# Rewrite Systems on Logics: Calculi

|                      | Validity                                                                                                      | Satisfiability                                                                            |
|----------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Sound                | If the calculus derives a proof of validity for the formula, it is valid.                                     | If the calculus derives satisfiability of the formula, it has a model.                    |
| Complete             | If the formula is valid, a proof of validity is derivable by the calculus.                                    | If the formula has a model, the calculus derives satisfiability.                          |
| Strongly<br>Complete | For any validity proof of<br>the formula, there is a<br>derivation in the calcu-<br>lus producing this proof. | For any model of the formula, there is a derivation in the calculus producing this model. |





# Propositional Logic: Syntax

#### 2.1.1 Definition (Propositional Formula)

The set PROP( $\Sigma$ ) of *propositional formulas* over a signature  $\Sigma$ , is inductively defined by:

| $PROP(\Sigma)$                | Comment                                                    |
|-------------------------------|------------------------------------------------------------|
|                               | connective $\perp$ denotes "false"                         |
| Т                             | connective ⊤ denotes "true"                                |
| P                             | for any propositional variable $P \in \Sigma$              |
| $(\neg \phi)$                 | connective - denotes "negation"                            |
| $(\phi \wedge \psi)$          | connective ∧ denotes "conjunction"                         |
| $(\phi \lor \psi)$            | connective ∨ denotes "disjunction"                         |
| $(\phi  ightarrow \psi)$      | ${\sf connective} \to {\sf denotes} \text{ "implication"}$ |
| $(\phi \leftrightarrow \psi)$ | connective $\leftrightarrow$ denotes "equivalence"         |

where  $\phi, \psi \in \mathsf{PROP}(\Sigma)$ .





# Propositional Logic: Semantics

## 2.2.1 Definition ((Partial) Valuation)

A Σ-valuation is a map

$$\mathcal{A}:\Sigma\to\{0,1\}.$$

where  $\{0,1\}$  is the set of *truth values*. A *partial*  $\Sigma$ -valuation is a map  $\mathcal{A}': \Sigma' \to \{0,1\}$  where  $\Sigma' \subseteq \Sigma$ .



#### 2.2.2 Definition (Semantics)

A  $\Sigma$ -valuation  $\mathcal{A}$  is inductively extended from propositional variables to propositional formulas  $\phi, \psi \in PROP(\Sigma)$  by

$$\begin{array}{rcl} \mathcal{A}(\bot) &:=& 0 \\ \mathcal{A}(\top) &:=& 1 \\ \mathcal{A}(\neg \phi) &:=& 1 - \mathcal{A}(\phi) \\ \mathcal{A}(\phi \wedge \psi) &:=& \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \vee \psi) &:=& \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \to \psi) &:=& \max(\{1 - \mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\ \mathcal{A}(\phi \leftrightarrow \psi) &:=& \text{if } \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then 1 else 0} \end{array}$$



If  $\mathcal{A}(\phi) = 1$  for some  $\Sigma$ -valuation  $\mathcal{A}$  of a formula  $\phi$  then  $\phi$  is satisfiable and we write  $\mathcal{A} \models \phi$ . In this case  $\mathcal{A}$  is a model of  $\phi$ .

If  $\mathcal{A}(\phi) = 1$  for all  $\Sigma$ -valuations  $\mathcal{A}$  of a formula  $\phi$  then  $\phi$  is *valid* and we write  $\models \phi$ .

If there is no  $\Sigma$ -valuation  $\mathcal{A}$  for a formula  $\phi$  where  $\mathcal{A}(\phi)=1$  we say  $\phi$  is *unsatisfiable*.

A formula  $\phi$  entails  $\psi$ , written  $\phi \models \psi$ , if for all Σ-valuations  $\mathcal{A}$  whenever  $\mathcal{A} \models \phi$  then  $\mathcal{A} \models \psi$ .



# Propositional Logic: Operations

#### 2.1.2 Definition (Atom, Literal, Clause)

A propositional variable P is called an *atom*. It is also called a *(positive) literal* and its negation  $\neg P$  is called a *(negative) literal*.

The functions comp and atom map a literal to its complement, or atom, respectively: if  $\mathsf{comp}(\neg P) = P$  and  $\mathsf{comp}(P) = \neg P$ ,  $\mathsf{atom}(\neg P) = P$  and  $\mathsf{atom}(P) = P$  for all  $P \in \Sigma$ . Literals are denoted by letters L, K. Two literals P and  $\neg P$  are called *complementary*.

A disjunction of literals  $L_1 \vee ... \vee L_n$  is called a *clause*. A clause is identified with the multiset of its literals.



