A CDCL(T) problem state is a five-tuple (M; N; U; k; C) where N is the propositional abstraction of some clause set N', $N = \operatorname{atr}(N')$, M a sequence of annotated propositional literals, U is a set of detived propositional clauses, $k \in \mathbb{N} \cup \{-1\}$, and C is a propositional clause or \top or \bot . In particular, the following states can be distinguished:

$$(\epsilon; N; \emptyset; 0; \top)$$

 $(M; N; U; -1; \top)$
 $(M; N; U; k; \bot)$
 $(M; N; U; k; \top)$
 $(M; N; U; k; D)$

is the start state for some clause set *N* is a final state, where $\operatorname{atr}^{-1}(M) \models_{\mathcal{T}} N'$ is a final state, where *N'* has no model is a model search state if $k \neq 0$ is a backtracking state if $D \notin \{\top, \bot\}$

Propagate $(M; N; U; k; \top) \Rightarrow_{CDCL} (ML^{C \lor L}; N; U; k; \top)$ provided $C \lor L \in (N \cup U), M \models \neg C$, and *L* is undefined in *M*

Decide $(M; N; U; k; \top) \Rightarrow_{CDCL} (ML^{k+1}; N; U; k+1; \top)$ provided *L* is undefined in *M*

Conflict $(M; N; U; k; \top) \Rightarrow_{CDCL} (M; N; U; k; D)$ provided $D \in (N \cup U)$ and $M \models \neg D$

Skip $(ML^{C \lor L}; N; U; k; D) \Rightarrow_{CDCL} (M; N; U; k; D)$ provided $D \notin \{\top, \bot\}$ and comp(L) does not occur in D

Resolve $(ML^{C \lor L}; N; U; k; D \lor comp(L)) \Rightarrow_{CDCL} (M; N; U; k; D \lor C)$

provided D is of level k

Backtrack $(M_1 K^{i+1} M_2; N; U; k; D \lor L) \Rightarrow_{CDCL} (M_1 L^{D \lor L}; N; U \cup \{D \lor L\}; i; \top)$

provided L is of level k and D is of level i.

Restart $(M; N; U; k; \top) \Rightarrow_{CDCL} (\epsilon; N; U; 0; \top)$ provided $M \not\models N$

Forget $(M; N; U \uplus \{C\}; k; \top) \Rightarrow_{CDCL} (M; N; U; k; \top)$ provided $M \not\models N$

Note that these rules are exactly the rules of CDCL from Section 2.9. The only difference that any normal form $(M; N; U; k; \top)$ was a final state in CDCL, but not in CDCL(T) because $k \neq -1$. On the other hand, if CDCL derives the empty clause, i.e., \bot , then this is also a final state for CDCL(T), see Lemma 7.2.1. The \mathcal{T} rules are missing that in particular check whether the propositional model is in fact also a theory model.

 $\mathcal{T}\text{-Success} \qquad (M; N; U; k; \top) \Rightarrow_{\text{CDCL}(\mathsf{T})} (M; N; U; -1; \top)$ provided $M \models (N \cup U)$ and $\operatorname{atr}^{-1}(M)$ is \mathcal{T} -satisfiable

 \mathcal{T} -**Propagate** $(M; N; U; k; \top) \Rightarrow_{CDCL(T)} (ML^{C \lor L}; N; U; k; \top)$ provided, $\operatorname{atr}^{-1}(M)$ is \mathcal{T} -satisfiable, L is undefined in M but atom(L) occurs in $N \cup U$, and there are literals L_1, \ldots, L_n from Mwith $\operatorname{atr}^{-1}(L_1), \ldots, \operatorname{atr}^{-1}(L_n) \models_{\mathcal{T}} \operatorname{atr}^{-1}(L)$ and $C = \operatorname{comp}(L_1) \lor \ldots \lor \operatorname{comp}(L_n)$

 $\begin{array}{ll} \mathcal{T}\text{-Conflict} & (M; N; U; k; \top) \Rightarrow_{\text{CDCL}(T)} \\ (\epsilon; N; U \cup \{\neg L_1 \lor \ldots \lor \neg L_n\}; 0; \top) \\ \text{provided there are literals } L_1, \ldots, L_n \text{ from } M \text{ with } \\ \text{atr}^{-1}(L_1), \ldots, \text{atr}^{-1}(L_n) \models_{\mathcal{T}} \bot \end{array}$

