Motivation

```
Algorithm: WhatDolDo(n, m)
Input: Two positive integers n, m.
Output: The number contained in n.
while (m > 0) do
m = m -1;
n = n + 1;
end
return n:
```

In First-Order Logic Modulo LIA

In First-Order Logic Modulo LIA

2-Counter Machines (Minsky 1967)

The memory of the machine are two integer counters k_1 , k_2 , where the integers are not limited in size, resulting in the name. The counters may be initialized at the beginning with arbitrary positive values.

A program consists of a finite number of programming lines, each coming with a unique and consecutive line number and containing exactly one instruction. The available instructions are:

 $\operatorname{inc}(k_i)$ increment counter k_i and goto the next line, $\operatorname{td}(k_i,n)$ if $k_i>0$ then decrement k_i and goto the next line, otherwise goto line n and leave counters unchanged, goto n goto line n, halt halt the computation.

Example: WhatDoIDo

- 2 $td(k_2, 6)$
 - $1 \operatorname{inc}(k_1)$
- 5 goto 2
- 6 halt

8.10.1 Theorem (2-Counter Machine Halting Problem)

The halting problem for 2-counter machines is undecidable (Minsky 1967).

Proof.

(Idea) By a reduction to the halting problem for Turing machines.

8.10.2 Proposition (FOL(LIA) Undecidability with a Single Ternary Predicate)

Unsatisfiability of a FOL(LIA) clause set with a single ternary predicate is undecidable.

FOL(LIA) Decidable for Binary or Monadic Predicates?

No: translate 2-counter machine halting problem to FOL(LIA) with a single monadic predicate.

Idea: translate state (i, n, m) where the program is at line i with respective counter values n, m by the integer $2^n \cdot 3^m \cdot p_i$ where p_i is the ith prime number following 3

Example: WhatDoIDo

- 1 $td(k_2, 4)$
- 2 $\operatorname{inc}(k_1)$
- 3 goto 1
- 4 halt

Example: WhatDoIDo

- 1 $td(k_2, 4)$
- 2 $inc(k_1)$
- 3 goto 1
- 4 halt

$$5y = x, 3y' = y, x' = 7y', S(x) \rightarrow S(x')$$

 $5y = x, 3y' + 1 = y, x' = 13y', S(x) \rightarrow S(x')$
 $5y = x, 3y' + 2 = y, x' = 13y', S(x) \rightarrow S(x')$
 $7y = x, x' = 2y, x'' = 11x', S(x) \rightarrow S(x'')$
 $11y = x, x' = 5y, S(x) \rightarrow S(x')$
 $13y = x, S(x) \rightarrow$

8.10.3 Proposition (FOL(LIA) Undecidability with a Single Monadic Predicate)

Unsatisfiability of a FOL(LIA) clause set with a single monadic predicate is undecidable (Downey 1972).

Syntax and Semantics

8.2.1 Definition (Hierarchic Theory and Specification)

Let $\mathcal{T}^B=(\Sigma^B,\mathcal{C}^B)$ be a many-sorted theory, called the background theory and Σ^B the background signature. Let Σ^F be a many sorted signature with $\Omega^B\cap\Omega^F=\emptyset$, $\mathcal{S}^B\subset\mathcal{S}^F$, called the foreground signature or free signature. Let $\Sigma^H=(\mathcal{S}^B\cup\mathcal{S}^F,\Omega^B\cup\Omega^F)$ be the union signature and N be a set of clauses over Σ^H , and $\mathcal{T}^H=(\Sigma^H,N)$ called a hierarchic theory. A pair $\mathcal{H}=(\mathcal{T}^H,\mathcal{T}^B)$ is called a hierarchic specification.

I abbreviate $\models_{\mathcal{T}^B} \phi$ ($\models_{\mathcal{T}^H} \phi$) with $\models_B \phi$ ($\models_H \phi$), meaning that ϕ is valid in the respective theory, see Definition 3.17.1.

Terms, atoms, literals build over Σ^B are called *pure background terms*, *pure background atoms*, and *pure background literals*, respectively. Non-variable terms, atoms, literals build over Σ^F are called *free terms*, *free atoms*, *free literals*. A variable of sort $S \in (S^F \setminus S^B)$ is also called a *free variable* and a *free term*. Any term of some sort $S \in S^B$ built out of Σ^H is called a *background term*.

A substitution σ is called *simple* if $x_S \sigma \in T_S(\Sigma^B, \mathcal{X})$ for all $S \in S^B$.

