

PA ⊆ (UA)m,
(3) a for every constant c ∈ Ω a domain element cA ∈ UA,
(4) for every f ∈ Ω with arity m ≥ 1 a total function

fA : (UA)m → UA.
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Reminder: Semantics of FOL formulas

Example:

Signature Σ = (Ω,Π) with unary s ∈ Ω and binary E ∈ Π.
Consider the Σ-structure A with

UA:

1 2

43

5
EA:

1 2

43

5
sA:

1 2

43

5

sA

s
A

sA
s
A s A

symmetric
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Reminder: Semantics of FOL formulas
Definition (Satisfaction relation)
Given some Σ-structure A and a variable assignment
β : Var→ UA, we define the satisfaction relation |= such that

A, β |= s ≈ t iff A(β)(s) = A(β)(t)
A, β |= P(s1, . . . , sm) iff

(
A(β)(s1), . . . ,A(β)(sm)

)
∈ PA

A, β |= ¬ϕ iff A, β 6|= ϕ
A, β |= ϕ ∧ ψ iff A, β |= ϕ and A, β |= ψ
A, β |= ϕ ∨ ψ iff A, β |= ϕ or A, β |= ψ
A, β |= ∀x . ϕ iff A, β[x 7→ a] |= ϕ for every a ∈ UA
A, β |= ∃x . ϕ iff A, β[x 7→ a] |= ϕ for some a ∈ UA

We write ϕ(x̄) to say that all free variables in ϕ belong to x̄. If ϕ
does not contain free variables, we call it a sentence and simply
write A |= ϕ or A 6|= ϕ. In case of A |= ϕ we call A a model of ϕ.
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Reminder: Semantics of FOL formulas
Example:

Signature Σ = (Ω,Π) with unary s ∈ Ω and binary E ∈ Π.
Consider the Σ-structure A with

UA:

1 2

43

5
EA:

1 2

43

5
sA:

1 2

43

5

sA

s
A

sA
s
A s A

symmetric

We observe A |= ∀x∃y .E(x , y) A |= ∀xy .E(x , y)→ E(y , x)

A 6|= ∃z∀x . s(x) 6≈ z A |= ∀x . s(x) 6≈ x ∧ s(s(x)) 6≈ x
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Finite and infinite models

Proposition
There are satisfiable FO sentences that do not have finite models.

Proof: Consider the following infinity axioms [BGG97], Section 6.5(
∀x .¬P(x , x)

)
∧
(
∀xyz.P(x , y) ∧ P(y , z)→ P(x , z)

)
∧
(
∀x∃y .P(x , y)

)
irreflexivity transitivity existence of

P-successors(
∀x .¬P(x , x)

)
∧
(
∀x∃y .P(x , y) ∧ ∀z.P(y , z)→ P(x , z)

)
(
∃v∀x . f (x) 6≈ v

)
∧
(
∀xy . f (x) ≈ f (y)→ x ≈ y

)
Each of these three sentences is satisfiable over infinite
structures only.
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Finite and infinite models
Definition (Finite model property)
Let C be any class of FO sentences. We say that C enjoys the
finite model property if every satisfiable sentence in C has a
model A with a finite domain UA.

We shall see that every fragment of FOL enjoying the finite model
property has a decidable satisfiability problem.

Two exemplary fragments:
Bernays–Schönfinkel (BS): ∃∗∀∗ prenex sentences without ≈ and

without non-constant functions
monadic FO (MFO): all predicates are unary, no ≈,

neither functions nor constants

We disallow equality only for simplicity and convenience.
Moreover, constant symbols in MFO would not do any harm.
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Finite and infinite models
Lemma 1.1 (Prop. 6.0.4 in [BGG97])
Let ϕ be an FO sentence in prenex form with k universal
quantifiers and length n. Let m be some positive integer.
Whether ϕ has a model with m domain elements can be decided
nondeterministically in time poly(mkn).

Proof: Assume w.l.o.g. that ϕ is fully Skolemized, i.e. it is of the
form ∀x̄. ψ(x̄) where ψ is quantifier free and x̄ has length k .
Consider the following nondeterministic procedure.

(1) Construct A with the domain UA := {1, . . . ,m}. For every k -tuple
a1, . . . ,ak ∈ Uk guess sufficient information regarding the inter-
pretation of terms t(x̄) and atoms A(x̄) occurring in ϕ. (Notice that
the truth value of, e.g., P(1,2) under A need not be guessed,
if P occurs in ϕ only in atoms P(x , x), say.)

(2) Verify that A |= ϕ.
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Finite and infinite models
Theorem 1.2
Let C be any class of FO sentences. If C enjoys the finite model
property, then we can decide satisfiability for all sentences in C.

The proof is based on Lemma 1.1.

