
SCL: Clause Learning from Simple
Models

Lifting CDCL to first-order logic

December 21, 2022 5/43



CDCL – quo vadis?

N = {P ∨ Q, P ∨ ¬Q, ¬P ∨ Q, ¬P ∨ ¬Q}

December 21, 2022 6/43



SCL Clause Learning from Simple
Models

The basic idea of SCL is to lift the principles of CDCL,
Section 2.9, to first-order logic:

1. operating wih respect to a partial model assumption
represented by a trail,

2. learning only non-redundant clauses out of false
clauses with respect to the trail,

3. finding models in case no conflict occurs.
It is called clause learning from simple models, because the trail
is restricted to ground literals.

December 21, 2022 7/43



SCL: Simplified Problem State

(Γ;N;U; k ;D)

Γ: Ground trail
N: Initial clause set
U: Learned clauses
k : Level
D: State

– ⊤: Trail building
– ⊥: N is refuted
– A conflict clause

Initially, the state for a first-order clause set N is (ϵ;N; ∅; 0;⊤).

December 21, 2022 8/43



SCL – quo vadis?

N = {P(a) ∨ Q(b), P(a) ∨ ¬Q(b), ¬P(x) ∨ Q(x), ¬P(x) ∨ ¬Q(x)}

December 21, 2022 9/43



SCL: Motivation

SCL employs a trail consisting of ground literals only:
deciding falsity of a first-order clause with variables can be
done practically efficiently and
different ground literals don’t have common instances resulting
in efficient trail operations.
Still, non-redundant clauses with variables can be learned

– Find falsified ground clause
– Guide resolution on the clause level (with variables)

December 21, 2022 10/43



Resolution learns non-ground
clauses

N = {P(x) ∨ Q(b), P(x) ∨ ¬Q(y), ¬P(a) ∨ Q(x), ¬P(x) ∨ ¬Q(b)}

December 21, 2022 11/43



SCL: Simplified Problem State

(Γ;N;U; k ;D)

Γ: Ground trail
N: Initial clause set
U: Learned clauses
k : Level
D: State

– ⊤: Trail building
– ⊥: N is refuted
– A closure C · σ: Conflict clause C with substitution σ

Initially, the state for a first-order clause set N is (ϵ;N; ∅; 0;⊤).

December 21, 2022 12/43



SimpPropagate(Γ;N;U; k ;⊤) ⇒SCL (Γ, Lσ(C∨L)·σ;N;U; k ;⊤)

provided C ∨ L ∈ (N ∪ U) technicalities missing, see later..., (C ∨ L)σ is
ground, Cσ is false under Γ, and Lσ is undefined in Γ

Conflict (Γ;N;U;β; k ;⊤) ⇒SCL (Γ;N;U;β; k ;D · σ)
provided D ∈ (N ∪ U), Dσ false in Γ for a grounding substitution σ

December 21, 2022 13/43



Resolve (Γ, Lδ(C∨L)·δ;N;U;β; k ; (D ∨ L′) · σ)
⇒SCL (Γ, Lδ(C∨L)·δ;N;U;β; k ; (D ∨ C)η · σδ)

provided Lδ = comp(L′σ), η = mgu(L, comp(L′))

SimpBacktrack (Γ comp(Lσ)k ;N;U;β; k ; (D ∨ L) · σ)
⇒SCL (Γ′;N;U ∪ {D ∨ L};β; j ;⊤)

provided a lot of technicalities...

December 21, 2022 14/43



SCL learns non-ground clauses

N = {P(x) ∨ Q(b), P(x) ∨ ¬Q(y), ¬P(a) ∨ Q(x), ¬P(x) ∨ ¬Q(b)}

December 21, 2022 15/43



Recall: CDCL soundness

2.9.10 Lemma (CDCL Soundness)
In a reasonable CDCL derivation, CDCL can only terminate in
two different types of final states: (M;N;U; k ;⊤) where M |= N
and (M;N;U; k ;⊥) where N is unsatisfiable.

