
Preliminaries Propositional Logic

Given two formulas φ and ψ, φ entails ψ, or ψ is a consequence
of φ, written φ |= ψ, if for any algebra A and assignment β, if
A, β |= φ then A, β |= ψ.
The formulas φ and ψ are called equivalent, written φ |=| ψ, if
φ |= ψ and ψ |= φ.
Two formulas φ and ψ are called equisatisfiable, if φ is satisfiable
iff ψ is satisfiable (not necessarily in the same models).
The notions of “entailment”, “equivalence” and “equisatisfiability”
are naturally extended to sets of formulas, that are treated as
conjunctions of single formulas.
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Clauses are implicitly universally quantified disjunctions of
literals. A clause C is satisfiable by an algebra A if for every
assignment β there is a literal L ∈ C with A, β |= L.

Note that if C = {L1, . . . ,Lk} is a ground clause, i.e., every Li is a
ground literal, then A |= C if and only if there is a literal Lj in C so
that A |= Lj . A clause set N is satisfiable iff all clauses C ∈ N are
satisfiable by the same algebra A. Accordingly, if N and M are
two clause sets, N |= M iff every model A of N is also a model of
M.
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3.3.1 Definition (Substitution (well-sorted))
A well-sorted substitution is a mapping σ : X → T (Σ,X ) so that
1. σ(x) 6= x for only finitely many variables x and
2. sort(x) = sort(σ(x)) for every variable x ∈ X .

The application σ(x) of a substitution σ to a variable x is often
written in postfix notation as xσ. The variable set
dom(σ) := {x ∈ X | xσ 6= x} is called the domain of σ.
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The term set codom(σ) := {xσ | x ∈ dom(σ)} is called the
codomain of σ. From the above definition it follows that dom(σ) is
finite for any substitution σ. The composition of two substitutions
σ and τ is written as a juxtaposition στ , i.e., tστ = (tσ)τ .
A substitution σ is called idempotent if σσ = σ. A substitution σ is
idempotent iff dom(σ) ∩ vars(codom(σ)) = ∅.
Substitutions are often written as sets of pairs
{x1 7→ t1, . . . , xn 7→ tn} if dom(σ) = {x1, . . . , xn} and xiσ = ti for
every i ∈ {1, . . . ,n}.
The modification of a substitution σ at a variable x is defined as
follows:

σ[x 7→ t ](y) =

{
t if y = x
σ(y) otherwise
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A substitution σ is identified with its extension to formulas and
defined as follows:
1. ⊥σ = ⊥,
2. >σ = >,
3. (f (t1, . . . , tn))σ = f (t1σ, . . . , tnσ),
4. (P(t1, . . . , tn))σ = P(t1σ, . . . , tnσ),
5. (s ≈ t)σ = (sσ ≈ tσ),
6. (¬φ)σ = ¬(φσ),
7. (φ ◦ ψ)σ = φσ ◦ ψσ where ◦ ∈ {∨,∧},
8. (Qxφ)σ = Qz(φσ[x 7→ z]) where Q ∈ {∀, ∃}, z and x are of

the same sort and z is a fresh variable.

The result tσ (φσ) of applying a substitution σ to a term t (formula
φ) is called an instance of t (φ).
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The substitution σ is called ground if it maps every domain
variable to a ground term, i.e., the codomain of σ consists of
ground terms only.
If the application of a substitution σ to a term t (formula φ)
produces a ground term tσ (a variable-free formula,
vars(φσ) = ∅), then tσ (φσ) is called ground instance of t (φ) and
σ is called grounding for t (φ). The set of ground instances of a
clause set N is given by
grd(Σ,N) = {Cσ | C ∈ N, σ is grounding for C} is the set of
ground instances of N.
A substitution σ is called a variable renaming if codom(σ) ⊆ X
and for any x , y ∈ X , if x 6= y then xσ 6= yσ.
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3.3.2 Lemma (Substitutions and Assignments)
Let β be an assignment of some interpretation A of a term t and
σ a substitution. Then

β(tσ) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t)

where dom(σ) = {x1, . . . , xn}.
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Firstly, we define the classic Herbrand interpretations for formulas
without equality.

3.5.1 Definition (Herbrand Interpretation)
A Herbrand Interpretation (over Σ) is a Σ-algebra H such that
1. SH := TS(Σ) for every sort S ∈ S
2. fH : (s1, . . . , sn) 7→ f (s1, . . . , sn) where f ∈ Ω, arity(f ) = n,

si ∈ SHi and f : S1 × . . .× Sn → S is the sort declaration for f
3. PH ⊆ (SH1 × . . .× SHm ) where P ∈ Π, arity(P) = m and

P ⊆ S1 × . . .× Sm is the sort declaration for P
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3.5.2 Lemma (Herbrand Interpretations are Well-Defined)
Every Herbrand Interpretation is a Σ-algebra.
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3.5.3 Proposition (Representing Herbrand Interpretations)
A Herbrand interpretation A can be uniquely determined by a set
of ground atoms I

(s1, . . . , sn) ∈ PA iff P(s1, . . . , sn) ∈ I
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3.5.5 Theorem (Herbrand)
Let N be a finite set of Σ-clauses. Then N is satisfiable iff N has
a Herbrand model over Σ iff grd(Σ,N) has a Herbrand model over
Σ.
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Orderings

Propositional superposition is based on an ordering on the
propositional variables, Section 2.7. The ordering is total and
well-founded. Basically, propositional variables correspond to
ground atoms in first-order logic.