8.2.2 Example (Classes of Terms)

Let \mathcal{T}^B be linear rational arithmetic and $\Sigma^F = (\{S, LA\}, \{g, a\})$ where a: S and g: LA \rightarrow LA. Then the terms $x_{l,A} + 3$ and $g(x_{l,A})$ are all of sort LA, but $x_{1A} + 3$ is a pure background term whereas $g(x_{l,A})$ is a free term and an unpure background term. So the substitution $\sigma = \{y_{LA} \mapsto x_{LA} + 3\}$ is simple while $\sigma = \{ y_{\mathsf{LA}} \mapsto g(x_{\mathsf{LA}}) \}$ is not.

8.2.3 Definition (Hierarchic Algebras)

Given a hierarchic specification $\mathcal{H}=(\mathcal{T}^H,\mathcal{T}^B)$, $\mathcal{T}^B=(\Sigma^B,\mathcal{C}^B)$, $\mathcal{T}^H=(\Sigma^H,N)$, a Σ^H -algebra \mathcal{A} is called *hierarchic* if $\mathcal{A}|_{\Sigma^B}\in\mathcal{C}^B$. A hierarchic algebra \mathcal{A} is called a *model of a hierarchic* specification \mathcal{H} , if $\mathcal{A}\models N$.

8.2.4 Definition (Abstracted Term, Atom, Literal, Clause)

A term t is called *abstracted* with respect to a hierarchic specification $\mathcal{H}=(\mathcal{T}^H,\mathcal{T}^B)$, if $t\in T_S(\Sigma^B,\mathcal{X})$ or $t\in T_T(\Sigma^F,\mathcal{X})$ for some $S\in\mathcal{S}^B$, $T\in\mathcal{S}^B\cup\mathcal{S}^F$. An equational atom $t\approx s$ is called *abstracted* if t and s are abstracted and both pure or both unpure, accordingly for literals. A clause is called *abstracted* of all its literals are abstracted.

Abstraction $N \uplus \{C \lor E[t]_p[s]_q\} \Rightarrow_{\mathsf{ABSTR}} N \cup \{C \lor x_s \not\approx s \lor E[x_S]_q\}$ provided t, s are non-variable terms, $q \not< p$, $\mathsf{sort}(s) = S$, and either $\mathsf{top}(t) \in \Sigma^F$ and $\mathsf{top}(s) \in \Sigma^B$ or $\mathsf{top}(t) \in \Sigma^B$ and $\mathsf{top}(s) \in \Sigma^F$

8.2.5 Proposition (Properties of the Abstraction)

Given a finite clause set N out of a hierarchic specification $\mathcal{H}=(\mathcal{T}^H,\mathcal{T}^B),\Rightarrow_{\mathsf{ABSTR}}$ terminates on N and preserves satisfiability. For any clause $C\in(N\Downarrow_{\mathsf{ABSTR}})$ and any literal $E\in C, E$ does not both contain a function symbol from Σ^B and a function symbol from Σ^F .

From now on I assume fully abstracted clauses C, i.e., for all atoms $s \approx t$ occurring in C, either $s, t \in T(\Sigma^B, \mathcal{X})$ or $s, t \in T(\Sigma^F, \mathcal{X})$. This justifies the notation of clauses $\Lambda \parallel C$ where all pure background literals are in Λ and belong to $FOL(\Sigma^B, \mathcal{X})$ and all literals in C belong to $FOL(\Sigma^F, \mathcal{X})$.

The literals in Λ form a conjunction and the literals in C a disjunction and the overall clause the implication $\Lambda \to C$. For a clause $\Lambda \parallel C$ the background theory part Λ is called the *constraint* and C the *free part* of the clause.

8.2.6 Example (Abstracted Clause)

Continuing Example 8.2.2, the unabstracted clause

$$g(x) \leq 1 + y \vee g(g(1)) \approx 2$$

corresponds to the abstracted clause

$$z \not\approx g(x) \lor z \le 1 + y \lor u \not\approx 2 \lor v \not\approx 1 \lor g(g(v)) \approx u$$

that is written

$$z > 1 + y \wedge u \approx 2 \wedge v \approx 1 \parallel z \not\approx g(x) \vee g(g(v)) \approx u$$

SUP(T) on Abstracted Clauses

As usual the calculus is presented with respect to a reduction ordering \prec , total on ground terms. For the SUP(T) calculus I assume that any pure base term is strictly smaller than any term containing a function symbol from Σ^F . This justifies the below ordering conditions with respect to the constraint notation of clauses and can, e.g., be obtained by an LPO where all symbols from Σ^B are smaller in the precedence than the symbols from Σ^F .

