
Decidable Logics

Virtual Substitution

A more efficient way to eliminate quantifiers compared to FM,
Section 6.2.1, in linear rational arithmetic was developed by
R. Loos and V. Weispfenning (1993).

The method is also known as test point method or virtual
substitution method. In contrast to FM, the method does not
require CNF/DNF transformations of a prenex formula
{∃, ∀}x1 . . . {∃, ∀}xn.φ.
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Let φ[x , ~y ] be a quantifier-free formula of linear arithmetic in
negation normal form containing the free variables x , ~y where all
negation symbols are removed. Any quantifier free formula φ can
be effectively and equivalently transformed in this form, see
Section 6.2.1 and for the removal of the operator ¬ rule ElimNeg.

The linear inequations in φ can be transformed such that x is
either isolated or does not occur in the inequation: x ◦i si(~y) and
0 ◦j s′j (~y) with ◦i , ◦j ∈ {≈, 6≈, <,≤, >,≥}, that is, φ us a formula
built from linear inequations, ∧ and ∨.
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The goal of the virtual substitution method is to identify a a finite
set T of “test points”, i.e., LA terms such that

{∀, ∃}~y .∃x .φ[x , ~y ] iff {∀,∃}~y .
∨
t∈T

φ[x , ~y ] {x 7→ t}.

Semantically, an existential quantifier represents an infinite
disjunction over Q. The goal of virtual substitution is to replace
this infinite disjunction by a finite disjunction.
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If the values of the variables ~y are determined by some arbitrary
but fixed assignment β for the ~y , then φ can be considered as a
function φβ : Q 7→ {0,1} by

φβ(d) := ALRA(β[x 7→ d ])(φ)

for any d ∈ Q. The value of each of the atoms x ◦i si [~y ] changes
only at ALRA(β)(si [~y ]), and the value of φ can only change if the
value of one of its atoms changes. So φβ is a piecewise constant
function.

More precisely, the set of all d ∈ Q with φβ(d) = 1 is a finite union
of intervals. The union may be empty, the individual intervals may
be finite or infinite and open or closed.
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Let

dist(φ, x , β) = min{ |ALRA(β)(si [~y ])−ALRA(β)(sj [~y ])|
where ALRA(β)(si [~y ]) 6= ALRA(β)(sj [~y ]) }

the minimal distance between two differently interpreted terms of
atoms x ◦i si [~y ], x ◦j sj [~y ] in φ under β. Then each of the intervals
has either length 0, i.e., it consists of one point, or its length is at
least dist(φ, x , β).
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The set of all values d ∈ Q of φβ(d) can be considered either by
traversing Q from −∞ to +∞ or the other way round. In the case
of traversing from −∞ to +∞ if the set of all d for which
φβ(d) = 1 is non-empty, then

(i) φβ(d) = 1 for all d ◦ ALRA(β)(r [~y ]) for some x ◦ r [~y ]
occurring in φ, ◦ ∈ {<,≤} or

(ii) there is some value d ∈ Q where the value of φβ(d)
switches from 0 to 1 when traversing from −∞ to +∞.
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This observation can be used to construct a set of test points
symbolically without considering β explicitly. It is sufficient to
keep in mind that the values for the ~y are fixed and to use then
the terms from φ as representatives for the values from Q.

The start is a “sufficiently small” test point r [~y ] to take care of
case (i). For case (ii), φ[x , ~y ] can only switch from 0 to 1 if one of
the atoms switches from 0 to 1. Recall that after the initial
transformations on φ, only positive boolean combinations of
atoms and ∧ and ∨ are left, which are monotonic with respect to
truth values.
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Atoms of the form x ≤ si [~y ] and x < si [~y ] do not switch from 0 to
1 when x grows.

Atoms of the form x ≥ si [~y ] and x ≈ si [~y ] switch from 0 to 1 at
si [~y ] hence si [~y ] is a test point.

Atoms of the form x > si [~y ] and x 6≈ si [~y ] switch from 0 to 1 “right
after” si [~y ], hence si [~y ] + ε for some 0 < ε < δ(~y) is a test point.
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If r [~y ] is sufficiently small and 0 < ε < δ(~y), then

T := {r [~y ]} ∪ { si [~y ] | ◦i ∈ {≥,=} }
∪ { si [~y ] + ε | ◦i ∈ {>, 6=} }.

is a set of test points for atoms x◦isi [~y ].

