Normal Forms

Definition (CNF, DNF)

A formula is in *conjunctive normal form (CNF)* or *clause normal form* if it is a conjunction of disjunctions of literals, or in other words, a conjunction of clauses.

A formula is in *disjunctive normal form (DNF)*, if it is a disjunction of conjunctions of literals.

Checking the validity of CNF formulas or the unsatisfiability of DNF formulas is easy:

(i) a formula in CNF is valid, if and only if each of its disjunctions contains a pair of complementary literals P and $\neg P$,

(ii) conversely, a formula in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of complementary literals P and $\neg P$

Basic CNF Transformation

ElimEquiv ElimImp PushNea1 PushNeg2 PushNeg3 PushDisi ElimTB1 ElimTB2 ElimTB3 ElimTB4 ElimTB5 ElimTB6

 $\chi[(\phi \leftrightarrow \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\phi \to \psi) \land (\psi \to \phi)]_{\rho}$ $\chi[(\phi \to \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \lor \psi)]_{\rho}$ $\chi[\neg(\phi \lor \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \land \neg \psi)]_{\rho}$ $\chi[\neg(\phi \land \psi)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\neg \phi \lor \neg \psi)]_{\rho}$ $\chi[\neg\neg\phi]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\rho}$ $\chi[(\phi_1 \land \phi_2) \lor \psi]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[(\phi_1 \lor \psi) \land (\phi_2 \lor \psi)]_{\rho}$ $\chi[(\phi \land \top)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\rho}$ $\chi[(\phi \land \bot)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\bot]_{\rho}$ $\chi[(\phi \lor \top)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\top]_{\rho}$ $\chi[(\phi \lor \bot)]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\phi]_{\rho}$ $\chi[\neg \bot]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\top]_{\rho}$ $\chi[\neg\top]_{\rho} \Rightarrow_{\mathsf{BCNF}} \chi[\bot]_{\rho}$

Basic CNF Algorithm

1 Algorithm: 2 $bcnf(\phi)$

Input : A propositional formula ϕ .

Output: A propositional formula ψ equivalent to ϕ in CNF.

- 2 whilerule (ElimEquiv(ϕ)) do ;
- 3 whilerule (ElimImp (ϕ)) do ;
- 4 whilerule (ElimTB1(ϕ),...,ElimTB6(ϕ)) do ;
- 5 whilerule (PushNeg1(ϕ),...,PushNeg3(ϕ)) do ;
- 6 whilerule (PushDisj(ϕ)) do ;
- 7 return ϕ ;

Advanced CNF Algorithm

For the formula

$$P_1 \leftrightarrow (P_2 \leftrightarrow (P_3 \leftrightarrow (\dots (P_{n-1} \leftrightarrow P_n) \dots)))$$

the basic CNF algorithm generates a CNF with 2^{n-1} clauses.

2.5.4 Proposition (Renaming Variables)

Let *P* be a propositional variable not occurring in $\psi[\phi]_{\rho}$.

- 1. If $pol(\psi, p) = 1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \to \phi)$ is satisfiable.
- 2. If $pol(\psi, p) = -1$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (\phi \to P)$ is satisfiable.
- 3. If $pol(\psi, p) = 0$, then $\psi[\phi]_p$ is satisfiable if and only if $\psi[P]_p \land (P \leftrightarrow \phi)$ is satisfiable.

Renaming

SimpleRenaming $\phi \Rightarrow_{\text{SimpRen}} \phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_n]_{p_n} \land \text{def}(\phi, p_1, P_1) \land \dots \land \text{def}(\phi[P_1]_{p_1}[P_2]_{p_2} \dots [P_{n-1}]_{p_{n-1}}, p_n, P_n)$ provided $\{p_1, \dots, p_n\} \subset \text{pos}(\phi)$ and for all i, i + j either $p_i \parallel p_{i+j}$ or $p_i > p_{i+j}$ and the P_i are different and new to ϕ

Simple choice: choose $\{p_1, \ldots, p_n\}$ to be all non-literal and non-negation positions of ϕ .