December 21, 2022 16/43



First problems in first-order

N = {P(a), ¬P(x) ∨ P(f (x))}

December 21, 2022 17/43



First-order Herbrand models are infinite in general
In SCL:

– Restrict the reasoning with respect to some ground literal β
– Require that any trail literal is smaller than β
– Use a well-founded, total, strict ordering ≺β (e.g. KBO)

Goal: Achieve termination

December 21, 2022 18/43



SCL: Problem State

(Γ;N;U; β; k ;D)

Γ: Ground trail
N: Initial clause set
U: Learned clauses
β: Limiting literal
k : Level
D: State

– ⊤: Trail building
– ⊥: N is refuted
– A closure C · σ: Conflict clause C with substitution σ

Initially, the state for a first-order clause set N is (ϵ;N; ∅;β; 0;⊤).

December 21, 2022 19/43



SCL: Stuck states

N = {P(a), ¬P(x) ∨ P(f (x))}
set β = P(f (f (a))), hence exactly P(a) ≺β β and P(f (a)) ≺β β

December 21, 2022 20/43



Exhaustive Propagation vs. First-
order logic

In propositional logic: Propagation instead of deciding is often a
good idea.

In FOL: Exhaustively propagating all ground instances is a very
bad idea:

N ′ = {P(1, 0, x1, . . . , xn), Q ∨ ¬R, Q ∨ R, ¬Q ∨ R, ¬Q ∨ ¬R}

December 21, 2022 21/43



3.16.23 Example (Comparing Proof Length Depending on
Clause Propagation)

Let i be a positive integer and consider the clause set Ni with one
predicate P of arity i consisting of the following clauses, where
we write x̄ , 0̄ and 1̄ to denote sequences of the appropriate
length of variables and constants to meet the arity of P:

P(0̄) ¬P(1̄)

and i clauses of the form
¬P(x̄ , 0, 1̄) ∨ P(x̄ , 1, 0̄)

where the length of 1̄ varies between 0 and i − 1. The example
encodes an i-bit counter. An SCL run with exhaustive
propagation on this clause set finds a conflict after O(2i)
propagations without any application of Decide.

December 21, 2022 22/43



Example ctd.

N4 = {

1 : P(0, 0, 0, 0)
2 : ¬P(x1, x2, x3, 0) ∨ P(x1, x2, x3, 1)
3 : ¬P(x1, x2, 0, 1) ∨ P(x1, x2, 1, 0)
4 : ¬P(x1, 0, 1, 1) ∨ P(x1, 1, 0, 0)
5 : ¬P(0, 1, 1, 1) ∨ P(1, 0, 0, 0)
6 : ¬P(1, 1, 1, 1)

}

December 21, 2022 23/43



Example ctd.

N4 = {

1 : P(0, 0, 0, 0)
2 : ¬P(x1, x2, x3, 0) ∨ P(x1, x2, x3, 1)
3 : ¬P(x1, x2, 0, 1) ∨ P(x1, x2, 1, 0)
4 : ¬P(x1, 0, 1, 1) ∨ P(x1, 1, 0, 0)
5 : ¬P(0, 1, 1, 1) ∨ P(1, 0, 0, 0)
6 : ¬P(1, 1, 1, 1)

}

2.2 Res 3.1 7 : ¬P(x1, x2, 0, 0) ∨ P(x1, x2, 1, 0)
7.2 Res 2.1 8 : ¬P(x1, x2, 0, 0) ∨ P(x1, x2, 1, 1)
8.2 Res 4.1 9 : ¬P(x1, 0, 0, 0) ∨ P(x1, 1, 0, 0)
9.2 Res 8.1 10 : ¬P(x1, 0, 0, 0) ∨ P(x1, 1, 1, 1)
10.2 Res 5.1 11 : ¬P(0, 0, 0, 0) ∨ P(1, 0, 0, 0)
11.2 Res 10.1 12 : ¬P(0, 0, 0, 0) ∨ P(1, 1, 1, 1)
12.1 Res 6.1 13 : ⊥