However, it is not known how small r [~y ] has to be for case (i), and
δ(~y) for case (ii) is not known as well, because it is not effectively
possible to consider all, infinitely many β explicitly.
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The idea out the problem is to extend the LA language by further
symbols∞, and ε with the obvious intended meanings. Now it is
straightforward to define T independently of β.

T := {−∞} ∪ { si [~y ] | ◦i ∈ {≥,=} }
∪ { si [~y ] + ε | ◦i ∈ {>, 6=} }.
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But the semantics of LA is not defined with respect to the
infinitesimals∞, ε and all considerations leading to the above set
T do not hold anymore, if φ contains occurrences of∞ or ε.

Fortunately, the infinitesimals∞ and ε vanish when substituted
for some variable x .
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(x < s(~y)) {x 7→ −∞} := lim
r→−∞

(r < s(~y)) = >
(x ≤ s(~y)) {x 7→ −∞} := lim

r→−∞
(r ≤ s(~y)) = >

(x > s(~y)) {x 7→ −∞} := lim
r→−∞

(r > s(~y)) = ⊥
(x ≥ s(~y)) {x 7→ −∞} := lim

r→−∞
(r ≥ s(~y)) = ⊥

(x ≈ s(~y)) {x 7→ −∞} := lim
r→−∞

(r ≈ s(~y)) = ⊥
(x 6≈ s(~y)) {x 7→ −∞} := lim

r→−∞
(r 6≈ s(~y)) = >
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(x < s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε < s(~y)) = (u < s(~y))

(x ≤ s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε ≤ s(~y)) = (u < s(~y))

(x > s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε > s(~y)) = (u ≥ s(~y))

(x ≥ s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε ≥ s(~y)) = (u ≥ s(~y))

(x ≈ s(~y)) {x 7→ u + ε} := lim
ε→0

(u + ε ≈ s(~y)) = ⊥
(x 6≈ s(~y)) {x 7→ u + ε} := lim

ε→0
(u + ε 6≈ s(~y)) = >

June 4, 2019 42/83



Decidable Logics

The above test point set is constructed by considering a traversal
of possible values for x from −∞ to +∞. Alternatively, x can be
traversed from +∞ to −∞. In this case, the test points are

T ′ := {+∞} ∪ { si [~y ] | ◦i ∈ {≤,=} }
∪ { si [~y ]− ε | ◦i ∈ {<, 6=} }.

Infinitesimals are eliminated in a similar way as before.
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In practice, both sets T and T ′ and eventually the smaller formula
after substitution and simplification is considered. Similar to the
FM decision procedure for formulas, a universally quantified
formula ∀x .φ, is replaced by ¬∃x .¬φ. Then the inner negation is
pushed downwards, and then the test point procedure is applied
as in the case of an existential quantifier.
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Note that in contrast to the FM procedure, no CNF/DNF
transformation is required. Loos-Weispfenning quantifier
elimination works on arbitrary positive formulas. So the CNF/DNF
conversion blow up caused in FM quantifier elimination does not
happen for virtual substitution. Therefore, the worst-case
complexity of Loos-Weispfenning quantifier elimination
significantly improves upon the worst-case complexity of FM.

However, the cost of computing a negation normal form remain.
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Virtual Substitution Complexity
The number of test points is at most half of the number of atoms
for some formula φ with |φ| = n, so the formula resulting from the
elimination of one variable, independent from the type of the
quantifier, is at most quadratic, therefore O(n2) runtime.
A sequence of m quantifiers of the same kind, results in a
multiplication of the formula size with n in each step, therefore
O(nm+1) runtime. This is the result of distributing existential
quantifiers over disjunctions.

∃x2 ∃x1. φ[x1, x2, ~y ]

↔ ∃x2.
(∨

t1∈T1
φ[x1, x2, ~y ] {x1 7→ t1}

)
↔

∨
t1∈T1

(
∃x2. φ[x1, x2, ~y ] {x1 7→ t1}

)
↔

∨
t1∈T1

∨
t2∈T2

(
φ[x1, x2, ~y ] {x1 7→ t1} {x2 7→ t2}

)
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A sequence of m quantifier alternations ∃∀∃∀ . . . ∃ turns the
top-level disjunction after moving the inner negation into a
top-level conjunction. An existential quantifier does not distribute
over a conjunction, so the procedure needs O(n2) runtime for
each step, therefore doubly exponential runtime in sum, O(n2m

).
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Cooper’s Algorithm for LIA

Cooper’ algorithm is a quantifier elimination algorithm for linear
integer arithmetic (LIA), similar to virtual substitution [Cooper 72].
Actually, one can view virtual substitution as an application of
Cooper’s ideas to linear rational arithmetic.