But why don’t we need an upper bound on the size m of smallest
models of a given sentence ϕ to invoke the Lemma?
Enumerating upper bounds m = 1,2,3, . . . only yields only a
semi-decision procedure!
What is the missing piece?
 We have refutationally complete calculi for FOL, e.g. super-

position. That is, we have a semi-decision procedure for
unsatisfiability, which complements the above procedure.
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Proving the finite model property for BS

Bernays–Schönfinkel fragment:
all ∃∗∀∗ prenex FO sentences without non-constant func-
tions and without ≈.

How can we show the finite model property for BS?

Let ϕ be a BS sentence and let ψ result from ϕ by exhaustive
Skolemization. Then, ϕ and ψ are satisfiable over the same
domains. By Herbrand’s Theorem, ψ is satisfiable if and only if
there is a Herbrand model for ψ. As the Herbrand domain for ψ,
i.e. the domain of all terms built from ψ’s signature, is finite, we
are done.
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Proving the finite model property for BS
An alternative proof requires the notion of substructures:

Definition (Substructure)
Let Σ = (Π,Ω) be an FO signature and let A,B be Σ-structures.
We call B a substructure of A if
(a) UB ⊆ UA,
(b) for every P ∈ Π of arity m we have PB = PA ∩ (UB)m,
(c) for every f ∈ Π of arity m and all a1, . . . ,am ∈ UB we have

fB(a1, . . . ,am) = fA(a1, . . . ,am).

Lemma 1.3 (Substructure Lemma, Lemma III.5.7 in [EFT94])
Let ϕ be any prenex FO sentence without existential quantifiers.
If A is a model of ϕ, then every substructure B of A is also a
model of ϕ.
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Substructure example
UA:

1 2

43

5 EA:

1 2

43

5 sA:

1 2

43

5

Changed for
nicer sub-
structures!

symmetric

We observe

Coinci-
dence!

A |= ∀x∃y .E(x , y) A |= ∀xy .E(x , y)→ E(y , x)

A |= ∃z∀x . s(x) 6≈ z A |= ∀x . s(x) 6≈ x ∧ s(s(x)) 6≈ x

UB:

1

43

EB:

1

43

sB:

1

43

symmetric
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Substructure example
UA:

1 2

43

5 EA:

1 2

43

5 sA:

1 2

43

5

Changed for
nicer sub-
structures!

symmetric

We observe

Coinci-
dence!

B |= ∀x∃y .E(x , y) B |= ∀xy .E(x , y)→ E(y , x)

B 6|= ∃z∀x . s(x) 6≈ z B |= ∀x . s(x) 6≈ x ∧ s(s(x)) 6≈ x

UB:

1

43

EB:

1

43

sB:

1

43

symmetric

July 09/16, 2019 14/64



Introduction Model Theory Basics Decidable BS(LRA) Fragments Application: TA Reach.

Substructure example
UA:

1 2

43

5 EA:

1 2

43

5 sA:

1 2

43

5

Changed for
nicer sub-
structures!

symmetric

We observe

Coinci-
dence!

B |= ∀x∃y .E(x , y) B |= ∀xy .E(x , y)→ E(y , x)

B 6|= ∃z∀x . s(x) 6≈ z B |= ∀x . s(x) 6≈ x ∧ s(s(x)) 6≈ x

UB:

1

43

EB:

1

43

sB:

1

43

symmetric
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Proving the finite model property for BS (cont’d)

Bernays–Schönfinkel fragment:
∃∗∀∗ prenex sentences w/o non-constant functions and w/o ≈

Finite model property via Substructure Lemma:

Let ϕ be a BS sentence and let ψ result from ϕ by exhaustive
Skolemization. Suppose ψ has a model A (over ψ’s signature),
possibly with infinite domain. Let c1, . . . , ck be the constants
occurring in ψ. Consider the following structure B with
UB := {cA1 , . . . , cAk },
PB := PA ∩ (UB)m for every m-ary predicate in ψ,
cB := cA for every constant in ψ.

As B is a substructure of A, the Substructure Lemma entails
B |= ψ, which entails B |= ϕ.
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Proving the finite model property for BS
Notice that the above proof also works in the presence of equality.

In fact, the Substructure Lemma entails a stronger result:

Lemma 1.4
Let ϕ := ∃v̄∀x̄. ψ be any BS sentence with quantifier-free ψ and k
constant symbols. Suppose, there is a model A |= ϕ. For any
integer ` with 1 ≤ k + |v̄| ≤ ` ≤ |UA| there is a model B of ϕ with
|UB| = `. If |UA| is infinite, ` is not bounded from above.

UA ...
necessary
finite core
for satisfying
substructures
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Proving the finite model property for BS

Theorem
The satisfiability problem for BS sentences is complete for
NEXPTIME (nondet. exponential time).

Membership in NEXPTIME follows from Lemmas 1.1 and 1.4.
NEXPTIME-hardness was shown by Lewis [Lew80], see also
Theorem 6.2.21 in [BGG97].
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Domain constraints in BS
BS sentences can impose lower bounds on the size of models:

∃v1, . . . , vk .
∧

i

(
Pi(vi) ∧

∧
j 6=i ¬Pj(vi) ∧ ¬Pi(vj)

)
BS sentences cannot impose upper bounds! In fact, no
satisfiable FOL sentence without equality can (see next slide).

