5.2.1 Theorem (Superposition Soundness)

All inference rules of the superposition calculus are *sound*, i.e., for every rule $N \uplus \{C_1, \ldots, C_n\} \Rightarrow N \cup \{C_1, \ldots, C_n\} \cup \{D\}$ it holds that $\{C_1, \ldots, C_n\} \models D$.

5.2.2 Definition (Abstract Redundancy)

A clause *C* is *redundant* with respect to a clause set *N* if for all ground instances $C\sigma$ there are clauses $\{C_1, \ldots, C_n\} \subseteq N$ with ground instances $C_1\tau_1, \ldots, C_n\tau_n$ such that $C_i\tau_i \prec C\sigma$ for all *i* and $C_1\tau_1, \ldots, C_n\tau_n \models C\sigma$. Given a set *N* of clauses red(*N*) is the set of clauses redundant with respect to *N*.

The concrete redundancy notions from Section 3.13, namely Subsumption, Tautology Deletion, Condensation, and Subsumption Resolution all apply to the superposition calculus for first-order logic with equality as well. In addition, rewriting is the most important redundancy criterion in case of equality.

Unit Rewriting
$$(N \uplus \{C \lor L, t \approx s\}) \Rightarrow_{\text{SUPE}} (N \cup \{C \lor L[s\sigma]_{\rho}, t \approx s\})$$

provided $L|_{\rho} = t\sigma$ and $t\sigma \succ s\sigma$

5.2.3 Definition (Saturation)

A clause set *N* is *saturated up to redundancy* if for every derivation $N \setminus \operatorname{red}(N) \Rightarrow_{\mathsf{SUPE}} N \cup \{C\}$ it holds $C \in (N \cup \operatorname{red}(N))$.

