First-Order Logic

First-Order logic is a generalization of propositional logic. Propositional logic can represent propositions, whereas first-order logic can represent individuals and propositions about individuals.

For example, in propositional logic from "Socrates is a man" and "If Socrates is a man then Socrates is mortal" the conclusion "Socrates is mortal" can be drawn.

In first-order logic this can be represented much more fine-grained. From "Socrates is a man" and "All man are mortal" the conclusion "Socrates is mortal" can be drawn.

3.1.1 Definition (Many-Sorted Signature)

A many-sorted signature $\Sigma = (S, \Omega, \Pi)$ is a triple consisting of a finite non-empty set S of sort symbols, a non-empty set Ω of operator symbols (also called *function* symbols) over S and a set Π of predicate symbols.

3.1.1 Definition (Many-Sorted Signature Ctd)

Every operator symbol $f \in \Omega$ has a unique sort declaration $f: S_1 \times \ldots \times S_n \to S$, indicating the sorts of arguments (also called *domain sorts*) and the *range sort* of *f*, respectively, for some $S_1, \ldots, S_n, S \in S$ where $n \ge 0$ is called the *arity* of *f*, also denoted with arity(*f*). An operator symbol $f \in \Omega$ with arity 0 is called a *constant*.

Every predicate symbol $P \in \Pi$ has a unique sort declaration $P \subseteq S_1 \times \ldots \times S_n$. A predicate symbol $P \in \Pi$ with arity 0 is called a *propositional variable*. For every sort $S \in S$ there must be at least one constant $a \in \Omega$ with range sort S.

3.1.1 Definition (Many-Sorted Signature Ctd)

In addition to the signature Σ , a variable set \mathcal{X} , disjoint from Ω is assumed, so that for every sort $S \in S$ there exists a countably infinite subset of \mathcal{X} consisting of variables of the sort S. A variable x of sort S is denoted by x_S .

3.1.2 Definition (Term)

Given a signature $\Sigma = (S, \Omega, \Pi)$, a sort $S \in S$ and a variable set \mathcal{X} , the set $T_S(\Sigma, \mathcal{X})$ of all *terms* of sort S is recursively defined by (i) $x_S \in T_S(\Sigma, \mathcal{X})$ if $x_S \in \mathcal{X}$, (ii) $f(t_1, \ldots, t_n) \in T_S(\Sigma, \mathcal{X})$ if $f \in \Omega$ and $f : S_1 \times \ldots \times S_n \to S$ and $t_i \in T_{S_i}(\Sigma, \mathcal{X})$ for every $i \in \{1, \ldots, n\}$.

The sort of a term *t* is denoted by sort(*t*), i.e., if $t \in T_S(\Sigma, \mathcal{X})$ then sort(*t*) = *S*. A term not containing a variable is called *ground*.

For the sake of simplicity it is often written: $T(\Sigma, \mathcal{X})$ for $\bigcup_{S \in S} T_S(\Sigma, \mathcal{X})$, the set of all terms, $T_S(\Sigma)$ for the set of all ground terms of sort $S \in S$, and $T(\Sigma)$ for $\bigcup_{S \in S} T_S(\Sigma)$, the set of all ground terms over Σ .

Note that the sets $T_S(\Sigma)$ are all non-empty, because there is at least one constant for each sort S in Σ . The sets $T_S(\Sigma, \mathcal{X})$ include infinitely many variables of sort S.

3.1.3 Definition (Equation, Atom, Literal)

If $s, t \in T_{\mathcal{S}}(\Sigma, \mathcal{X})$ then $s \approx t$ is an *equation* over the signature Σ . Any equation is an *atom* (also called *atomic formula*) as well as every $P(t_1, \ldots, t_n)$ where $t_i \in T_{\mathcal{S}_i}(\Sigma, \mathcal{X})$ for every $i \in \{1, \ldots, n\}$ and $P \in \Pi$, arity $(P) = n, P \subseteq S_1 \times \ldots \times S_n$.

An atom or its negation of an atom is called a *literal*.

