

3.16.8 Definition (Sound States)

A state (Γ; *N*; *U*; β; *k*; *D*) is *sound* if the following conditions hold:

- 1. Γ is a consistent sequence of annotated ground literals, i.e. for a ground literal *L* it cannot be that *L* ∈ Γ and ¬*L* ∈ Γ
- 2. for each decomposition $\Gamma = \Gamma_1, L\sigma^{CVL \cdot \sigma}$, Γ_2 we have that C_{σ} is false under Γ_1 and L_{σ} is undefined under Γ_1 , $N \cup U \models C \vee L$
- 3. for each decomposition $\Gamma = \Gamma_1, L^k, \Gamma_2$ we have that L is undefined in Γ_1 ,
- 4. $N \models U$,

 (7) , \uparrow , \cdot --

5. if $D = C \cdot \sigma$ then $C\sigma$ is false under Γ and $N \models C$. In particular, grd^{\prec_{β}^{β}}(*N*) $\models C\sigma$,

6. for any $L \in \Gamma$ we have $L \prec_{\beta} \beta$ and there is a $C \in N \cup U$ such that $L \in C$.

3.16.9 Lemma (Soundness of the initial state)

The initial state $(\epsilon; \mathcal{N}; \emptyset; \beta; 0; \top)$ is sound.

Proof.

Criteria 1–3 and 6 are trivially satisfied by $\Gamma = \epsilon$. Furthermore, $N \models \emptyset$, fulfilling criterion 4. Lastly, criterion 5 is trivially fulfilled for $D = T$.

3.16.10 Theorem (Soundness of SCL)

All SCL rules preserve soundness, i.e. they map a sound state onto a sound state.

3.16.9 Lemma (Soundness of the initial state)

The initial state $(\epsilon; \mathcal{N}; \emptyset; \beta; 0; \top)$ is sound.

Proof.

Criteria 1–3 and 6 are trivially satisfied by $\Gamma = \epsilon$. Furthermore, $N \models \emptyset$, fulfilling criterion 4. Lastly, criterion 5 is trivially fulfilled for $D = T$.

3.16.10 Theorem (Soundness of SCL)

All SCL rules preserve soundness, i.e. they map a sound state onto a sound state.

Corollary (Sondness of SCL)

The rules of SCL are sound, hence SCL starting with an initial state is sound.

Proof.

Follows by induction over the size of the run. The base case is handled by Lemma 3.16.9, the induction step is contained in Theorem 3.16.10.

3.16.12 Definition (Reasonable Runs)

A sequence of SCL rule applications is called a *reasonable run* if the rule Decide does not enable an immediate application of rule Conflict.

3.16.13 Definition (Regular Runs)

A sequence of SCL rule applications is called a *regular run* if it is a reasonable run and the rule Conflict has precedence over all other rules.

3.16.14 Theorem (Correct Termination)

If in a regular run no rules are applicable to a state $(\Gamma; N; U; \beta; k; D)$ then either $D = \perp$ and *N* is unsatisfiable or *D* = ⊤ and grd(*N*)^{≺ββ} is satisfiable and $\Gamma \models \text{grd}(N)^{\prec \beta}$.

$$
Proof
$$
 det : $Tate$ a $side$ $where$ ine^u $rule$ is $app.$
\n• $(T; N: V; \beta; k; T)$
\n• $uvds$. $lt; b^2$ \rightarrow $Decab$, $Propage$

• No aweb. Given
$$
-\frac{1}{6}
$$

\n π F = $\frac{1}{3}$, $\frac{1}{6}$ s.0 (1)) : Dove
\n π F = $\frac{1}{3}$, $\frac{1}{6}$ s.0 (1)) : False clause $\frac{1}{3}$

3.16.14 Theorem (Correct Termination)

If in a regular run no rules are applicable to a state $(\Gamma; N; U; \beta; k; D)$ then either $D = \perp$ and *N* is unsatisfiable or $D = \top$ and grd $(N)^{\prec_{\beta} \beta}$ is satisfiable and $\Gamma \models \text{grd}(N)^{\prec_{\beta} \beta}$.