Can be simulated with SCL, but not with exhaustive propagation
December 21, 2022 23/43



Propagate (Γ;N;U;β; k ;⊤) ⇒SCL
(Γ, Lσ(C0∨L)δ·σ;N;U;β; k ;⊤)

provided C ∨ L ∈ (N ∪ U), C = C0 ∨ C1, C1σ = Lσ ∨ · · · ∨ Lσ, C0σ
does not contain Lσ, δ is the mgu of the literals in C1 and L,
(C ∨ L)σ is ground, (C ∨ L)σ ≺β {β}, C0σ is false under Γ, and Lσ
is undefined in Γ

The rule Propagate applies exhaustive factoring to the
propagated literal with respect to the grounding substitution σ
and annotates the factored clause to the propagation literal on
the trail.

Decide (Γ;N;U;β; k ;⊤) ⇒SCL
(Γ, Lσk+1;N;U;β; k + 1;⊤)

provided L ∈ C for a C ∈ (N ∪ U), Lσ is a ground literal undefined
in Γ, and Lσ ≺β β

December 21, 2022 24/43



Conflict (Γ;N;U;β; k ;⊤) ⇒SCL (Γ;N;U;β; k ;D · σ)
provided D ∈ (N ∪ U), Dσ false in Γ for a grounding substitution σ

These rules construct a (partial) model via the trail Γ for N ∪ U
until a conflict, i.e., a false clause with respect to Γ is found or all
ground atoms smaller β are defined in M and M |= grd(N)≺β .

December 21, 2022 25/43



Guaranteed Termination
– Only ground literals ≺β β considered
– There are only finitely many.

Choosing the right β is crucial
– For some fragments, this gives completeness:

Bernays-Schoenfinkel
– In general: Every fragment with finite models

Next up: Conflict resolution rules
Before any conflict resolution step, we assume that the respective clauses are renamed

such that they do not share any variables and that the grounding substitutions of closures

are adjusted accordingly.

December 21, 2022 26/43



Skip (Γ, L;N;U;β; k ;D · σ) ⇒SCL
(Γ;N;U;β; k − i ;D · σ)
provided comp(L) does not occur in Dσ, if L is a decision literal
then i = 1, otherwise i = 0

Factorize (Γ;N;U;β; k ; (D ∨ L ∨ L′) · σ) ⇒SCL
(Γ;N;U;β; k ; (D ∨ L)η · σ)
provided Lσ = L′σ, η = mgu(L, L′)

December 21, 2022 27/43



Resolve (Γ, Lδ(C∨L)·δ;N;U;β; k ; (D ∨ L′) · σ)
⇒SCL (Γ, Lδ(C∨L)·δ;N;U;β; k ; (D ∨ C)η · σδ)

provided Lδ = comp(L′σ), η = mgu(L, comp(L′))

Backtrack (Γ0,K , Γ1, comp(Lσ)k ;N;U;β; k ; (D ∨ L) · σ)
⇒SCL (Γ0;N;U ∪ {D ∨ L};β; j ;⊤)

provided Dσ is of level i ′ < k , and Γ0,K is the minimal trail
subsequence such that there is a grounding substitution τ with
(D ∨ L)τ is false in Γ0,K but not in Γ0, and Γ0 is of level j

The clause D ∨ L added by the rule Backtrack to U is called a
learned clause.

December 21, 2022 28/43



⊥ can only be derived by Resolve (or be present already in N)
=⇒ The generation of ⊥ is a resolution refutation
Freedom with respect to decisions and factorizations
Literals are not removed during resolution (eventually, Skip
removes the literal from Γ)

December 21, 2022 29/43