A first consequence of the integer domain is that strict and
non-strict inequations can be easily exchanged, e.g., t ≤ c iff
t < c + 1.
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6.2.12 Definition (LIA Syntax)
The syntax of LIA is

ΣLIA = ({LIA}, {0,1,+,−} ∪ Z, {≤, <, | , 6 | , >,≥})

where − is unitary and all other symbols have the usual arities.
The bar | is the devisability operator between a positive integer
constant d and a term t , i.e., it generates atoms of the form d | t .

6.2.13 Definition (Linear Integer Arithmetic Standard
Semantics)

The ΣLIA algebra ALIA is defined by LAALIA = Z and all other
signature symbols are assigned the standard interpretations over
the integers.
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Cooper showed that given two strict inequations x < t and x > s,
and a divisibility constraint d | x the variable x can be eliminated
in the following way:

∃x .(x < t ∧ x > s ∧ d | x) iff
i≤|d |∨
i=1

(s + i < t ∧ d | s + i)

This needs to be further generalized to cope with 6 | , multiple
inequations, and divisibility constraints for some variable x .
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Let ∃x .φ be a formula of LIA, where φ is in negation normal form,
φ does not contain any quantifiers nor negation symbols, and the
LIA relations occurring in φ are {<,>, | , 6 | }. Any LIA formula can
be a a effectively transformed into this form. Furthermore, for all
inequations cx ◦ t and divisibility atoms a ◦′ bx + s, ◦ ∈ {<,>},
◦′ ∈ { | , 6 | }, I assume c = 1, b = 1.

If c is negative for some inequation it is multiplied by −1 and then
transformed into its strict form. If b is negative, for divisibility
atoms it is sufficient to multiply the right hand side by −1.
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If there are atoms

cix ◦i ti
aj ◦′j bjx + sj

in φ with ci > 1 or bj > 1 for some i , j , ◦i ∈ {<,>}, ◦′j ∈ { | , 6 | },
then the lcm d of the ci , bj is computed.
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The atoms are first replaced by

dx ◦i d
ci

ti
d
bj

aj ◦′j dx + d
bj

sj

respectively, and finally they are replaced by
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x ◦i d
ci

ti
d
bj

aj ◦′j x + d
bj

sj

d | x

respectively, where the divisibility constraint d | x is added
conjunctively to φ.
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Similar to the arguments for composing the virtual substitution
test points, solutions for ∃x .φ can be considered from −∞ to∞
or the other way round. I explain the former, the latter is then a
standard exercise. Let x < ti , x > sj , ak | x + rk , bh 6 | x + lh be all
atoms in φ containing x where the ti , sj , rk , lh do not contain x . Let
p1, . . . ,pn be the positions of the atoms x < ti in φ and q1, . . . ,qo
be the positions of the atoms x > sj in φ. Let d be the lcm of the
ak , bh. Then

ALIA(β) |= ∃x .φ
iff

ALIA(β) |=
m≤d∨
m=1

φ[>]p1,...,pn [⊥]q1,...,qo{x 7→ m} ∨
m≤d∨
m=1

∨
sj

φ{x 7→ sj + m}
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Complexity of Cooper’s Algorithm

The worst-case complexity of Cooper’s variable elimination
procedure is immense. The lcm d computed for each eliminated
variable x grows worst-case exponentially in the size of φ. Thus
also the formula after eliminating x is exponentially larger then φ.
The overall runtime is again non-elementary, similar to FM
quantifier elimination. The formulas resulting from the test points
−∞ and sj + m contain a lot of redundancy that can be
eliminated afterwards. However, even if the formula size can be
drastically reduced through redundancy elimination, in each step
the exponentially growing coefficients m remain.
Due to its inherent complexity, Cooper’s elimination procedure is
rarely used in practice. It mainly serves as a theoretical
background for more practical procedures.
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