The main reasoning problem considered in this chapter is given a set of unit equations E and an additional equation $s \approx t$, does $E \models s \approx t$ hold?

As usual, all variables are implicitely universally quantified. The idea is to turn the equations *E* into a convergent term rewrite system (TRS) *R* such that the above problem can be solved by checking identity of the respective normal forms: $s \downarrow_{B} = t \downarrow_{B}$.

Showing $E \models s \approx t$ is as difficult as proving validity of any first-order formula, see the section on complexity.

4.0.1 Definition (Equivalence Relation, Congruence Relation)

An *equivalence* relation \sim on a term set $T(\Sigma, \mathcal{X})$ is a reflexive, transitive, symmetric binary relation on $T(\Sigma, \mathcal{X})$ such that if $s \sim t$ then sort(s) = sort(t). Two terms *s* and *t* are called *equivalent*, if *s* ∼ *t*. An equivalence ∼ is called a *congruence* if *s* ∼ *t* implies *u*[*s*] ∼ *u*[*t*], for all terms *s*, *t*, *u* ∈ *T*(Σ, *X*). Given a term $t \in T(\Sigma, \mathcal{X})$, the set of all terms equivalent to *t* is called the *equivalence class of t by* ∼, denoted by $[t]_{\sim} := \{t' \in \mathcal{T}(\Sigma, \mathcal{X}) \mid t' \sim t\}.$

If the matter of discussion does not depend on a particular equivalence relation or it is unambiguously known from the context, [*t*] is used instead of [*t*]∼. The above definition is equivalent to Definition 3.2.3.

The set of all equivalence classes in $T(\Sigma, \mathcal{X})$ defined by the equivalence relation is called a *quotient by* ∼, denoted by *T*(Σ, \mathcal{X})|∼ := {[*t*] | *t* ∈ *T*(Σ, \mathcal{X})}. Let *E* be a set of equations then ∼*^E* denotes the smallest congruence relation "containing" *E*, that is, (*l* ≈ *r*) ∈ *E* implies *l* ∼*^E r*. The equivalence class [*t*]∼*^E* of a term *t* by the equivalence (congruence) ∼*^E* is usually denoted, for short, by $[t]_F$. Likewise, $T(\Sigma, \mathcal{X})|_F$ is used for the quotient *T*(Σ, X)| \sim _{*E*} of *T*(Σ, X) by the equivalence (congruence) \sim *E*.

4.1.1 Definition (Rewrite Rule, Term Rewrite System)

A *rewrite rule* is an equation $l \approx r$ between two terms *l* and *r* so that *l* is not a variable and *vars*(*l*) ⊇ *vars*(*r*). A *term rewrite system R*, or a TRS for short, is a set of rewrite rules.

4.1.2 Definition (Rewrite Relation)

Let *E* be a set of (implicitly universally quantified) equations, i.e., unit clauses containing exactly one positive equation. The *rewrite relation* \rightarrow _{*E*} \subseteq $T(\Sigma, \mathcal{X}) \times T(\Sigma, \mathcal{X})$ is defined by

$$
s \rightarrow_{E} t \quad \text{iff} \quad \text{there exist } (l \approx r) \in E, p \in pos(s),
$$
\n
$$
\text{and } \text{matcher } \sigma, \text{ so that } s|_{p} = l\sigma \text{ and } t = s[r\sigma]_{p}.
$$

Note that in particular for any equation $l \approx r \in E$ it holds $l \rightarrow_F r$, so the equation can also be written $l \rightarrow r \in E$.

Often $s = t \downarrow_R$ is written to denote that *s* is a normal form of *t* with respect to the rewrite relation \rightarrow _{*R*}. Notions \rightarrow ⁰ $_B$, \rightarrow _{$_B$}, \rightarrow _{$_B$}, \leftrightarrow _{$_B$}, etc. are defined accordingly, see Section 1.6.

An instance of the left-hand side of an equation is called a *redex* (reducible expression). *Contracting* a redex means replacing it with the corresponding instance of the right-hand side of the rule.

A term rewrite system *R* is called *convergent* if the rewrite relation →*^R* is confluent and terminating. A set of equations *E* or a TRS *R* is terminating if the rewrite relation \rightarrow \sim or \rightarrow a has this property. Furthermore, if *E* is terminating then it is a TRS.

A rewrite system is called *right-reduced* if for all rewrite rules $l \rightarrow r$ in *R*, the term *r* is irreducible by *R*. A rewrite system *R* is called *left-reduced* if for all rewrite rules $l \rightarrow r$ in *R*, the term *l* is irreducible by $R \setminus \{l \to r\}$. A rewrite system is called *reduced* if it is left- and right-reduced.