For BS with equality, consider the following examples:

∀xy . x ≈ y

∃v1, . . . , vk∀x .
∨

i x ≈ vi

∀xy .
(∧

1≤i≤k
(
Pi(x)↔ Pi(y)

))
→ x ≈ y

What are the imposed size bounds?
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Domain constraints in FOL

Theorem (Upward Löwenheim-Skolem Thm. for FOL w/o ≈)
Let ϕ be any satisfiable FO sentence without equality and let U
be any set. Then, there is a model B |= ϕ whose domain UB is a
superset of U .

Proof: Let A be a model of ϕ. Fix some element a0 ∈ UA. We
define B such that UB is the disjoint union of UA and U . Let τ be
the mapping UB → UA with τ(a) = a for every a ∈ UA and
τ(a) = a0 for every a ∈ U . For every m-ary predicate P we set

PB :=
{

(a1, . . . ,am) ∈ UB
∣∣ (τ(a1), . . . , τ(am)

)
∈ PA

}
.

For every m-ary function f and all a1, . . . ,am ∈ UB we set
fB(a1, . . . ,am) := fA

(
τ(a1), . . . , τ(am)

)
.

It is not hard to show that B |= ϕ follows from A |= ϕ. (Exercise!)
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Domain constraints in FOL

Theorem (Löwenheim-Skolem Thm., from finite to infinite)
Let Φ be a set of FO sentences (with ≈) such that for every
integer n there exists a finite model An |= Φ with at least n
domain elements. Then, Φ has an infinite model.

Proof: For every positive n let ψn be a satisfiable FO sentence
whose models all have size ≥ n (see previous slides for an
example). Consider the formula sets Φm := Φ ∪ {ψn | 2 ≤ n ≤ m}
and Φ′ :=

⋃
m≥2 Φm. Since Φ is satisfiable over arbitrarily large

finite structures, each set Φm is satisfiable, too. Since each finite
subset of Φ′ is contained in some Φm, compactness of FOL
entails that Φ′ is satisfiable as well. For any model B |= Φ′ we get
B |= Φ and B |= {ψn | n ≥ 2}. Due to the latter, B’s domain UB
must be infinite.
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Domain constraints in FOL

The above theorem has interesting consequences. For instance,
it entails some limitations regarding the expressiveness of FOL.

Proposition (FOL cannot express finiteness)
There is no signature Σ and Σ-sentence ϕ such that for all
Σ-structures A we have A |= ϕ if and only if UA is finite.

Proof: Exercise!
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FOL cannot control infinite domains
Theorem (Löwenheim-Skolem Thm., from infinite to larger)
Let ϕ be any FO sentence (with ≈) that is satisfied by some
structure with an infinite domain. Let U be any set. Then, there is
some model A |= ϕ whose domain is a superset of U .

Theorem (Downward Löwenheim-Skolem Theorem)
Consider any signature Σ = (Π,Ω) with countable Π and Ω.
(i) Every satisfiable set of Σ-sentences without equality has an
infinite countable model.
(ii) Every satisfiable set of Σ-sentences with equality has a (finite
or infinite) countable model.

For proofs, see [EFT94], Chapter VI, or [End01], Section 2.6, or
[Hod97], Corollaries 3.1.4 and 5.1.4.
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FOL cannot control infinite domains
Due to the Löwenheim–Skolem Theorems, it becomes clear that
first-order logic is not expressive enough to characterize the
natural numbers, the integers, the rationals, or the reals.

Proposition
There is no countable first-order signature Σ and no set Φ of
Σ-sentences such that all models of Φ are isomorphic to N. The
same holds for Z,Q,R.

L-S Thm.

N

A

|= Φ

|= Φ

|UA| ≥ |R|

R

A

L-S Thm.

|= Φ

|= Φ

|UB| ≤ |N|
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Proving the finite model property for MFO
Monadic first-order fragment (MFO):
only unary predicates, no ≈, no non-constant functions

Consider any satisfiable MFO sentence ϕ with k distinct unary
predicates P1, . . . ,Pk . Let A |= ϕ.

How can ϕ distinguish two domain elements a,b ∈ UA?
Only by some Pi such that A |= Pi(a) and A 6|= Pi(b) or vice versa.

Set a ∼ b iff A |= Pi(a)↔ Pi(b) for all i . Define UB := UA/∼.
UA

P1(x),¬P2(x)
¬P3(x), P4(x)

. . .

“merge”
indistinguishable

elements

empty classes
stay empty

UB

Prove B |= ϕ. (Exercise!) UB contains at most 2k elements.
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Proving the finite model property for MFO

Lemma 1.5 (Finite models for MFO with ≈ and constants)
Let ϕ be a satisfiable FO sentence with k predicates, all unary, m
constants, and ` quantifiers. There is a model A |= ϕ with at most
(m + `) · 2k domain elements.