\n
$$
\begin{array}{ll}\n \bullet & \text{[T; N; U; B; k: C* \sigma]} \\
 \bullet & \text{[F: S, W, V]} \\
 \bullet & \text{[F: V, L]} \\
 \bullet & \text{[F: V, V]} \\
 \bullet & \text{[F: V
$$

3.16.15 Lemma (Resolve in regular runs)

Consider the derivation of a conflict state ((Γ, *L*; *N*; *U*; β; *k*; ⊤) ⇒Conflict (Γ, *L*; *N*; *U*; β; *k*; *D*). In a regular run, during conflict resolution *L* is not a decision literal and at least the literal *L* is resolved.

 $Proof$ (deo) , froot (Idea),
How did we end up in (1, L; N; U; B; k; T)
• Coustid, Stip, Facture, Resolue: obviously hot (D =
• Devide: hot allowed by reasonasitivy hol $\overrightarrow{CD} = T)$ $Lshel$, $1/2$ Bachtach: [', N. U. k., D. o) Propage Foodlack (T_{ℓ}) N (W_{ℓ} (0)/ ℓ ¹ f° D: Impossible \bullet conflict any other danser in December 22, 2022 37/50

3.16.15 Lemma (Resolve in regular runs)

Consider the derivation of a conflict state (Γ, *L*; *N*; *U*; β; *k*; ⊤) ⇒Conflict (Γ, *L*; *N*; *U*; β; *k*; *D*). In a regular run, during conflict resolution *L* is not a decision literal and at least the literal *L* is resolved.

What can we apply to (T, L, N, u, p, L, D) · Backtrack: no sequires L to be a décision literal. . Skip: no (il L dog not occur in D, L teadorly · Factorize: "does not really make progress

3.16.16 Definition (State Induced Ordering)

Let $(L_1, L_2, \ldots, L_n; N; U; \beta; k; D)$ be a sound state of SCL. The trail induces a total well-founded strict order on the defined literals by

*L*¹ ≺^Γ comp(*L*1) ≺^Γ *L*² ≺^Γ comp(*L*2) ≺^Γ · · · ≺^Γ *Ln* ≺^Γ comp(*Ln*). We extend \prec _Γ to a strict total order on all literals where all undefined literals are larger than comp(L_n). We also extend \prec_Γ to a strict total order on ground clauses by multiset extension and also on multisets of ground clauses and overload \prec_{Γ} for all these cases. With \prec_{Γ} we denote the reflexive closure of \prec_{Γ} .

3.16.17 Theorem (Learned Clauses in Regular Runs)

Let $(\Gamma; N; U; \beta; k; C_0 \cdot \sigma_0)$ be the state resulting from the application of Conflict in a regular run and let *C* be the clause learned at the end of the conflict resolution, then *C* is not

redundant with respect to *N* ∪ *U* and ≺Γ.
(Idea) Consider (Γ' N U (3) k C · σ) => Bockloade
• There was a literal L in Cooz which is not in Cooz
-1 1 1 (3, 16, 15) · Co^{ris} false auder Γ' (soundness)
• Assure Coris redundant
 $\Gamma' = \frac{1}{\Gamma}$ and $(W \cup \mu)^{5}$ There is a false danser in grol (NUL)².
DIIIPII marpone havita could have gyptied can Vid carlier

- During a run, the ordering of literals changes
- Hence, \prec _Γ changes as well!
- Non-redundancy property of Theorem 3.16.17 reflects state at time of creation of learned clause
- At time of creation, no need to check for redundancy
- Still, **all** \prec _Γ contain the fixed clause subset ordering \prec _⊂

3.16.19 Theorem (Termination)

Any regular run of \Rightarrow_{SCL} terminates.

Lemma (Termination without Backtrack)

Any regular run of \Rightarrow_{SCI} that does not use the Backtrack rule terminates.

$\mathcal{M}(\Gamma, N; U; \beta; k; \top) = (1, \{\P \mid P \prec_B \beta\} - |\Gamma|, \quad 0)$ $\mathcal{M}(\Gamma, N; U; \beta; k; C) = (0, \pm \text{possible resolutions}, \pm |C|)$

3.16.19 Theorem (Termination)

Any regular run of \Rightarrow_{SCL} terminates.

Lemma (Termination without Backtrack)

Any regular run of \Rightarrow_{SCL} that does not use the Backtrack rule terminates.