Definition (Formulas)

The set FOL(Σ , \mathcal{X}) of *many-sorted first-order formulas with equality* over the signature Σ is defined as follows for formulas $\phi, \psi \in F_{\Sigma}(\mathcal{X})$ and a variable $x \in \mathcal{X}$:

$FOL(\Sigma,\mathcal{X})$	Comment
	false
Т	true
$P(t_1,\ldots,t_n), s \approx t$	atom
$(\neg \phi)$	negation
$(\phi\circ\psi)$	$\circ \in \{\land,\lor,\rightarrow,\leftrightarrow\}$
$\forall x.\phi$	universal quantification
$\exists x.\phi$	existential quantification

3.1.5 Definition (Positions)

The set of positions of a term, formula is inductively defined by:

$$pos(x) := \{\epsilon\} \text{ if } x \in \mathcal{X}$$

$$pos(\phi) := \{\epsilon\} \text{ if } \phi \in \{\top, \bot\}$$

$$pos(\neg \phi) := \{\epsilon\} \cup \{1p \mid p \in pos(\phi)\}$$

$$pos(\phi \circ \psi) := \{\epsilon\} \cup \{1p \mid p \in pos(\phi)\} \cup \{2p \mid p \in pos(\psi)\}$$

$$pos(s \approx t) := \{\epsilon\} \cup \{1p \mid p \in pos(s)\} \cup \{2p \mid p \in pos(t)\}$$

$$pos(f(t_1, \dots, t_n)) := \{\epsilon\} \cup \bigcup_{i=1}^n \{ip \mid p \in pos(t_i)\}$$

$$pos(\forall x.\phi) := \{\epsilon\} \cup \{1p \mid p \in pos(\phi)\}$$

$$pos(\exists x.\phi) := \{\epsilon\} \cup \{1p \mid p \in pos(\phi)\}$$
where $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$ and $t_i \in T(\Sigma, \mathcal{X})$ for all $i \in \{1, \dots, n\}$.

An term *t* (formula ϕ) is said to *contain* another term *s* (formula ψ) if $t|_{p} = s$ ($\phi|_{p} = \psi$). It is called a *strict subexpression* if $p \neq \epsilon$. The term *t* (formula ϕ) is called an *immediate subexpression* of *s* (formula ψ) if |p| = 1. For terms a subexpression is called a *subterm* and for formulas a *subformula*, respectively.

The *size* of a term *t* (formula ϕ), written |t| ($|\phi|$), is the cardinality of pos(t), i.e., |t| := |pos(t)| ($|\phi| := |pos(\phi)|$). The *depth* of a term, formula is the maximal length of a position in the term, formula: depth(t) := $max\{|p| | p \in pos(t)\}$ (depth(ϕ) := $max\{|p| | p \in pos(\phi)\}$).

The set of *all* variables occurring in a term t (formula ϕ) is denoted by vars(t) ($vars(\phi)$) and formally defined as $vars(t) := \{ x \in \mathcal{X} \mid x = t |_{p}, p \in pos(t) \}$ $(vars(\phi) := \{ x \in \mathcal{X} \mid x = \phi|_{p}, p \in pos(\phi) \}).$ A term t (formula ϕ) is ground if $vars(t) = \emptyset$ ($vars(\phi) = \emptyset$). Note that vars($\forall x.a \approx b$) = \emptyset where a, b are constants. This is justified by the fact that the formula does not depend on the quantifier, see the semantics below. The set of *free* variables of a formula ϕ (term t) is given by fvars(ϕ, \emptyset) (fvars(t, \emptyset)) and recursively defined by fvars($\psi_1 \circ \psi_2, B$) := fvars(ψ_1, B) \cup fvars(ψ_2, B) where $\circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, fvars $(\forall x.\psi, B) :=$ fvars $(\psi, B \cup \{x\})$, fvars($\exists x.\psi, B$) := fvars($\psi, B \cup \{x\}$), fvars($\neg \psi, B$) := fvars(ψ, B), $fvars(L, B) := vars(L) \setminus B (fvars(t, B) := vars(t) \setminus B.$ For fvars(ϕ , \emptyset) I also write fvars(ϕ).