Proof: Since we allow equality, it is in general not sufficient to keep
only one representative for every equivalence class in UA/∼. For
each such class we pick (m + `) distinct elements (if available in
A; otherwise we select all the available ones) and put them into
UB. Their membership w.r.t. PBi is defined like in A. After defining
the constants cB appropriately, B |= ϕ follows. (Exercise!)

Theorem
Satisfiability for MFO sentences is NEXPTIME-complete.

Membership: L 1.1 and 1.5. Hardness: see Thm 6.2.13 in [BGG97].
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Why all this??

Next week, we shall consider decidable BS(LRA) fragments
extending BS with Simple Bounds.

In order to show decidability, we will re-use some of the methods
we have seen today.

For instance, we will identify a finite set
of equivalence classes of tuples of reals
that are indistinguishable by the avail-
able arithmetic atoms.

3 s1 s2 31
5

3

s1

s2

31
5
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2. Decidable Fragments of Bernays–Schönfinkel
Modulo Linear Rational Arithmetic
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We have already seen BS clauses with simple bounds:

∀xy . 0 ≤ x ∧ x < 5 ∧ y 6= 3︸ ︷︷ ︸
LRA atoms x # k

with k ∈ Z and
# ∈{<,≤,=, 6=,≥, >}

‖ P(x , y) ∧ Q(x)→ P(y , x)︸ ︷︷ ︸
free atoms in clauses

(here written as implications)

“‖” can be read
as ∧, i.e. (Λ ∧ Γ )→ ∆

Now: BS with simple linear rational constraints BS(SLR):
∃cd ∀xy . c 6= d ∧ x > c + 2d − 3 ∧ x < y ‖ Q(x , y)

→ T (x) ∨ Q(y , x)
We allow LRA atoms s # t where
• # ∈{<,≤,=, 6=,≥, >},
• LRA terms with operators +, −, etc. don’t contain univ. variables,
• univ. variables may be compared to univ. variables, i.e. x # y .
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BS(SLR) normal form

Definition (BS(SLR) normal form)
A BS(SLR) clause Λ‖Γ → ∆ is in normal form if every univ.
variable in Λ also occurs in Γ or in ∆.
A BS(SLR) clause set N is in normal form if
(a) All clauses in N are in normal form and pairwise variable

disjoint.
(b) N can be divided into two parts NQ and NBS such that

(b1) every clause in NQ is a unit clause containing exactly
one positive LRA literal, and

(b2) for every clause Λ‖Γ → ∆ in NBS either Γ or ∆ is
nonempty and any LRA atom s # t in Λ is such that s
and t are either background-sort variables or Skolem
constants, respectively.

We assume that NBS contains at least one free-sort constant.
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BS(SLR) normal form

Lemma (BS(SLR) normal form)
For every BS(SLR) clause set N there is an equisatisfiable
BS(SLR) clause set in BS(SLR) normal form.

Example:
N =

{
c 6= d ∧ x > c + 2d − 3 ∧ x < y ‖ Q(x , y)

→ T (x) ∨ Q(y , x)
}

Equisatisfiable BS(SLR) normal form:
N ′ = N ′Q ∪ N ′BS with

N ′Q =
{

e = c + 2d − 3
}

for a fresh Skolem constant e and

N ′BS =
{

c 6= d ∧ x > e ∧ x < y ‖ Q(x , y) → T (x) ∨ Q(y , x)
}

 Similar to abstraction in SMT and Nelson–Oppen context.
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BS(SLR) normal form

Lemma
For every finite BS(SLR) clause set there is an equisatisfiable
finite BS(SLR) clause set that is in BS(SLR) normal form.

The normal form can be established using a quantifier-
elimination procedure for LRA (e.g. Fourier–Motzkin or
Loos–Weispfenning) and methods similar to abstraction
techniques used in the context of combinations of theories.

For the next couple of slides, we shall concentrate on the
NBS-parts of BS(SLR) clause sets. That is, complex LRA terms
are ignored.
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Expressiveness of SLR constraints
Which pairs can be dis-
tinguished by the follow-
ing constraints?

x # 3
y # 31

5
x # y
x # c
y # d

 Depends on how
c,d are interpreted!

Under A with 3 < cA < dA < 31
5

y

x

3 cA dA 31
5

3

cA

dA

31
5

 Two points on the same
line segment / within the
same white area cannot
be distinguished.
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Expressiveness of SLR constraints
From now on all structures interpret LRA symbols and terms in
the standard LRA semantics.

Definition (A-induced partition of Q)
Consider any finite BS(SLR) clause set N and any structure A.
Let r1 < . . . < rk be the values of all distinct rationals assigned to
LRA constants from N under A. By JA we denote the following
partition of Q into 2k + 1 intervals:{

(−∞, r1), {r1}, (r1, r2), {r2}, . . . , {rk}, (rk ,+∞)
}

.

