Unification

3.7.1 Definition (Unifier)

Two terms *s* and *t* of the same sort are said to be *unifiable* if there exists a well-sorted substitution σ so that $s\sigma = t\sigma$, the substitution σ is then called a well-sorted *unifier* of *s* and *t*.

The unifier σ is called *most general unifier*, written $\sigma = \text{mqu}(s, t)$, if any other well-sorted unifier τ of s and t it can be represented as $\tau = \sigma \tau'$, for some well-sorted substitution τ' .

A state of the naive standard unification calculus is a set of equations *E* or ⊥, where ⊥ denotes that no unifier exists. The set *E* is also called a *unification problem*.

The start state for checking whether two terms *s*, *t*, $sort(s) = sort(t)$, (or two non-equational atoms A, B) are unifiable is the set $E = \{s = t\}$ $(E = \{A = B\})$. A variable *x* is *solved* in *E* if $E = \{x = t\} \oplus E', x \notin \text{vars}(t)$ and $x \notin \text{vars}(E)$.

A variable $x \in \text{vars}(E)$ is called *solved* in E if $E = E' \oplus \{x = t\}$ and $x \notin \text{vars}(t)$ and $x \notin \text{vars}(E')$.

Standard (naive) Unification

Tautology
$$
E \oplus \{t = t\} \Rightarrow_{SU} E
$$

Decomposition $E \oplus \{f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)\} \Rightarrow$ SU $E \cup \{s_1 = t_1, \ldots, s_n = t_n\}$

Clash $E \cup \{f(s_1, ..., s_n) = g(s_1, ..., s_m)\} \Rightarrow$ su ⊥ if $f \neq g$

Substitution $E \cup \{x = t\} \Rightarrow$ SU $E\{x \mapsto t\} \cup \{x = t\}$ if $x \in \text{vars}(E)$ and $x \notin \text{vars}(t)$

Occurs Check $E \oplus \{x = t\} \Rightarrow$ SU ⊥ if $x \neq t$ and $x \in \text{vars}(t)$

Orient $E \oplus \{t = x\} \Rightarrow_{\text{SU}} E \cup \{x = t\}$ if $t \notin \mathcal{X}$

3.7.2 Theorem (Soundness, Completeness and Termination of \Rightarrow su)

If *s*, *t* are two terms with sort(*s*) = sort(*t*) then

- 1. if $\{s = t\} \Rightarrow_{\mathsf{SU}}^* E$ then any equation $(s' = t') \in E$ is $\textsf{well-sorted}, \textnormal{i.e.,} \, \textnormal{sort}(\textbf{\textit{s}}') = \textnormal{sort}(\textit{t}') .$
- 2. \Rightarrow su terminates on $\{s = t\}$.
- 3. if $\{s = t\} \Rightarrow_{\mathsf{SU}}^* E$ then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of $\{s = t\}$.
- 4. if $\{s = t\} \Rightarrow_{\mathsf{S}\mathsf{U}}^* \bot$ then s and t are not unifiable.
- 5. if $\{s = t\} \Rightarrow_{S}^{*} \{x_1 = t_1, \ldots, x_n = t_n\}$ and this is a normal form, then $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$ is an mgu of *s*, *t*.

Size of Unification Problems

Any normal form of the unification problem *E* given by

 $\{f(x_1, g(x_1, x_1), x_3, \ldots, g(x_n, x_n)) = f(g(x_0, x_0), x_2, g(x_2, x_2), \ldots, x_{n+1})\}$

with respect to \Rightarrow _{SU} is exponentially larger than *E*.

Polynomial Unification

The second calculus, polynomial unification, prevents the problem of exponential growth by introducing an implicit representation for the mgu.

For this calculus the size of a normal form is always polynomial in the size of the input unification problem.

Tautology
$$
E \uplus \{t = t\} \Rightarrow_{PU} E
$$

Decomposition
$$
E \oplus \{f(s_1, ..., s_n) = f(t_1, ..., t_n)\} \Rightarrow_{PU}
$$

 $E \oplus \{s_1 = t_1, ..., s_n = t_n\}$

Clash $E \oplus \{f(t_1, ..., t_n) = g(s_1, ..., s_m)\} \Rightarrow_{PU} \perp$ if $f \neq g$

Occurs Check $E \oplus \{x = t\} \Rightarrow_{\text{PU}} \perp$ if $x \neq t$ and $x \in \text{vars}(t)$ **Orient** $E \oplus \{t = x\} \Rightarrow_{PU} E \oplus \{x = t\}$ if $t \notin \mathcal{X}$ **Substitution** $E \cup \{x = y\} \Rightarrow_{PU} E\{x \mapsto y\} \cup \{x = y\}$

if $x \in \text{vars}(E)$ and $x \neq y$

Cycle $E \oplus \{x_1 = t_1, \ldots, x_n = t_n\} \Rightarrow_{PU} \perp$ if there are positions ρ_i with $t_i|_{\rho_i} = x_{i+1}, t_n|_{\rho_n} = x_1$ and some $p_i \neq \epsilon$

Merge $E \cup \{x = t, x = s\} \Rightarrow P \cup E \cup \{x = t, t = s\}$ if $t, s \notin \mathcal{X}$ and $|t| < |s|$

3.7.4 Theorem (Soundness, Completeness and Termination of \Rightarrow PU)

If *s*, *t* are two terms with sort(*s*) = sort(*t*) then

- 1. if $\{s = t\} \Rightarrow_{\text{PU}}^* E$ then any equation $(s' = t') \in E$ is $\textsf{well-sorted}, \text{ i.e., } \textsf{sort}(\textbf{\textit{s}}') = \textsf{sort}(\textit{t}') .$
- 2. \Rightarrow PU terminates on $\{s = t\}$.
- 3. if $\{s = t\} \Rightarrow_{\mathsf{PU}}^* E$ then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of ${s = t}$.
- 4. if $\{s=t\} \Rightarrow_{\mathsf{PU}}^* \bot$ then s and t are not unifiable.

3.7.5 Theorem (Normal Forms Generated by \Rightarrow PU)

Let $\{s = t\} \Rightarrow_{\text{PU}}^* \{x_1 = t_1, \ldots, x_n = t_n\}$ be a normal form. Then

- 1. $x_i \neq x_j$ for all $i \neq j$ and without loss of generality $x_i \notin \text{vars}(t_{i+k})$ for all *i*, *k*, $1 \le i \le n$, $i + k \le n$.
- 2. the substitution $\{x_1 \mapsto t_1\}$ $\{x_2 \mapsto t_2\}$. . $\{x_n \mapsto t_n\}$ is an mgu of $s = t$.

