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CDCL – quo vadis?

N = {P ∨ Q, P ∨ ¬Q, ¬P ∨ Q, ¬P ∨ ¬Q}
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SCL Clause Learning from Simple
Models

The basic idea of SCL is to lift the principles of CDCL,
Section 2.9, to first-order logic:

1. operating wih respect to a partial model assumption
represented by a trail,

2. learning only non-redundant clauses out of false
clauses with respect to the trail,

3. finding models in case no conflict occurs.
It is called clause learning from simple models, because the trail
is restricted to ground literals.
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SCL: Simplified Problem State

(Γ;N;U; k ;D)

Γ: Ground trail
N: Initial clause set
U: Learned clauses
k : Level
D: State

– ⊤: Trail building
– ⊥: N is refuted
– A conflict clause

Initially, the state for a first-order clause set N is (ϵ;N; ∅; 0;⊤).
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SCL – quo vadis?

N = {P(a) ∨ Q(b), P(a) ∨ ¬Q(b), ¬P(x) ∨ Q(x), ¬P(x) ∨ ¬Q(x)}
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SCL: Motivation

SCL employs a trail consisting of ground literals only:
deciding falsity of a first-order clause with variables can be
done practically efficiently and
different ground literals don’t have common instances resulting
in efficient trail operations.
Still, non-redundant clauses with variables can be learned

– Find falsified ground clause
– Guide resolution on the clause level (with variables)
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Resolution learns non-ground
clauses

N = {P(x) ∨ Q(b), P(x) ∨ ¬Q(y), ¬P(a) ∨ Q(x), ¬P(x) ∨ ¬Q(b)}
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SCL: Simplified Problem State

(Γ;N;U; k ;D)

Γ: Ground trail
N: Initial clause set
U: Learned clauses
k : Level
D: State

– ⊤: Trail building
– ⊥: N is refuted
– A closure C · σ: Conflict clause C with substitution σ

Initially, the state for a first-order clause set N is (ϵ;N; ∅; 0;⊤).
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SimpPropagate(Γ;N;U; k ;⊤) ⇒SCL (Γ, Lσ(C∨L)·σ;N;U; k ;⊤)

provided C ∨ L ∈ (N ∪ U) technicalities missing, see later..., (C ∨ L)σ is
ground, Cσ is false under Γ, and Lσ is undefined in Γ

Conflict (Γ;N;U;β; k ;⊤) ⇒SCL (Γ;N;U;β; k ;D · σ)
provided D ∈ (N ∪ U), Dσ false in Γ for a grounding substitution σ
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Resolve (Γ, Lδ(C∨L)·δ;N;U;β; k ; (D ∨ L′) · σ)
⇒SCL (Γ, Lδ(C∨L)·δ;N;U;β; k ; (D ∨ C)η · σδ)

provided Lδ = comp(L′σ), η = mgu(L, comp(L′))

SimpBacktrack (Γ comp(Lσ)k ;N;U;β; k ; (D ∨ L) · σ)
⇒SCL (Γ′;N;U ∪ {D ∨ L};β; j ;⊤)

provided a lot of technicalities...
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SCL learns non-ground clauses

N = {P(x) ∨ Q(b), P(x) ∨ ¬Q(y), ¬P(a) ∨ Q(x), ¬P(x) ∨ ¬Q(b)}
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Recall: CDCL soundness

2.9.10 Lemma (CDCL Soundness)
In a reasonable CDCL derivation, CDCL can only terminate in
two different types of final states: (M;N;U; k ;⊤) where M |= N
and (M;N;U; k ;⊥) where N is unsatisfiable.
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First problems in first-order

N = {P(a), ¬P(x) ∨ P(f (x))}
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First-order Herbrand models are infinite in general
In SCL:

– Restrict the reasoning with respect to some ground literal β
– Require that any trail literal is smaller than β
– Use a well-founded, total, strict ordering ≺β (e.g. KBO)

Goal: Achieve termination
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SCL: Problem State

(Γ;N;U; β; k ;D)

Γ: Ground trail
N: Initial clause set
U: Learned clauses
β: Limiting literal
k : Level
D: State

– ⊤: Trail building
– ⊥: N is refuted
– A closure C · σ: Conflict clause C with substitution σ

Initially, the state for a first-order clause set N is (ϵ;N; ∅;β; 0;⊤).
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SCL: Stuck states

N = {P(a), ¬P(x) ∨ P(f (x))}
set β = P(f (f (a))), hence exactly P(a) ≺β β and P(f (a)) ≺β β
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Exhaustive Propagation vs. First-
order logic

In propositional logic: Propagation instead of deciding is often a
good idea.

In FOL: Exhaustively propagating all ground instances is a very
bad idea:

N ′ = {P(1, 0, x1, . . . , xn), Q ∨ ¬R, Q ∨ R, ¬Q ∨ R, ¬Q ∨ ¬R}
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3.16.23 Example (Comparing Proof Length Depending on
Clause Propagation)

Let i be a positive integer and consider the clause set Ni with one
predicate P of arity i consisting of the following clauses, where
we write x̄ , 0̄ and 1̄ to denote sequences of the appropriate
length of variables and constants to meet the arity of P:

P(0̄) ¬P(1̄)

and i clauses of the form
¬P(x̄ , 0, 1̄) ∨ P(x̄ , 1, 0̄)

where the length of 1̄ varies between 0 and i − 1. The example
encodes an i-bit counter. An SCL run with exhaustive
propagation on this clause set finds a conflict after O(2i)
propagations without any application of Decide.
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Example ctd.