Illustration for k = 5 rational values:
(−∞, r1) (r1, r2) (r2, r3) (r3, r4) (r4, r5) (r5,+∞)

Q
{r1} {r2} {r3} {r4} {r5}
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Expressiveness of SLR constraints

Definition (JA-equivalence, ∼JA)
Let A be any structure and let m be any positive integer. Two
tuples r̄ , q̄ ∈ Qm are called JA-equivalent, denoted r̄ ∼JA q̄, if

(i) for every index i and every interval J ∈ JA we have
ri ∈ J iff qi ∈ J, and

(ii) for all i , j we have ri < rj iff qi < qj .

The induced equivalence relation over Q-tuples is ∼JA .

For m = 2 and r1 < . . . < r4

we get the following equiv.
classes of Q2:

r1 r2 r3 r4

r1

r2

r3

r4 (q1,q2) ∼JA (s1, s2)

(q3,q4) 6∼JA (s3, s4)

(q5,q6) ∼JA (s5, s6)

(q7,q8) 6∼JA (s7, s8)
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Expressiveness of SLR constraints

Proposition
Let Λ(x̄) be any conjunction of SLR atoms with variables from x̄.
Let A be any structure. For any two Q-tuples r̄ , q̄ we observe that
r̄ ∼JA q̄ entails

A |= Λ(r̄) if and only if A |= Λ(q̄).

In other words: SLR constraints cannot distinguish
JA-equivalent Q-tuples.
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JA-uniformity
For what follows we fix a finite BS(SLR) clause set N and two
nonnegative integers `, m and assume that all predicates P in N
have the sort P : S` ×Qm, where S denotes the (single) free sort
occurring in N.

Definition (A-colors, A-colorings)
Let e1, . . . ,en be all free-sort constants occurring in N. Let A be
a structure and set Ŝ :=

{
a ∈ SA

∣∣ a = eAi for some ei
}

.
An A-color is any set of expressions Pā where P is some
predicate from N and ā ∈ Ŝ`.
An A-coloring of Qm is a total mapping χA assigning A-colors to
Q-tuples such that for each r̄ ∈ Qm we have

Pā ∈ χA if and only if A |= P(ā, r̄), i.e. (ā, r̄) ∈ PA.

 Since N and Ŝ are finite, there are only finitely many A-colors.
July 09/16, 2019 37/64



Introduction Model Theory Basics Decidable BS(LRA) Fragments Application: TA Reach.

JA-uniformity

Definition (JA-uniformity)
A structure A is JA-uniform if χA colors each and every
∼JA-equivalence class uniformly, i.e. for all pairs r̄ ∼JA q̄ we
have χA(r̄) = χA(q̄).
More precisely, for all pairs r̄ ∼JA q̄, all predicates P in N and all
free-sort tuples ā ∈ (SA)` we have

A |= P(ā, r̄) if and only if A |= P(ā, q̄).

For all P, all ā and all JA-
equivalence classes C,
we either have

A |= P(ā, r̄)
for all r̄ ∈ C or for none.

or or or
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JA-uniformity

Theorem 2.1 (Existence of uniform models)
Any satisfiable finite BS(SLR) clause set has a model A that is
JA-uniform and that interprets the free sort S with a finite domain.

Proof: Central proof ideas will be outlined in what follows. �

Since ∼JA induces only finitely many equivalence classes, each
describable by finite means, any JA-uniform model A can be
described by finite means, too.

This property is akin to the finite model property (cf. last lecture)
and leads to a decidable satisfiability problem!
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Constructing JA-Uniform Structures

(1) Divide Qm into finitely
many equiv. classes

(2) Pick a suitable
representative
from every equiv.
class

(3) Treat equiva-
lence classes
uniformly un-
der A, based
on representa-
tives

P1(ā, x , y), ¬P2(ā, x , y),
. . .

¬P1(b̄, x , y), P2(b̄, x , y),
. . .
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Constructing JA-Uniform Structures
What are suitable representatives?

Recall that we have fixed a clause set N whose predicates all
have the sort S` ×Qm. Suppose N is satisfiable.
Consider any model A |= N and let J0, {r1}, J1, . . . , {rk}, Jk be all

intervals in JA in ascending order. J0 J2 · · · Jk Q
{r1} {r2} {rk}

Let λ be the max. number of distinct univ. quantified variables in
any clause in N. (In case of λ < m, set λ = m).

We need a collection of finite subsets
Qi ⊆ Ji with |Qi | ≥ λ such that for all
JA-equivalent r̄ , q̄ ∈ Qm, where Q :=⋃

i Qi ∪
⋃

j{rj}, we have χA(r̄) = χA(q̄).

Q0 Q2 · · · Qk Q
r1 r2 rk

tuples under A
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Constructing JA-Uniform Structures

Lemma
Such finite sets Qi ⊆ Ji always exist for any model A |= N.