#### 2.1.3 Definition (Position)

A position is a word over  $\mathbb N.$  The set of positions of a formula  $\phi$  is inductively defined by

```
\begin{array}{rcl} \operatorname{pos}(\phi) &:= & \{\epsilon\} \text{ if } \phi \in \{\top, \bot\} \text{ or } \phi \in \Sigma \\ \operatorname{pos}(\neg \phi) &:= & \{\epsilon\} \cup \{\mathsf{1}p \mid p \in \operatorname{pos}(\phi)\} \\ \operatorname{pos}(\phi \circ \psi) &:= & \{\epsilon\} \cup \{\mathsf{1}p \mid p \in \operatorname{pos}(\phi)\} \cup \{\mathsf{2}p \mid p \in \operatorname{pos}(\psi)\} \end{array} where \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}.
```



The prefix order  $\leq$  on positions is defined by  $p \leq q$  if there is some p' such that pp' = q. Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are "parallel", see below.

The relation < is the strict part of  $\le$ , i.e., p < q if  $p \le q$  but not  $q \le p$ .

The relation  $\parallel$  denotes incomparable, also called parallel positions, i.e.,  $p \parallel q$  if neither  $p \leq q$ , nor  $q \leq p$ .

A position p is above q if  $p \le q$ , p is strictly above q if p < q, and p and q are parallel if  $p \parallel q$ .



The *size* of a formula  $\phi$  is given by the cardinality of  $pos(\phi)$ :  $|\phi| := |pos(\phi)|$ .

The *subformula* of  $\phi$  at position  $p \in pos(\phi)$  is inductively defined by  $\phi|_{\epsilon} := \phi, \neg \phi|_{1p} := \phi|_p$ , and  $(\phi_1 \circ \phi_2)|_{ip} := \phi_i|_p$  where  $i \in \{1, 2\}, \circ \in \{\land, \lor, \rightarrow, \leftrightarrow\}.$ 

Finally, the *replacement* of a subformula at position  $p \in pos(\phi)$  by a formula  $\psi$  is inductively defined by  $\phi[\psi]_{\epsilon} := \psi$ ,

$$(\neg \phi)[\psi]_{1p} := \neg \phi[\psi]_p$$
, and  $(\phi_1 \circ \phi_2)[\psi]_{1p} := (\phi_1[\psi]_p \circ \phi_2)$ ,  $(\phi_1 \circ \phi_2)[\psi]_{2p} := (\phi_1 \circ \phi_2[\psi]_p)$ , where  $\circ \in \{\land, \lor, \to, \leftrightarrow\}$ .



### 2.1.5 Definition (Polarity)

The *polarity* of the subformula  $\phi|_{p}$  of  $\phi$  at position  $p \in pos(\phi)$  is inductively defined by

```
\begin{array}{rcl} \operatorname{pol}(\phi,\epsilon) &:= & 1 \\ \operatorname{pol}(\neg\phi,1p) &:= & -\operatorname{pol}(\phi,p) \\ \operatorname{pol}(\phi_1\circ\phi_2,ip) &:= & \operatorname{pol}(\phi_i,p) & \text{if } \circ\in\{\land,\lor\},\,i\in\{1,2\} \\ \operatorname{pol}(\phi_1\to\phi_2,1p) &:= & -\operatorname{pol}(\phi_1,p) \\ \operatorname{pol}(\phi_1\to\phi_2,2p) &:= & \operatorname{pol}(\phi_2,p) \\ \operatorname{pol}(\phi_1\leftrightarrow\phi_2,ip) &:= & 0 & \text{if } i\in\{1,2\} \end{array}
```



Valuations can be nicely represented by sets or sequences of literals that do not contain complementary literals nor duplicates.

If  $\mathcal A$  is a (partial) valuation of domain  $\Sigma$  then it can be represented by the set

$$\{P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1\} \cup \{\neg P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 0\}.$$

Another, equivalent representation are *Herbrand* interpretations that are sets of positive literals, where all atoms not contained in an Herbrand interpretation are false. If  $\mathcal A$  is a total valuation of domain  $\Sigma$  then it corresponds to the Herbrand interpretation  $\{P\mid P\in \Sigma \text{ and } \mathcal A(P)=1\}.$ 



## 2.2.4 Theorem (Deduction Theorem)

$$\phi \models \psi \text{ iff } \models \phi \rightarrow \psi$$



Let  $\phi$  be a propositional formula containing a subformula  $\psi$  at position p, i.e.,  $\phi|_p = \psi$ . Furthermore, assume  $\models \psi \leftrightarrow \chi$ . Then  $\models \phi \leftrightarrow \phi[\chi]_p$ .



