Conflict Driven Clause Learning (CDCL)

The CDCL calculus tests satisfiability of a finite set *N* of propositional clauses.

I assume that $\perp \notin N$ and that the clauses in N do not contain duplicate literal occurrences. Furthermore, duplicate literal occurrences are always silently removed during rule applications of the calculus. (Exhaustive Condensation.)

The CDCL calculus explicitely builds a candidate model for a clause set. If such a sequence of literals L_1, \ldots, L_n satisfies the clause set N, it is done. If not, there is a false clause $C \in N$ with respect to L_1, \ldots, L_n .

Now instead of just backtracking through the literals L_1, \ldots, L_n , CDCL generates in addition a new clause, called *learned clause* via resolution, that actually guarantees that the subsequence of L_1, \ldots, L_n that caused *C* to be false will not be generated anymore.

This causes CDCL to be exponentially more powerful in proof length than its predecessor DPLL or Tableau.

CDCL State

- A CDCL problem state is a five-tuple (M; N; U; k; D) where
- M a sequence of annotated literals, called a trail,
- N and U are sets of clauses,
- $k \in \mathbb{N}$, and
- *D* is a non-empty clause or \top or \bot , called the *mode* of the state.

The set N is initialized by the problem clauses where the set U contains all newly learned clauses that are consequences of clauses from N derived by resolution.

Modes of CDCL States

(<i>ϵ</i> ; <i>N</i> ; ∅; 0; ⊤) (<i>M</i> ; <i>N</i> ; <i>U</i> ; <i>k</i> ; ⊤)	is the start state for some clause set N is a final state, if $M \models N$ and all literals from N
(<i>M</i> ; <i>N</i> ; <i>U</i> ; <i>k</i> ; ⊤)	are defined in <i>M</i> is a final state, where <i>N</i> has no model is an intermediate model search state if $M \not\models N$ is a backtracking state if $D \notin \{\top, \bot\}$

The Role of Levels

Literals in $L \in M$ are either annotated with a number, a level, i.e., they have the form L^k meaning that L is the k^{th} guessed decision literal, or they are annotated with a clause that forced the literal to become true.

A literal *L* is of *level k* with respect to a problem state (M; N; U; j; C) if *L* or comp(*L*) occurs in *M* and the first decision literal left from *L* (comp(*L*)) in *M* is annotated with *k*. If there is no such decision literal then k = 0.

A clause *D* is of *level* k with respect to a problem state (*M*; *N*; *U*; *j*; *C*) if k is the maximal level of a literal in *D*.

CDCL Rules

Propagate $(M; N; U; k; \top) \Rightarrow_{CDCL} (ML^{C \lor L}; N; U; k; \top)$ provided $C \lor L \in (N \cup U), M \models \neg C$, and *L* is undefined in *M*

Decide $(M; N; U; k; \top) \Rightarrow_{CDCL} (ML^{k+1}; N; U; k+1; \top)$ provided *L* is undefined in *M*

Conflict $(M; N; U; k; \top) \Rightarrow_{CDCL} (M; N; U; k; D)$ provided $D \in (N \cup U)$ and $M \models \neg D$

Skip $(ML^{C \lor L}; N; U; k; D) \Rightarrow_{CDCL} (M; N; U; k; D)$ provided $D \notin \{\top, \bot\}$ and comp(L) does not occur in D

Resolve $(ML^{C \lor L}; N; U; k; D \lor comp(L)) \Rightarrow_{CDCL} (M; N; U; k; D \lor C)$

provided D is of level k

Backtrack $(M_1 K^{i+1} M_2; N; U; k; D \lor L) \Rightarrow_{CDCL} (M_1 L^{D \lor L}; N; U \cup \{D \lor L\}; i; \top)$

provided L is of level k and D is of level i.

Restart $(M; N; U; k; \top) \Rightarrow_{CDCL} (\epsilon; N; U; 0; \top)$ provided $M \not\models N$

Forget $(M; N; U \uplus \{C\}; k; \top) \Rightarrow_{CDCL} (M; N; U; k; \top)$ provided $M \not\models N$

2.9.5 Definition (Reasonable CDCL Strategy)

A CDCL strategy is *reasonable* if the rules Conflict and Propagate are always preferred over all other rules.

2.9.6 Proposition (CDCL Basic Properties)

Consider CDCL run deriving (M; N; U; k; C) by any strategy but without Restart and Forget. Then the following properties hold:

- 1. *M* is consistent.
- 2. All learned clauses are entailed by N.
- 3. If $C \notin \{\top, \bot\}$ then $M \models \neg C$.
- 4. If $C = \top$ and M contains only propagated literals then for each valuation A with $A \models N$ it holds that $A \models M$.
- 5. If $C = \top$, *M* contains only propagated literals and $M \models \neg D$ for some $D \in (N \cup U)$ then *N* is unsatisfiable.
- 6. If $C = \bot$ then CDCL terminates and *N* is unsatisfiable.
- 7. *k* is the maximal level of a literal in *M*.
- 8. Each infinite derivation contains an infinite number of Backtrack applications.

2.9.7 Lemma (CDCL Redundancy)

Consider a CDCL derivation by a reasonable strategy. Then CDCL never learns a clause contained in $N \cup U$.

2.9.9 Lemma (CDCL Soundness)

In a reasonable CDCL derivation, CDCL can only terminate in two different types of final states: $(M; N; U; k; \top)$ where $M \models N$ and $(M; N; U; k; \bot)$ where N is unsatisfiable.

2.9.10 Proposition (CDCL Soundness)

The rules of the CDCL algorithm are sound: (i) if CDCL terminates from $(\epsilon; N; \emptyset; 0; \top)$ in the state $(M; N; U; k; \top)$, then N is satisfiable, (ii) if CDCL terminates from $(\epsilon; N; \emptyset; 0; \top)$ in the state $(M; N; U; k; \bot)$, then N is unsatisfiable.