The proof of this result is based on methods from Ramsey
theory [GRS90]. Details are available in [Voi17].

Lemma 2.2
Let N, A, λ, r1, . . . , rk , and Q1, . . . ,Qk be defined as above. We
can construct a model B |= N that is JB-uniform and that
interprets S with a finite set.

Proof:
Claim I: Let µ be any integer 1 ≤ µ ≤ λ. For each of the equiv.
class in Qµ/∼JA we find one representative lying in Qµ, where
Q :=

⋃
i Qi ∪

⋃
j{rj}. ♦
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Constructing JA-Uniform Structures
Proof of Lemma 2.2 (continued):

Let Ŝ :=
{

a ∈ SA
∣∣ a = eA for some free-sort constant e in N

}
.

We construct B as follows. SB := Ŝ and eB := eA for every
free-sort constant. (Notice that this entails ∼JB = ∼JA .)
For all predicates P : S` ×Qm in N and for all ā ∈ (SB)m and all
r̄ ∈ Qm we pick some q̄ ∈ Qm with q̄ ∼JA r̄ (exists by Claim I !)
and define PB so that

(ā, r̄) ∈ PB if and only if (ā, q̄) ∈ PA.

Claim II: The structure B is JB-uniform.
(Holds by construction of B and
the properties of Q). ♦
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Constructing JA-Uniform Structures

Proof of Lemma 2.2 (continued):
It remains to show B |= N.

Consider any clause C = Λ‖Γ→ ∆ from N with variables
x1, . . . , xµ of sort Q. Let β be any (sort-respecting) variable
assignment over SB ∪Q. By Claim I, there is some variable
assignment γ that coincides with β on all free-sort variables and
for which (

γ(x1), . . . , γ(xµ)
)
∼JB

(
β(x1), . . . , β(xµ)

)
.

As A |= N, we get A, γ |= C. We can show B, β |= C by case
distinction on why A, γ |= C holds. (Exercise!)
This finally entails B |= N. �
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Existence of JA-Uniform Structures
Theorem 2.1 is a corollary of Lemma 2.2.

Theorem 2.1 (Existence of uniform models – Restated)
Any satisfiable finite BS(SLR) clause set has a model A that is
JA-uniform and that interprets the free sort S with a finite domain.

Intuitively, the theorem holds due to the following observation:
Uninterpreted predicates in BS(SLR) clause
sets need not distinguish what arithmetic con-
straints cannot distinguish.

Recall that ∼JA induces only finitely many equivalence classes
over Qm. Therefore, Theorem 2.1 constitutes a property similar to
the finite model property.

 We shall exploit this for deciding satisfiability.
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Reduction from BS(SLR) to two-sorted BS

Consider a finite clause set NQ ∪ NBS in BS(SLR) normal form.

Recall that
(a) NQ contains only pure LRA clauses with additional

Skolem constants of sort Q and
(b) NBS contains BS(SLR) clauses but only LRA atoms

s # t where s, t are either variables or Skolem con-
stants of sort Q.

Define the clause set N<.≤ stipulating
(1) irreflexivity, transitivity, and totality of <, and
(2) ∀xy . x ≤ y ↔ x ≈ y ∨ x < y .
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Reduction from BS(SLR) to two-sorted BS

Let c1, . . . , ck be all constants of sort Q in NBS and let λ be the
max. number of variables in any clause in NBS.

Given any total preorder � (a reflexive and transitive relation) on
the c1, . . . , ck , we define the following clause set N�.
Suppose that cj1 ≺ . . . ≺ cjk′ is a max. ≺-chain, where a ≺ b
means a � b and a 6� b.
We define N� so that it stipulates
d0,1 < . . . < d0,λ < cj1 < d1,1 < . . . < d1,λ < cj2 < . . .

< ck ′−1 < dk ′−1,1 < . . . < dk ′−1,λ < cjk′ < dk ′,1 < . . . < dk ′,λ

for freshly added constants di,j and
cj ≈ cj ′

whenever cj � cj ′ and cj ′ � cj .
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Decision Procedure for finite BS(SLR) clause sets
Recap: We have N = NQ ∪ NBS in BS(SLR) normal form,

N<,≤ defining the semantics of <,≤, and

N� aligning the ci and additional constants
di , j in accordance with �.

Decision procedure for N:
(1) Nondeterministically fix a preorder � on Q-sort Skolem con-

stants c1, . . . , ck in NBS.
(2) Check whether there is an assignment γ : {c1, . . . , ck} → Q s.t.

Q, γ |= NQ ∪
{

ci ≤ cj
∣∣ ci � cj

}
.

(3) Check whether the two-sorted BS clause set NBS ∪ N<,≤ ∪ N� is
satisfied by some “JA-uniform” structure A, pretending <,≤ are
free predicates.

(4) If both checks succeed, then the BS(SLR) clause set N satisfiable.
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Decision Procedure for finite BS(SLR) clause sets

Theorem 2.3
Satisfiability problem for finite BS(SLR) clause sets is
NEXPTIME-complete.