This section generalizes the ideas of the propositional
superposition ordering to first-order logic. In first-order logic the
ordering has to also consider terms and variables and operations
on terms like the application of a substitution. See the first-order
resolution calculus.

I first define the ordering on terms and then explain how it is
extended to atoms.
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3.11.1 Definition (Σ-Operation Compatible Relation)
A binary relation A over T (Σ,X ) is called compatible with
Σ-operations, if s A s′ implies

f (t1, . . . , s, . . . , tn) A f (t1, . . . , s′, . . . , tn)
for all f ∈ Ω and s, s′, ti ∈ T (Σ,X ).

3.11.2 Lemma (Σ-Operation Compatible Relation)
A relation A is compatible with Σ-operations iff s A s′ implies
t [s]p A t [s′]p for all s, s′, t ∈ T (Σ,X ) and p ∈ pos(t).
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3.11.3 Definition (Substitution Stable Relation, Rewrite
Relation)
A binary relation A over T (Σ,X ) is called stable under
substitutions, if s A s′ implies sσ A s′σ for all s, s′ ∈ T (Σ,X ) and
substitutions σ.

A binary relation A is called a rewrite relation, if it is compatible
with Σ-operations and stable under substitutions. A rewrite
ordering is then an ordering that is a rewrite relation.
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3.11.4 Definition (Subterm Ordering)
The proper subterm ordering s > t is defined by s > t iff s|p = t
for some position p 6= ε of s.

3.11.5 Definition (Simplification Ordering)
A rewrite ordering � over T (Σ,X ) is called simplification
ordering, if it enjoys the subterm property s � t implies s > t for
all s, t ∈ T (Σ,X ) of the same sort.
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3.11.6 Definition (Lexicographical Path Ordering (LPO))
Let Σ = (S,Ω,Π) be a signature and let � be a strict partial
ordering on operator symbols in Ω, called precedence. The
lexicographical path ordering �lpo on T (Σ,X ) is defined as
follows: if s, t are terms in TS(Σ,X ) then s �lpo t iff

1. t = x ∈ X , x ∈ vars(s) and s 6= t or
2. s = f (s1, . . . , sn), t = g(t1, . . . , tm) and

2.1 si �lpo t for some i ∈ {1, . . . ,n} or
2.2 f � g and s �lpo tj for every j ∈ {1, . . . ,m} or
2.3 f = g, s �lpo tj for every j ∈ {1, . . . ,m} and

(s1, . . . , sn)(�lpo)lex (t1, . . . , tm).
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3.11.7 Theorem (LPO Properties)
1. The LPO is a rewrite ordering.
2. LPO enjoys the subterm property, hence is a simplification

ordering.
3. If the precedence � is total on Ω then �lpo is total on the set of

ground terms T (Σ).
4. If Ω is finite then �lpo is well-founded.
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3.11.9 Definition (The Knuth-Bendix Ordering)
Let Σ = (S,Ω,Π) be a finite signature, let � be a strict partial
ordering (“precedence”) on Ω, let w : Ω ∪ X → R+ be a weight
function, so that the following condition is satisfied:
w(x) = w0 ∈ R+ for all variables x ∈ X ; w(c) ≥ w0 for all
constants c ∈ Ω.

Then, the weight function w can be extended to terms
recursively:

w(f (t1, . . . , tn)) = w(f ) +
∑

1≤i≤n

w(ti)
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3.11.9 Definition (The Knuth-Bendix Ordering Ctd.)
or alternatively∑

w(t) =
∑

x∈vars(t)

w(x) ·#(x , t) +
∑
f∈Ω

w(f ) ·#(f , t)

where #(a, t) is the number of occurrences of a in t .
The Knuth-Bendix ordering �kbo on T (Σ,X ) induced by � and
admissible w is defined by: s �kbo t iff
1 #(x , s) ≥ #(x , t) for all variables x and w(s) > w(t), or
2 #(x , s) ≥ #(x , t) for all variables x , w(s) = w(t), and

(a) s = f (s1, . . . , sm), t = g(t1, . . . , tn), and f � g, or
(b) s = f (s1, . . . , sm), t = f (t1, . . . , tm), and

(s1, . . . , sm)(�kbo)lex (t1, . . . , tm).
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3.11.10 Theorem (KBO Properties)
1. The KBO is a rewrite ordering.
2. KBO enjoys the subterm property, hence is a simplification

ordering.
3. If the precedence � is total on Ω then �kbo is total on the set

of ground terms T (Σ).
4. If Ω is finite then �kbo is well-founded.
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The LPO ordering as well as the KBO ordering can be extended
to atoms in a straightforward way. The precedence � is extended
to Π. For LPO atoms are then compared according to
Definition 3.11.6-2. For KBO the weight function w is also
extended to atoms by giving predicates a non-zero positive
weight and then atoms are compared according to terms.

Actually, since atoms are never substituted for variables in
first-order logic, an alternative to the above would be to first
compare the predicate symbols and let � decide the ordering.
Only if the atoms share the same predicate symbol, the argument
terms are considered, e.g., in a lexicographic way and are then
compared with respect to KBO or LPO, respectively.
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