Superposition Right

$$(N \uplus \{ \Lambda \parallel D \lor t \approx t', \Gamma \parallel C \lor s[u] \approx s' \}) \Rightarrow_{\mathsf{SUPT}} (N \cup \{ \Lambda \parallel D \lor t \approx t', \Gamma \parallel C \lor s[u] \approx s' \} \cup \{ (\Lambda, \Gamma \parallel D \lor C \lor s[t'] \approx s') \sigma \})$$
 where σ is the mgu of t, u, σ is simple, u is not a variable $t\sigma \not\preceq t'\sigma$, $s\sigma \not\preceq s'\sigma$, $(t \approx t')\sigma$ strictly maximal in $(D \lor t \approx t')\sigma$, nothing selected and $(s \approx s')\sigma$ maximal in $(C \lor s \approx s')\sigma$ and

.

nothing selected

Superposition Left

$$(N \uplus \{ \Lambda \parallel D \lor t \approx t', \Gamma \parallel C \lor s[u] \not\approx s' \}) \Rightarrow_{\mathsf{SUPT}} (N \cup \{ \Lambda \parallel D \lor t \approx t', \Gamma \parallel C \lor s[u] \not\approx s' \} \cup \{ (\Lambda, \Gamma \parallel D \lor C \lor s[t'] \not\approx s') \sigma \})$$

where σ is the mgu of t, u, σ is simple, u is not a variable $t\sigma \not\preceq t'\sigma$, $s\sigma \not\preceq s'\sigma$, $(t\approx t')\sigma$ strictly maximal in $(D\vee t\approx t')\sigma$, nothing selected and $(s\not\approx s')\sigma$ maximal in $(C\vee s\not\approx s')\sigma$ or selected

Equality Resolution

 $(N \uplus \{\Gamma \parallel C \lor s \not\approx s'\})$

 $\Rightarrow_{\mathsf{SUPT}} (\mathsf{N} \cup \{\Gamma \parallel C \lor s \not\approx s'\} \cup \{(\Gamma \parallel C)\sigma\})$

where σ is the mgu of s, s', σ is simple, $(s \not\approx s')\sigma$ maximal in $(C \lor s \not\approx s')\sigma$ or selected

Equality Factoring

 $(N \uplus \{\Gamma \parallel C \lor s' \approx t' \lor s \approx t\})$

 $\Rightarrow_{\mathsf{SUPT}}$

$$(N \cup \{\Gamma \parallel C \lor s' \approx t' \lor s \approx t\} \cup \{(\Gamma \parallel C \lor t \not\approx t' \lor s \approx t')\sigma\})$$

where σ is the mgu of s, s', σ is simple, $s'\sigma \not\preceq t'\sigma$, $s\sigma \not\preceq t\sigma$,

 $(s \approx t)\sigma$ maximal in $(C \lor s' \approx t' \lor s \approx t)\sigma$ and nothing selected

Constraint Refutation

$$(N \uplus \{\Gamma_1 \parallel \bot, \ldots, \Gamma_n \parallel \bot\})$$

 $\Rightarrow_{SUPT} (N \cup \{\Gamma_1 \parallel \bot, \dots, \Gamma_n \parallel \bot\} \cup \{\bot\})$

where $\Gamma_1 \parallel \bot \land \ldots \land \Gamma_n \parallel \bot \models_B \bot$

8.3.1 Definition (Sufficient Completeness)

A hierarchic specification $\mathcal{H}=(\mathcal{T}^H,\mathcal{T}^B)$ is *sufficiently complete* with respect to simple ground instances if for all unpure ground terms t of a background sort, there exists a pure ground term t' of the same sort such that $\mathcal{A}\models t\approx t'$ for all \mathcal{A} algebras with $\mathcal{A}\models\operatorname{sgi}(\mathcal{N})\cup\operatorname{grd}(\mathcal{T}^B)$ where $\operatorname{grd}(\mathcal{T}^B)$ is the set of all ground formulas ϕ over Σ^B with $\models_B\phi$.

8.3.2 Definition (SUP(T) Abstract Redundancy)

A clause $\Gamma \parallel C$ is *redundant* with respect to a clause set N if for all simple ground instances $(\Gamma \parallel C)\sigma$ there are clauses $\{\Lambda_1 \parallel C_1, \ldots, \Lambda_n \parallel C_n\} \subseteq N$ with simple ground instances $(\Lambda_1 \parallel C_1)\tau_1, \ldots, (\Lambda_n \parallel C_n)\tau_n$ such that $(\Lambda_i \parallel C_i)\tau_i \prec (\Gamma \parallel C)\sigma$ for all i and $(\Lambda_1 \parallel C_1)\tau_1, \ldots, (\Lambda_n \parallel C_n)\tau_n \models_B (\Gamma \parallel C)\sigma$.

8.3.3 Theorem (SUP(T) Completeness)

Let $\mathcal{H}=(\mathcal{T}^H,\mathcal{T}^B)$ be sufficiently complete and \mathcal{T}^B be compact and term-generated. Then N is unsatisfiable with respect to hierarchic algebras of \mathcal{H} iff $N\Rightarrow_{\text{SUPT}}^* N' \cup \{\bot\}$.