Renaming Definition

$$def(\psi, p, P) := \begin{cases} (P \to \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 1\\ (\psi|_p \to P) & \text{if } \operatorname{pol}(\psi, p) = -1\\ (P \leftrightarrow \psi|_p) & \text{if } \operatorname{pol}(\psi, p) = 0 \end{cases}$$

Obvious Positions

A smaller set of positions from ϕ , called *obvious positions*, is still preventing the explosion and given by the rules:

(i) *p* is an obvious position if $\phi|_p$ is an equivalence and there is a position q < p such that $\phi|_q$ is either an equivalence or disjunctive in ϕ or

(ii) pq is an obvious position if $\phi|_{pq}$ is a conjunctive formula in ϕ , $\phi|_p$ is a disjunctive formula in ϕ and for all positions r with p < r < pq the formula $\phi|_r$ is not a conjunctive formula.

A formula $\phi|_{p}$ is conjunctive in ϕ if $\phi|_{p}$ is a conjunction and $pol(\phi, p) \in \{0, 1\}$ or $\phi|_{p}$ is a disjunction or implication and $pol(\phi, p) \in \{0, -1\}$.

Analogously, a formula $\phi|_{p}$ is disjunctive in ϕ if $\phi|_{p}$ is a disjunction or implication and pol $(\phi, p) \in \{0, 1\}$ or $\phi|_{p}$ is a conjunction and pol $(\phi, p) \in \{0, -1\}$.

Polarity Dependent Equivalence Elimination

$$\begin{split} \textbf{ElimEquiv1} \quad & \chi[(\phi \leftrightarrow \psi)]_{\rho} \ \Rightarrow_{\mathsf{ACNF}} \ \chi[(\phi \to \psi) \land (\psi \to \phi)]_{\rho} \\ \text{provided pol}(\chi, \rho) \in \{0, 1\} \end{split}$$

ElimEquiv2 $\chi[(\phi \leftrightarrow \psi)]_{\rho} \Rightarrow_{\mathsf{ACNF}} \chi[(\phi \land \psi) \lor (\neg \phi \land \neg \psi)]_{\rho}$ provided $\operatorname{pol}(\chi, \rho) = -1$

October 16, 2018

Propositional Logic Preliminaries <u>______</u>

Extra \top, \bot Elimination Rules

ElimTB7	$\chi[\phi \to \bot]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{P}$
ElimTB8	$\chi[\perp \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{\rho}$
ElimTB9	$\chi[\phi \to \top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\top]_{\rho}$
ElimTB10	$\chi[\top \to \phi]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$
ElimTB11	$\chi[\phi\leftrightarrow\perp]_{\rho} \Rightarrow_{ACNF}$	$\chi[\neg\phi]_{\rho}$
ElimTB12	$\chi[\phi\leftrightarrow\top]_{\rho} \Rightarrow_{ACNF}$	$\chi[\phi]_{ m ho}$

where the two rules ElimTB11, ElimTB12 for equivalences are applied with respect to commutativity of \leftrightarrow .

Advanced CNF Algorithm

1 Algorithm: 3 $\operatorname{acnf}(\phi)$

Input : A formula ϕ .

Output: A formula ψ in CNF satisfiability preserving to ϕ .

- 2 whilerule (ElimTB1(ϕ),...,ElimTB12(ϕ)) do ;
- **3** SimpleRenaming(ϕ) on obvious positions;
- 4 whilerule (ElimEquiv1(ϕ),ElimEquiv2(ϕ)) do ;
- 5 whilerule (ElimImp (ϕ)) do ;
- 6 whilerule (PushNeg1(ϕ),...,PushNeg3(ϕ)) do ;
- 7 whilerule (PushDisj(ϕ)) do ;

8 return ϕ ;

