
First-Order Logic Modulo Theories

Motivation

1 Algorithm: WhatDoIDo(n,m)

Input : Two positive integers n, m.
Output: The number contained in n.

2 while (m > 0) do
3 m = m -1 ;
4 n = n + 1;
5 end
6 return n;
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In First-Order Logic Modulo LIA

2 ∀n,m. (m > 0,R(2,n,m) → R(3,n,m))
2 ∀n,m. (m = 0,R(2,n,m) → R(6,n,m))
3 ∀n,m,m′. (m′ = m − 1,R(3,n,m) → R(4,n,m′))
4 ∀n,m,n′. (n′ = n + 1,R(4,n,m) → R(5,n′,m))
5 ∀n,m. (R(5,n,m) → R(2,n,m))

∀n,m . (R(2,n,m)→ R(6,n + m,0))
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2-Counter Machines (Minsky 1967)
The memory of the machine are two integer counters k1, k2,
where the integers are not limited in size, resulting in the name.
The counters may be initialized at the beginning with arbitrary
positive values.
A program consists of a finite number of programming lines, each
coming with a unique and consecutive line number and
containing exactly one instruction. The available instructions are:

inc(ki) increment counter ki and goto the next line,
td(ki ,n) if ki > 0 then decrement ki and goto the next line,

otherwise goto line n and leave counters unchanged,
goto n goto line n,
halt halt the computation.
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Example: WhatDoIDo

2 td(k2,6)

4 inc(k1)

5 goto 2
6 halt
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8.10.1 Theorem (2-Counter Machine Halting Problem)
The halting problem for 2-counter machines is undecidable
(Minsky 1967).

Proof.
(Idea) By a reduction to the halting problem for Turing
machines.

8.10.2 Proposition (FOL(LIA) Undecidability with a Single
Ternary Predicate)
Unsatisfiability of a FOL(LIA) clause set with a single ternary
predicate is undecidable.
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FOL(LIA) Decidable for Binary or
Monadic Predicates?

No: translate 2-counter machine halting problem to FOL(LIA) with
a single monadic predicate.

Idea: translate state (i ,n,m) where the program is at line i with
respective counter values n, m by the integer 2n · 3m · pi where pi
is the i th prime number following 3
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Example: WhatDoIDo

1 td(k2,4)

2 inc(k1)

3 goto 1
4 halt

5y = x ,3y ′ = y , x ′ = 7y ′,S(x)→S(x ′)
5y = x ,3y ′ + 1 = y , x ′ = 13y ′,S(x)→S(x ′)
5y = x ,3y ′ + 2 = y , x ′ = 13y ′,S(x)→S(x ′)

7y = x , x ′ = 2y , x ′′ = 11x ′,S(x)→S(x ′′)
11y = x , x ′ = 5y ,S(x)→S(x ′)

13y = x ,S(x)→
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8.10.3 Proposition (FOL(LIA) Undecidability with a Single
Monadic Predicate)
Unsatisfiability of a FOL(LIA) clause set with a single monadic
predicate is undecidable (Downey 1972).

June 4, 2019 12/28



First-Order Logic Modulo Theories

Syntax and Semantics

8.2.1 Definition (Hierarchic Theory and Specification)

Let T B = (ΣB, CB) be a many-sorted theory, called the
background theory and ΣB the background signature.
Let ΣF be a many sorted signature with ΩB ∩ ΩF = ∅, SB ⊂ SF ,
called the foreground signature or free signature. Let
ΣH = (SB ∪ SF ,ΩB ∪ ΩF ) be the union signature and N be a set
of clauses over ΣH , and T H = (ΣH ,N) called a hierarchic theory.
A pair H = (T H , T B) is called a hierarchic specification.
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I abbreviate |=T B φ (|=T H φ) with |=B φ (|=H φ), meaning that φ is
valid in the respective theory, see Definition 3.17.1.