NEXPTIME-hardness follows from the sat. problem for BS being
NEXPTIME-hard. Proving membership in NEXPTIME requires
appropriate upper bounds regarding
(a) the blowup for the BS(SLR)-normal-form transformation,
(b) the dec. procedure for LRA,
(c) the length of the clause sets N<,≤ and N�.

Having all these, we employ Lemma 1.1 from last lecture.
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Decision Procedure for finite BS(SLR) clause sets

Reconsider Step (3) of the decision procedure:

Check whether NBS∪N<,≤∪N� is satisfied by
some “JA-uniform” structure A.

We need to require JA-uniformity of A due to upper bounds on
the model size that are potentially imposed by NBS, if equality is
allowed (cf. last lecture).

Exercise: Construct a finite BS clause set N using FO
equality ≈ and < (treated as a free predicate
of sort< : S×S) such that N∪N<,≤ is satisfied
by a finite model but not when the domain Q
is used and < is interpreted as usual over Q.
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Restricting SLR Constrains Further

Exercise:

What would change if we disallow SLR constraints of the form
x 6= y and x < y for universally quantified variables x , y?

Things get simpler and less complex. We need simpler kinds of
representatives / fewer of them. Rather simple instantiation
methods suffice for decision procedures, e.g. based on
superposition modulo LRA.

Any ideas about the details?
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BS(SLR) as a combination of theories
Once again, consider NQ ∪ NBS in BS(SLR) normal form:

(a) NQ contains only pure LRA clauses with additional Skolem
constants of sort Q and

(b) NBS contains BS(SLR) clauses but only LRA atoms s # t
where s, t are either variables or Skolem constants of sort Q.

Alternative view of BS(SLR):

∃v̄. ϕ(v̄) ∧ ∃ȳ∀x̄. ψ(v̄, ȳ, x̄)

quantifier-free
LRA formula

quantifier-free
BS formula

share only v̄
and =, <,≤

over Q

 A solver for ϕ(v̄) plus a dec. procedure for ∃ȳ∀x̄. ψ(r̄ , ȳ, x̄)
can be combined into a dec. procedure for BS(SLR).
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Extending BS(SLR)
SF(polyR): ∃v̄. ϕ(v̄) ∧ ψ(v̄)

arithmetic formula
with quantifiers,

with polynomials over R,
e.g. x3y + 3x2y2

relational formula,
equivalent to

∃ȳ′∀x̄′. ψ′(v̄, ȳ′, x̄′)

share only v̄
and =, <,≤

over R

 We only need two additional components:
(1) solver for ϕ(v̄) proposing an arrangement

∧
i,j [¬]vi <vj ∧ [¬]vi =vj

(2) procedure transforming ψ(v̄) into ∃ȳ′∀x̄′. ψ′(v̄, ȳ′, x̄′)

 (1) is available for arithmetic with polynomials over R (virt. substs.),
 (2) is available for the separated fragment (SF) [SVW16]:

(2) ∃z̄ ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ, no atom contains blue and red variables
 SF subsumes BS and MFO
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We have seen:

BS clauses with simple bounds:

∀xy .0 ≤ x ∧ x < 5 ∧ y 6= 3 ‖ P(x , y) ∧ Q(x)→ P(y , x)

BS with simple linear rational constraints BS(SLR):
∃cd ∀xy . c 6= d ∧ x > c + 2d − 3 ∧ x < y ‖ Q(x , y)

→ T (x) ∨ Q(y , x)

Now: BS with bounded difference constraints BS(BD):
∀xyz. x−y<3 ∧ −2≤x , y≤2 ∧ x<z ∧ Q(x , y)

→ T (x) ∨ Q(y , x)

We allow LRA atoms x − y # r and x # q where
• r ,q ∈ Q are numerical values, # ∈{<,≤,=, 6=,≥, >},
• atoms x − y # r need to be conjoined with bounds
` ≤ x ≤ u and `′ ≤ y ≤ u′ with `,u, `′,u′ ∈ Q,

• other rational variables, e.g. z above, need not be bounded.
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BS(BD): Distinguishable Regions of Q2

−2 −1 0 1 2

−2

−1

0

1

2

−2 < x − y < 0 ∧ −2 ≤ x , y ≤ 2
∧ x ≤ 1 ∧ −1 ≤ y

Constraints x # r
with r ∈ {−2,−1,0,1,2}
can distinguish
the grid regions.

Constraints x # y
can distinguish
the simple diagonal.