 $\mathcal{M}(\Gamma, N; U; \beta; k; \top) = (1, \{\P \mid P \prec_B \beta\} - |\Gamma|, \quad 0)$ $\mathcal{M}(\Gamma, N; U; \beta; k; C) = (0, \alpha, \beta)$ #possible resolutions, $|C|$

3.16.19 Theorem (Termination)

Any regular run of \Rightarrow_{SCL} terminates.

Lemma (Termination without Backtrack)

Any regular run of \Rightarrow_{SCL} that does not use the Backtrack rule terminates.

$$
\mathcal{L} \circ \mathcal{L} \circ
$$

$$
M(\Gamma, N; U; \beta; k; T) = (1, \n\begin{matrix}\n\text{Decide}, \text{Propageale} \\
\text{Propageable} \\
M(\Gamma, N; U; \beta; k; C) = (0, \n\end{matrix})
$$
\n
$$
M(\Gamma, N; U; \beta; k; C) = (0, \n\begin{matrix}\n\text{Hpossible resolutions}, & |C| \\
\text{Hpossible resolutions}, & |C|\n\end{matrix})
$$
\n
$$
R_{\text{Solve}} \text{Skip} \text{Faclorra}
$$

17e

Lemma (Termination with Backtrack)

Any regular run of \Rightarrow_{SCL} cannot use the Backtrack rule infinitely often.

Proof.

Firstly, for a regular run, by Theorem 3.16.17, all learned clauses are non-redundant under \prec Γ. Those clauses are also non-redundant under the fixed subset ordering $\prec\subset$, which is well-founded. Due to the restriction of all clauses to be smaller than $\{\beta\}$, the overall number of non-redundant ground clauses is finite. So Backtrack can only be invoked finitely many times.

Lemma (Termination with Backtrack)

Any regular run of \Rightarrow_{SCL} cannot use the Backtrack rule infinitely often.

Proof.

Firstly, for a regular run, by Theorem 3.16.17, all learned clauses are non-redundant under \prec _Γ. Those clauses are also non-redundant under the fixed subset ordering ≺⊆, which is well-founded. Due to the restriction of all clauses to be smaller than $\{\beta\}$, the overall number of non-redundant ground clauses is finite. So Backtrack can only be invoked finitely many times.

3.16.20 Theorem (SCL Refutational Completeness)

If *N* is unsatisfiable, such that some finite $N' \subseteq \text{grd}(N)$ is unsatisfiable and β is \prec_{β} larger than all literals in *N'* then any regular run from $(\epsilon; N; \emptyset; \beta; 0; \top)$ of SCL derives \bot .

Proof.

By Theorem 3.16.19 and Theorem 3.16.14.

3.16.18 Theorem (BS Non-Redundancy is NEXPTIME-Complete)

Deciding non-redundancy of a BS clause *C* with respect to a finite BS clause set $N^{\leq C}$ is NEXPTIME-Complete.

· containment: solve $N^{50} \neq C$ (ENEXPTIME)

• hordness: $N = \{C_1, ..., C_k\}$ finite Bs-dave sel

Define a $\{C_{10}, \dots, C_k\}$ finite Bs-dave sel

Here a $\{C_{10}, \dots, C_k\}$ finite Bs-dave sel In $\{C_1, ..., C_n, 2P\}$ \iff N ausalistiable ${2P}$ is redundant December 22, 2022 47/50

Obviously, given some unsatisfiable clause set *N* there is no way to efficiently compute some β such that *ground*(*N*)^{\prec_{β} is} unsatisfiable. Therefore, in an implementation, the below rule Grow is needed to eventually provide a semi-decision procedure.

Grow $(\Gamma; N; U; \beta; k; \top) \Rightarrow_{\text{SCL}} (\epsilon; N; U; \beta'; 0; \top)$ provided $\Gamma \models \text{grd}(N)^{\prec_{\beta}}$ and $\beta \prec_{\beta} \beta'$

3.16.21 Theorem (SCL decides the BS fragment)

SCL restricted to regular runs decides satisfiability of a BS clause set if β is set appropriately.

Proof.

Let *B* be the set of constants in the BS clause set *N*. Then define \prec _β and β such that $L \prec$ _β β for all $L \in \text{grd}^{\prec \beta}$ (N) . Following the proof of Theorem 3.16.19, any SCL regular run will terminate on a BS clause set.