In $\forall x.\phi \ (\exists x.\phi)$ the formula ϕ is called the *scope* of the quantifier. An occurrence q of a variable x in a formula $\phi \ (\phi|_q = x)$ is called *bound* if there is some p < q with $\phi|_p = \forall x.\phi'$ or $\phi|_p = \exists x.\phi'$. Any other occurrence of a variable is called *free*.

A formula not containing a free occurrence of a variable is called *closed*. If $\{x_1, \ldots, x_n\}$ are the variables freely occurring in a formula ϕ then $\forall x_1, \ldots, x_n.\phi$ and $\exists x_1, \ldots, x_n.\phi$ (abbreviations for $\forall x_1.\forall x_2 \ldots \forall x_n.\phi, \exists x_1.\exists x_2 \ldots \exists x_n.\phi$, respectively) are the *universal* and the *existential closure* of ϕ , respectively.

3.1.7 Definition (Polarity)

The *polarity* of a subformula $\psi = \phi|_p$ at position *p* is *pol*(ϕ , *p*) where *pol* is recursively defined by

$$\begin{array}{rll} \operatorname{pol}(\phi,\epsilon) &\coloneqq 1 \\ \operatorname{pol}(\neg\phi,1p) &\coloneqq -\operatorname{pol}(\phi,p) \\ \operatorname{pol}(\phi_1 \circ \phi_2,ip) &\coloneqq \operatorname{pol}(\phi_i,p) \text{ if } \circ \in \{\wedge,\vee\} \\ \operatorname{pol}(\phi_1 \to \phi_2,1p) &\coloneqq -\operatorname{pol}(\phi_1,p) \\ \operatorname{pol}(\phi_1 \to \phi_2,2p) &\coloneqq \operatorname{pol}(\phi_2,p) \\ \operatorname{pol}(\phi_1 \leftrightarrow \phi_2,ip) &\coloneqq 0 \\ \operatorname{pol}(P(t_1,\ldots,t_n),p) &\coloneqq 1 \\ \operatorname{pol}(t\approx s,p) &\coloneqq 1 \\ \operatorname{pol}(\forall x.\phi,1p) &\coloneqq \operatorname{pol}(\phi,p) \\ \operatorname{pol}(\exists x.\phi,1p) &\coloneqq \operatorname{pol}(\phi,p) \end{array}$$

Semantics

3.2.1 Definition (Σ -algebra)

Let $\Sigma = (S, \Omega, \Pi)$ be a signature with set of sorts S, operator set Ω and predicate set Π. A Σ -algebra A, also called Σ -interpretation, is a mapping that assigns (i) a non-empty carrier set $S^{\mathcal{A}}$ to every sort $S \in S$, so that $(S_1)^{\mathcal{A}} \cap (S_2)^{\mathcal{A}} = \emptyset$ for any distinct sorts $S_1, S_2 \in S$, (ii) a total function $f^{\mathcal{A}}: (S_1)^{\mathcal{A}} \times \ldots \times (S_n)^{\mathcal{A}} \to (S)^{\mathcal{A}}$ to every operator $f \in \Omega$, arity(f) = n where $f : S_1 \times \ldots \times S_n \rightarrow S$, (iii) a relation $P^{\mathcal{A}} \subseteq ((S_1)^{\mathcal{A}} \times \ldots \times (S_m)^{\mathcal{A}})$ to every predicate symbol $P \in \Pi$, $\operatorname{arity}(P) = m$. (iv) the equality relation becomes $\approx^{\mathcal{A}} = \{(e, e) \mid e \in \mathcal{U}^{\mathcal{A}}\}$ where the set $\mathcal{U}^{\mathcal{A}} := \bigcup_{S \in S} (S)^{\mathcal{A}}$ is called the *universe* of A.

