Tableau Properties

2.4.4 Theorem (Propositional Tableau is Sound)

If for a formula ϕ the tableau calculus computes $\{(\neg \phi)\} \Rightarrow^*_T N$ and *N* is closed, then ϕ is valid.

2.4.5 Theorem (Propositional Tableau Terminates)

Starting from a start state $\{(\phi)\}$ for some formula ϕ , the relation $\Rightarrow_{\mathsf{T}}^+$ is well-founded.

2.4.6 Theorem (Propositional Tableau is Complete)

If ϕ is valid, tableau computes a closed state out of $\{(\neg \phi)\}$.

2.4.7 Corollary (Propositional Tableau generates Models)

Let ϕ be a formula, $\{(\phi)\} \Rightarrow^*_T N$ and $s \in N$ be a sequence that is not closed and neither α -expansion nor β -expansion are applicable to s. Then the literals in s form a (partial) valuation that is a model for ϕ .