Terms, atoms, literals build over ΣB are called pure background
terms, pure background atoms, and pure background literals,
respectively. Non-variable terms, atoms, literals build over ΣF are
called free terms, free atoms, free literals. A variable of sort
S ∈ (SF \ SB) is also called a free variable and a free term. Any
term of some sort S ∈ SB built out of ΣH is called a background
term.

A substitution σ is called simple if xSσ ∈ TS(ΣB,X ) for all S ∈ SB.
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8.2.2 Example (Classes of Terms)

Let T B be linear rational arithmetic and ΣF = ({S, LA}, {g,a})
where a : S and g : LA→ LA. Then the terms xLA + 3 and g(xLA)
are all of sort LA, but xLA + 3 is a pure background term whereas
g(xLA) is a free term and an unpure background term. So the
substitution σ = {yLA 7→ xLA + 3} is simple while
σ = {yLA 7→ g(xLA)} is not.
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8.2.3 Definition (Hierarchic Algebras)

Given a hierarchic specification H = (T H , T B), T B = (ΣB, CB),
T H = (ΣH ,N), a ΣH -algebra A is called hierarchic if A|ΣB ∈ CB. A
hierarchic algebra A is called a model of a hierarchic
specification H, if A |= N.
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8.2.4 Definition (Abstracted Term, Atom, Literal, Clause)
A term t is called abstracted with respect to a hierarchic
specification H = (T H , T B), if t ∈ TS(ΣB,X ) or t ∈ TT (ΣF ,X ) for
some S ∈ SB, T ∈ SB ∪ SF . An equational atom t ≈ s is called
abstracted if t and s are abstracted and both pure or both unpure,
accordingly for literals. A clause is called abstracted of all its
literals are abstracted.
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Abstraction N ] {C ∨ E [t ]p[s]q} ⇒ABSTR
N ∪ {C ∨ xs 6≈ s ∨ E [xS]q}
provided t , s are non-variable terms, q 6< p, sort(s) = S, and
either top(t) ∈ ΣF and top(s) ∈ ΣB or top(t) ∈ ΣB and
top(s) ∈ ΣF
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8.2.5 Proposition (Properties of the Abstraction)
Given a finite clause set N out of a hierarchic specification
H = (T H , T B),⇒ABSTR terminates on N and preserves
satisfiability. For any clause C ∈ (N ⇓ABSTR) and any literal
E ∈ C, E does not both contain a function symbol from ΣB and a
function symbol from ΣF .
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From now on I assume fully abstracted clauses C, i.e., for all
atoms s ≈ t occurring in C, either s, t ∈ T (ΣB,X ) or
s, t ∈ T (ΣF ,X ). This justifies the notation of clauses Λ ‖ C
where all pure background literals are in Λ and belong to
FOL(ΣB,X ) and all literals in C belong to FOL(ΣF ,X ).

The literals in Λ form a conjunction and the literals in C a
disjunction and the overall clause the implication Λ→ C. For a
clause Λ ‖ C the background theory part Λ is called the
constraint and C the free part of the clause.
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8.2.6 Example (Abstracted Clause)
Continuing Example 8.2.2, the unabstracted clause

g(x) ≤ 1 + y ∨ g(g(1)) ≈ 2

corresponds to the abstracted clause

z 6≈ g(x) ∨ z ≤ 1 + y ∨ u 6≈ 2 ∨ v 6≈ 1 ∨ g(g(v)) ≈ u

that is written

z > 1 + y ∧ u ≈ 2 ∧ v ≈ 1 ‖ z 6≈ g(x) ∨ g(g(v)) ≈ u
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SUP(T) on Abstracted Clauses