N4 = {

1 : P(0, 0, 0, 0)
2 : ¬P(x1, x2, x3, 0) ∨ P(x1, x2, x3, 1)
3 : ¬P(x1, x2, 0, 1) ∨ P(x1, x2, 1, 0)
4 : ¬P(x1, 0, 1, 1) ∨ P(x1, 1, 0, 0)
5 : ¬P(0, 1, 1, 1) ∨ P(1, 0, 0, 0)
6 : ¬P(1, 1, 1, 1)

}
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Example ctd.

N4 = {

1 : P(0, 0, 0, 0)
2 : ¬P(x1, x2, x3, 0) ∨ P(x1, x2, x3, 1)
3 : ¬P(x1, x2, 0, 1) ∨ P(x1, x2, 1, 0)
4 : ¬P(x1, 0, 1, 1) ∨ P(x1, 1, 0, 0)
5 : ¬P(0, 1, 1, 1) ∨ P(1, 0, 0, 0)
6 : ¬P(1, 1, 1, 1)

}

2.2 Res 3.1 7 : ¬P(x1, x2, 0, 0) ∨ P(x1, x2, 1, 0)
7.2 Res 2.1 8 : ¬P(x1, x2, 0, 0) ∨ P(x1, x2, 1, 1)
8.2 Res 4.1 9 : ¬P(x1, 0, 0, 0) ∨ P(x1, 1, 0, 0)
9.2 Res 8.1 10 : ¬P(x1, 0, 0, 0) ∨ P(x1, 1, 1, 1)
10.2 Res 5.1 11 : ¬P(0, 0, 0, 0) ∨ P(1, 0, 0, 0)
11.2 Res 10.1 12 : ¬P(0, 0, 0, 0) ∨ P(1, 1, 1, 1)
12.1 Res 6.1 13 : ⊥

Can be simulated with SCL, but not with exhaustive propagation
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Propagate (Γ;N;U;β; k ;⊤) ⇒SCL
(Γ, Lσ(C0∨L)δ·σ;N;U;β; k ;⊤)

provided C ∨ L ∈ (N ∪ U), C = C0 ∨ C1, C1σ = Lσ ∨ · · · ∨ Lσ, C0σ
does not contain Lσ, δ is the mgu of the literals in C1 and L,
(C ∨ L)σ is ground, (C ∨ L)σ ≺β {β}, C0σ is false under Γ, and Lσ
is undefined in Γ

The rule Propagate applies exhaustive factoring to the
propagated literal with respect to the grounding substitution σ
and annotates the factored clause to the propagation literal on
the trail.

Decide (Γ;N;U;β; k ;⊤) ⇒SCL
(Γ, Lσk+1;N;U;β; k + 1;⊤)

provided L ∈ C for a C ∈ (N ∪ U), Lσ is a ground literal undefined
in Γ, and Lσ ≺β β
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Conflict (Γ;N;U;β; k ;⊤) ⇒SCL (Γ;N;U;β; k ;D · σ)
provided D ∈ (N ∪ U), Dσ false in Γ for a grounding substitution σ

These rules construct a (partial) model via the trail Γ for N ∪ U
until a conflict, i.e., a false clause with respect to Γ is found or all
ground atoms smaller β are defined in M and M |= grd(N)≺β .
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Guaranteed Termination
– Only ground literals ≺β β considered
– There are only finitely many.

Choosing the right β is crucial
– For some fragments, this gives completeness:

Bernays-Schoenfinkel
– In general: Every fragment with finite models

Next up: Conflict resolution rules
Before any conflict resolution step, we assume that the respective clauses are renamed

such that they do not share any variables and that the grounding substitutions of closures

are adjusted accordingly.
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Skip (Γ, L;N;U;β; k ;D · σ) ⇒SCL
(Γ;N;U;β; k − i ;D · σ)
provided comp(L) does not occur in Dσ, if L is a decision literal
then i = 1, otherwise i = 0

Factorize (Γ;N;U;β; k ; (D ∨ L ∨ L′) · σ) ⇒SCL
(Γ;N;U;β; k ; (D ∨ L)η · σ)
provided Lσ = L′σ, η = mgu(L, L′)
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Resolve (Γ, Lδ(C∨L)·δ;N;U;β; k ; (D ∨ L′) · σ)
⇒SCL (Γ, Lδ(C∨L)·δ;N;U;β; k ; (D ∨ C)η · σδ)

provided Lδ = comp(L′σ), η = mgu(L, comp(L′))

Backtrack (Γ0,K , Γ1, comp(Lσ)k ;N;U;β; k ; (D ∨ L) · σ)
⇒SCL (Γ0;N;U ∪ {D ∨ L};β; j ;⊤)

provided Dσ is of level i ′ < k , and Γ0,K is the minimal trail
subsequence such that there is a grounding substitution τ with
(D ∨ L)τ is false in Γ0,K but not in Γ0, and Γ0 is of level j

The clause D ∨ L added by the rule Backtrack to U is called a
learned clause.
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⊥ can only be derived by Resolve (or be present already in N)
=⇒ The generation of ⊥ is a resolution refutation
Freedom with respect to decisions and factorizations
Literals are not removed during resolution (eventually, Skip
removes the literal from Γ)
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