Difference constraints
x − y # r
with bounds
−2 ≤ x , y ≤ 2
can distinguish
more triangles.
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Expressiveness of BD constraints

Definition ('κ-equivalence)
Let A be any structure and let m, κ be any positive integers. For
any rational value r we write brc to address its integer part and
fr(r) to address r − brc.
Two tuples r̄ , q̄ ∈ Qm are called 'κ-equivalent, denoted r̄'κq̄, if
(i) for every i either ri > κ and si > κ, or ri < −κ and si < −κ,

or the following conditions are met:
(i.a) bric = bsic and
(i.b) fr(ri) = 0 if and only if fr(si) = 0, and

(ii) for all i , j
(ii.a) if ri , rj > κ or ri , rj < −κ, then ri ≤ rj iff si ≤ sj ,
(ii.b) if −κ ≤ ri , rj ≤ κ, then fr(ri) ≤ fr(rj) iff fr(si) ≤ fr(sj).
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'κ-uniformity
We define 'κ-uniformity in analogy to JA-uniformity.

Lemma
Any satisfiable finite BS(BD) clause set N has a model A that is
'κ-uniform and that interprets the free sort S with a finite
domain, where κ is the smallest positive integer that is larger
than the absolute value of any rational number occurring in N.

Theorem 2.4
Satisfiability problem for finite BS(BD) clause sets is
NEXPTIME-complete.

The general proof outline is similar to the BS(SLR) case.
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3. An Application for BS(BD):

Formalizing Reachability for
Timed Automata
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Reminder: Timed Automata [AD94, HNSY94]
Finite state machines equipped with real-valued clocks x , y , . . .

Constraints: x # d , x − y # d , # ∈{<,≤,=,≥, >}, d ∈ N
Operations: x←0

`1 `2 y ≤ 5

1 < x ≤ 2
y = 2

3 ≤ x − y

y←0

Semantics: • states
〈
`,

x 7→ r1
y 7→ r2

〉
with r1, r2 ∈ R,

• transitions between locations (instantaneous), and
• progress of time (for all clocks simultaneously).

 Reachability is PSPACE-complete.
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TA Constraints: Distinguishable Regions of Q2

For two clocks x , y , TA constraints with constants d ≤ 2 can
distinguish regions as follows:

0 1 2 3 4

0

1

2

3

4

=⇒

0 1 2 3 4

0

1

2

3

4

 The BS(BD) regions for constraints with constants from
{−4, . . . ,0, . . . ,4} are a refinement of the TA regions.
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Encoding Reachability for a Timed Automaton [FW12]

`1 `2 x ≤ 5

x = 1
y←0

3 ≤ x − y

x = 1 ∧ y ′ = 0 ∧ x ≤ 5

∧ Reach(`1, x , y) → Reach(`2, x , y ′)(
∃t . t ≥ 0 ∧ x ′ = x + t ∧ y ′ = y + t

)
∧ x ′ ≤ 5

∧ Reach(`2, x , y) → Reach(`2, x ′, y ′)

3 ≤ x − y

∧ Reach(`2, x , y) → Reach(`1, x , y)

Start clause: x = 0 ∧ y = 0 ∧ → Reach(`1, x , y)

Query clause: y = 4 ∧ Reach(`2, x , y) → �

 Saturation leads to � if the answer to the query is YES.

∃t . t ≥ 0 ∧ x ′ = x + t ∧ y ′ = y + t
is equivalent to
x ′ ≥ x ∧ y ′ ≥ y ∧ x ′ − x = y ′ − y

 Syntax restrictions of BS(BD) are not met.
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De-Synchronizing Progression of Time
The constraint x ′ ≥ x ∧ y ′ ≥ y ∧ x ′ − x = y ′ − y
enforces synchronous progression of time.

 Synchronous time pro-
gression from a reachable
point yields a one-dimen-
sional reachable area.

 Since other points in the
same region are
reachable, we obtain
a whole reachable corridor.

 We can weaken the
synchronicity requirement

to

∧
k∈{−κ,...,κ}

(
x − y ≤ k ↔ x ′ − y ′ ≤ k

)
∧
(
x − y ≥ k ↔ x ′ − y ′ ≥ k

)
.
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Encoding Reachability for a Timed Automaton

`1 `2 x ≤ 5

x = 1
y←0

3 ≤ x − y

x = 1 ∧ y ′ = 0 ∧ x ≤ 5∧ 0 ≤ x , y , y ′ < 11

∧ Reach(`1, x , y) → Reach(`2, x , y ′)∧
k∈{−10,...,10}

((
x − y ≤ k ↔ x ′ − y ′ ≤ k

)
∧
(
x − y ≥ k ↔ x ′ − y ′ ≥ k

))
∧ 0 ≤ x , y , x ′, y ′ ≤ 11∧ x ′ ≤ 5

∧ Reach(`2, x , y) → Reach(`2, x ′, y ′)

3 ≤ x − y ∧ 0 ≤ x , y , y ′ < 11

∧ Reach(`2, x , y) → Reach(`1, x , y)

Start clause: x = 0 ∧ y = 0 ∧ → Reach(`1, x , y)

Query clause: y = 4 ∧ Reach(`2, x , y) → �

 Syntax restrictions of BS(BD) are met.
 Reachability for TA can be expressed with BS(BD).
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