As usual the calculus is presented with respect to a reduction
ordering ≺, total on ground terms. For the SUP(T) calculus I
assume that any pure base term is strictly smaller than any term
containing a function symbol from ΣF . This justifies the below
ordering conditions with respect to the constraint notation of
clauses and can, e.g., be obtained by an LPO where all symbols
from ΣB are smaller in the precedence than the symbols from ΣF .
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Superposition Right
(N ] {Λ ‖ D ∨ t ≈ t ′, Γ ‖ C ∨ s[u] ≈ s′}) ⇒SUPT (N ∪ {Λ ‖
D ∨ t ≈ t ′, Γ ‖ C ∨ s[u] ≈ s′} ∪ {(Λ, Γ ‖ D ∨ C ∨ s[t ′] ≈ s′)σ})
where σ is the mgu of t ,u, σ is simple, u is not a variable
tσ 6� t ′σ, sσ 6� s′σ, (t ≈ t ′)σ strictly maximal in (D ∨ t ≈ t ′)σ,
nothing selected and (s ≈ s′)σ maximal in (C ∨ s ≈ s′)σ and
nothing selected

Superposition Left
(N ] {Λ ‖ D ∨ t ≈ t ′, Γ ‖ C ∨ s[u] 6≈ s′}) ⇒SUPT (N ∪ {Λ ‖
D ∨ t ≈ t ′, Γ ‖ C ∨ s[u] 6≈ s′} ∪ {(Λ, Γ ‖ D ∨ C ∨ s[t ′] 6≈ s′)σ})
where σ is the mgu of t ,u, σ is simple, u is not a variable tσ 6� t ′σ,
sσ 6� s′σ, (t ≈ t ′)σ strictly maximal in (D ∨ t ≈ t ′)σ, nothing
selected and (s 6≈ s′)σ maximal in (C ∨ s 6≈ s′)σ or selected
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Equality Resolution (N ] {Γ ‖ C ∨ s 6≈ s′})
⇒SUPT (N ∪ {Γ ‖ C ∨ s 6≈ s′} ∪ {(Γ ‖ C)σ})
where σ is the mgu of s, s′, σ is simple, (s 6≈ s′)σ maximal in
(C ∨ s 6≈ s′)σ or selected

Equality Factoring (N ] {Γ ‖ C ∨ s′ ≈ t ′ ∨ s ≈ t})
⇒SUPT
(N ∪ {Γ ‖ C ∨ s′ ≈ t ′ ∨ s ≈ t} ∪ {(Γ ‖ C ∨ t 6≈ t ′ ∨ s ≈ t ′)σ})
where σ is the mgu of s, s′, σ is simple, s′σ 6� t ′σ, sσ 6� tσ,
(s ≈ t)σ maximal in (C ∨ s′ ≈ t ′ ∨ s ≈ t)σ and nothing selected

Constraint Refutation (N ] {Γ1 ‖ ⊥, . . . , Γn ‖ ⊥})
⇒SUPT (N ∪ {Γ1 ‖ ⊥, . . . , Γn ‖ ⊥} ∪ {⊥})
where Γ1 ‖ ⊥ ∧ . . . ∧ Γn ‖ ⊥ |=B ⊥
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8.3.1 Definition (Sufficient Completeness)

A hierarchic specification H = (T H , T B) is sufficiently complete
with respect to simple ground instances if for all unpure ground
terms t of a background sort, there exists a pure ground term t ′

of the same sort such that A |= t ≈ t ′ for all A algebras with
A |= sgi(N) ∪ grd(T B) where grd(T B) is the set of all ground
formulas φ over ΣB with |=B φ.
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8.3.2 Definition (SUP(T) Abstract Redundancy)
A clause Γ ‖ C is redundant with respect to a clause set N if for
all simple ground instances (Γ ‖ C)σ there are clauses
{Λ1 ‖ C1, . . . ,Λn ‖ Cn} ⊆ N with simple ground instances
(Λ1 ‖ C1)τ1, . . . , (Λn ‖ Cn)τn such that (Λi ‖ Ci)τi ≺ (Γ ‖ C)σ
for all i and (Λ1 ‖ C1)τ1, . . . , (Λn ‖ Cn)τn |=B (Γ ‖ C)σ.
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8.3.3 Theorem (SUP(T) Completeness)

Let H = (T H , T B) be sufficiently complete and T B be compact
and term-generated. Then N is unsatisfiable with respect to
hierarchic algebras of H iff N ⇒∗SUPT N ′ ∪ {⊥}.
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