4.1.3 Lemma (Left-Reduced TRS)

Left-reduced terminating rewrite systems are convergent. Convergent rewrite systems define unique normal forms.

4.1.4 Lemma (TRS Termination)

A rewrite system *R* terminates iff there exists a reduction ordering \succ so that $l \succ r$, for each rule $l \rightarrow r$ in *R*.

Let *E* be a set of universally quantified equations. A model A of *E* is also called an *E-algebra*. If $E \models \forall \vec{x} (s \approx t)$, i.e., $\forall \vec{x} (s \approx t)$ is valid in all *E*-algebras, this is also denoted with $s \approx_F t$. The goal is to use the rewrite relation \rightarrow_F to express the semantic consequence relation syntactically: $\bm{s} \approx_E^{} t$ if and only if $\bm{s} \leftrightarrow_E^*^{} t.$

Let *E* be a set of (well-sorted) equations over $T(\Sigma, \mathcal{X})$ where all variables are implicitly universally quantified. The following inference system allows to derive consequences of *E*:

Reflexivity $E \Rightarrow_F E \cup \{t \approx t\}$

Symmetry $E \oplus \{t \approx t'\} \Rightarrow_E E \cup \{t \approx t'\} \cup \{t' \approx t\}$

Transitivity $E \uplus \{ t \approx t', t' \approx t'' \} \Rightarrow_E$ $E \cup \{t \approx t', t' \approx t''\} \cup \{t \approx t''\}$

Congruence $E \oplus \{t_1 \approx t'_1, \ldots, t_n \approx t'_n\} \Rightarrow_E$ $E \cup \{t_1 \approx t'_1, \ldots, t_n \approx t'_n\} \cup \{f(t_1, \ldots, t_n) \approx f(t'_1, \ldots, t'_n)\}$ for any function $f : sort(t_1) \times ... \times sort(t_n) \rightarrow S$ for some *S*

Instance $E \uplus \{ t \approx t' \} \Rightarrow_E E \cup \{ t \approx t' \} \cup \{ t \sigma \approx t' \sigma \}$ for any well-sorted substitution σ

4.1.5 Lemma (Equivalence of \leftrightarrow_E^* and \Rightarrow_E^*)

The following properties are equivalent:

$$
1. \ \ s \leftrightarrow_E^* t
$$

2. $E \Rightarrow_{E}^{*} s \approx t$ is derivable.

where $E \Rightarrow^*_{E} s \approx t$ is an abbreviation for $E \Rightarrow^*_{E} E'$ and $s \approx t \in E'.$

4.1.6 Corollary (Convergence of *E*)

If a set of equations *E* is convergent then $s \approx_E t$ if and only if $s \leftrightarrow^* t$ if and only if $s \downarrow_F = t \downarrow_F$.

4.1.7 Corollary (Decidability of ≈*E*)

If a set of equations *E* is finite and convergent then \approx_F is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined relations ↔[∗] *E* and *Rightarrow*[∗] *E* . What is missing, in analogy to Herbrand's theorem for first-order logic without equality Theorem 3.5.5, is a semantic characterization of the relations by a particular algebra.

4.1.8 Definition (Quotient Algebra)

For sets of unit equations this is a *quotient algebra*: Let *X* be a set of variables. For $t \in T(\Sigma, \mathcal{X})$ let $[t] = \{t' \in \mathcal{T}(\Sigma, \mathcal{X})) \mid E \Rightarrow^*_{E} t \approx t'\}$ be the *congruence class* of *t*. Define a Σ-algebra I*E*, called the *quotient algebra*, technically $\mathcal{T}(\Sigma, \mathcal{X})/E$, as follows: $S^{\mathcal{I}_E} = \{ [t] \mid t \in \mathcal{T}_S(\Sigma, \mathcal{X}) \}$ for all sorts *S* and $f^{\mathcal{I}_{E}}([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)]$ for *f* : sort $(t_1) \times \ldots \times$ sort $(t_n) \to T \in \Omega$ for some sort *T*.

4.1.9 Lemma (\mathcal{I}_F) is an *E*-algebra)

 $I_F = T(\Sigma, \mathcal{X})/E$ is an *E*-algebra.

4.1.10 Lemma (⇒*^E* is complete)

Let X be a countably infinite set of variables; let $s, t \in T_S(\Sigma, \mathcal{X})$. If $\mathcal{I}_E \models \forall \vec{x} (s \approx t)$, then $E \Rightarrow^*_{E} s \approx t$ is derivable.