## Propositional Tableau

## 2.4.1 Definition ( $\alpha$ -, $\beta$ -Formulas)

A formula  $\phi$  is called an  $\alpha$ -formula if  $\phi$  is a formula  $\neg\neg\phi_1$ ,  $\phi_1 \wedge \phi_2$ ,  $\phi_1 \leftrightarrow \phi_2$ ,  $\neg(\phi_1 \vee \phi_2)$ , or  $\neg(\phi_1 \to \phi_2)$ .

A formula  $\phi$  is called a  $\beta$ -formula if  $\phi$  is a formula  $\phi_1 \vee \phi_2$ ,  $\phi_1 \to \phi_2$ ,  $\neg(\phi_1 \wedge \phi_2)$ , or  $\neg(\phi_1 \leftrightarrow \phi_2)$ .



## 2.4.2 Definition (Direct Descendant)

Given an  $\alpha$ - or  $\beta$ -formula  $\phi$ , its direct descendants are as follows:

| $\alpha$                          | Left Descendant    | Right Descendant            |
|-----------------------------------|--------------------|-----------------------------|
| $\neg \neg \phi$                  | $\phi$             | $\phi$                      |
| $\phi_1 \wedge \phi_2$            | $\phi$ 1           | $\phi_2$                    |
| $\phi_1 \leftrightarrow \phi_2$   | $\phi_1 	o \phi_2$ | $\phi_2 \rightarrow \phi_1$ |
| $\neg(\phi_1\lor\phi_2)$          | $\neg \phi_1$      | $\neg \phi_2$               |
| $\neg(\phi_1 \rightarrow \phi_2)$ | $\phi$ 1           | $\neg \phi_2$               |

| $\beta$                               | Left Descendant          | Right Descendant                  |
|---------------------------------------|--------------------------|-----------------------------------|
| $\phi_1 \lor \phi_2$                  | $\phi$ 1                 | $\phi_2$                          |
| $\phi_1 \rightarrow \phi_2$           | $\neg \phi_1$            | $\phi_2$                          |
| $\neg(\phi_1 \wedge \phi_2)$          | $\neg \phi_1$            | $\neg \phi_2$                     |
| $\neg(\phi_1 \leftrightarrow \phi_2)$ | $\neg(\phi_1 	o \phi_2)$ | $\neg(\phi_2 \rightarrow \phi_1)$ |





# 2.4.3 Proposition ()

For any valuation A:

(i) if  $\phi$  is an  $\alpha$ -formula then  $\mathcal{A}(\phi) = 1$  iff  $\mathcal{A}(\phi_1) = 1$  and  $\mathcal{A}(\phi_2) = 1$  for its descendants  $\phi_1$ ,  $\phi_2$ .

(ii) if  $\phi$  is a  $\beta$ -formula then  $\mathcal{A}(\phi) = 1$  iff  $\mathcal{A}(\phi_1) = 1$  or  $\mathcal{A}(\phi_2) = 1$  for its descendants  $\phi_1$ ,  $\phi_2$ .



The tableau calculus operates on states that are sets of sequences of formulas. Semantically, the set represents a disjunction of sequences that are interpreted as conjunctions of the respective formulas.

A sequence of formulas  $(\phi_1, \ldots, \phi_n)$  is called *closed* if there are two formulas  $\phi_i$  and  $\phi_i$  in the sequence where  $\phi_i = \text{comp}(\phi_i)$ .

A state is *closed* if all its formula sequences are closed.

The tableau calculus is a calculus showing unsatisfiability of a formula. Such calculi are called *refutational* calculi. Recall a formula  $\phi$  is valid iff  $\neg \phi$  is unsatisfiable.



A formula  $\phi$  occurring in some sequence is called *open* if in case  $\phi$  is an  $\alpha$ -formula not both direct descendants are already part of the sequence and if it is a  $\beta$ -formula none of its descendants is part of the sequence.

 $N \uplus \{(\phi_1,\ldots,\psi,\ldots,\phi_n,\psi_1,\psi_2)\}$ 

# $\alpha$ -Expansion $N \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n)\} \Rightarrow_T$

provided  $\psi$  is an open  $\alpha$ -formula,  $\psi_1$ ,  $\psi_2$  its direct descendants and the sequence is not closed.

*β*-Expansion 
$$N \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n)\} \Rightarrow_T N \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n, \psi_1)\} \uplus \{(\phi_1, \dots, \psi, \dots, \phi_n, \psi_2)\}$$
 provided  $\psi$  is an open  $\beta$ -formula,  $\psi_1, \psi_2$  its direct descendants and the assurance is not closed.

and the sequence is not closed.