A (variable) assignment, also called a valuation for an algebra \mathcal{A} is a function $\beta : \mathcal{X} \to \mathcal{U}_{\mathcal{A}}$ so that $\beta(x) \in S_{\mathcal{A}}$ for every variable $x \in \mathcal{X}$, where $S = \operatorname{sort}(x)$. A modification $\beta[x \mapsto e]$ of an assignment β at a variable $x \in \mathcal{X}$, where $e \in S_{\mathcal{A}}$ and $S = \operatorname{sort}(x)$, is the assignment defined as follows:

$$eta[m{x}\mapstom{e}](m{y})=egin{cases}m{e}& ext{if }m{x}=m{y}\eta(m{y})& ext{otherwise}. \end{cases}$$

The homomorphic extension $\mathcal{A}(\beta)$ of β onto terms is a mapping $T(\Sigma, \mathcal{X}) \to \mathcal{U}_{\mathcal{A}}$ defined as (i) $\mathcal{A}(\beta)(x) = \beta(x)$, where $x \in \mathcal{X}$ and (ii) $\mathcal{A}(\beta)(f(t_1,\ldots,t_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(t_1),\ldots,\mathcal{A}(\beta)(t_n))$, where $f \in \Omega$, $\operatorname{arity}(f) = n$. Given a term $t \in T(\Sigma, \mathcal{X})$, the value $\mathcal{A}(\beta)(t)$ is called the *interpretation* of t under A and β . If the term t is ground, the value $\mathcal{A}(\beta)(t)$ does not depend on a particular choice of β , for which reason the interpretation of *t* under A is denoted by A(t). An algebra \mathcal{A} is called *term-generated*, if every element *e* of the universe \mathcal{U}_A of \mathcal{A} is the image of some ground term t, i.e., $\mathcal{A}(t) = \boldsymbol{e}.$

3.2.2 Definition (Semantics)

An algebra \mathcal{A} and an assignment β are extended to formulas $\phi \in FOL(\Sigma, \mathcal{X})$ by $\mathcal{A}(\beta)(\perp) := 0$ $\mathcal{A}(\beta)(\top) := 1$ $\mathcal{A}(\beta)(s \approx t) := 1$ if $\mathcal{A}(\beta)(s) = \mathcal{A}(\beta)(t)$ else 0 $\mathcal{A}(\beta)(P(t_1,\ldots,t_n)) := 1$ if $(\mathcal{A}(\beta)(t_1),\ldots,\mathcal{A}(\beta)(t_n)) \in P_{\mathcal{A}}$ else 0 $\mathcal{A}(\beta)(\neg \phi) := \mathbf{1} - \mathcal{A}(\beta)(\phi)$ $\mathcal{A}(\beta)(\phi \land \psi) := \min(\{\mathcal{A}(\beta)(\phi), \mathcal{A}(\beta)(\psi)\})$ $\mathcal{A}(\beta)(\phi \lor \psi) := \max(\{\mathcal{A}(\beta)(\phi), \mathcal{A}(\beta)(\psi)\})$ $\mathcal{A}(\beta)(\phi \to \psi) := \max(\{(1 - \mathcal{A}(\beta)(\phi)), \mathcal{A}(\beta)(\psi)\})$ $\mathcal{A}(\beta)(\phi \leftrightarrow \psi) := \text{if } \mathcal{A}(\beta)(\phi) = \mathcal{A}(\beta)(\psi) \text{ then 1 else 0}$ $\mathcal{A}(\beta)(\exists x_{S},\phi) := 1 \text{ if } \mathcal{A}(\beta[x \mapsto e])(\phi) = 1$ for some $e \in S_A$ and 0 otherwise $\mathcal{A}(\beta)(\forall x_{\mathcal{S}}.\phi) := 1 \text{ if } \mathcal{A}(\beta[x \mapsto e])(\phi) = 1$ for all $e \in S_A$ and 0 otherwise

A formula ϕ is called *satisfiable by* A *under* β (or *valid in* A *under* β) if $A, \beta \models \phi$; in this case, ϕ is also called *consistent*;

satisfiable by A if $A, \beta \models \phi$ for some assignment β ;

satisfiable if $A, \beta \models \phi$ for some algebra A and some assignment β ;

valid in A, written $A \models \phi$, if $A, \beta \models \phi$ for any assignment β ; in this case, A is called a *model* of ϕ ;

valid, written $\models \phi$, if $A, \beta \models \phi$ for any algebra A and any assignment β ; in this case, ϕ is also called a *tautology*;

unsatisfiable if $A, \beta \not\models \phi$ for any algebra A and any assignment β ; in this case ϕ is also called *inconsistent*.

