

3.16.8 Definition (Sound States)

A state (Γ ; *N*; *U*; β ; *k*; *D*) is *sound* if the following conditions hold:

- 1. Γ is a consistent sequence of annotated ground literals, i.e. for a ground literal *L* it cannot be that $L \in \Gamma$ and $\neg L \in \Gamma$
 - 2. for each decomposition $\Gamma = \Gamma_1, L\sigma^{C \vee L \cdot \sigma}, \Gamma_2$ we have that $C\sigma$ is false under Γ_1 and $L\sigma$ is undefined under $\Gamma_1, N \cup U \models C \lor L$,
 - for each decomposition Γ = Γ₁, L^k, Γ₂ we have that L is undefined in Γ₁,
 - **4**. *N* ⊨ *U*,
 - 5. if $D = C \cdot \sigma$ then $C\sigma$ is false under Γ and $N \models C$. In particular, $\operatorname{grd}^{\prec_{\beta}\beta}(N) \models C\sigma$,

6. for any $L \in \Gamma$ we have $L \prec_{\beta} \beta$ and there is a $C \in N \cup U$ such that $L \in C$.

3.16.9 Lemma (Soundness of the initial state)

The initial state (ϵ ; N; \emptyset ; β ; 0; \top) is sound.

Proof.

Criteria 1–3 and 6 are trivially satisfied by $\Gamma = \epsilon$. Furthermore, $N \models \emptyset$, fulfilling criterion 4. Lastly, criterion 5 is trivially fulfilled for $D = \top$.

3.16.10 Theorem (Soundness of SCL)

All SCL rules preserve soundness, i.e. they map a sound state onto a sound state.

3.16.9 Lemma (Soundness of the initial state)

The initial state (ϵ ; N; \emptyset ; β ; 0; \top) is sound.

Proof.

Criteria 1–3 and 6 are trivially satisfied by $\Gamma = \epsilon$. Furthermore, $N \models \emptyset$, fulfilling criterion 4. Lastly, criterion 5 is trivially fulfilled for $D = \top$.

3.16.10 Theorem (Soundness of SCL)

All SCL rules preserve soundness, i.e. they map a sound state onto a sound state.

Corollary (Sondness of SCL)

The rules of SCL are sound, hence SCL starting with an initial state is sound.

Proof.

Follows by induction over the size of the run. The base case is handled by Lemma 3.16.9, the induction step is contained in Theorem 3.16.10.

3.16.12 Definition (Reasonable Runs)

A sequence of SCL rule applications is called a *reasonable run* if the rule Decide does not enable an immediate application of rule Conflict.

3.16.13 Definition (Regular Runs)

A sequence of SCL rule applications is called a *regular run* if it is a reasonable run and the rule Conflict has precedence over all other rules.

3.16.14 Theorem (Correct Termination)

If in a regular run no rules are applicable to a state $(\Gamma; N; U; \beta; k; D)$ then either $D = \bot$ and N is unsatisfiable or $D = \top$ and $grd(N)^{\prec_{\beta}\beta}$ is satisfiable and $\Gamma \models grd(N)^{\prec_{\beta}\beta}$.

• No under literal < B
(N)
$$\Gamma \neq \operatorname{grd} {}^{<\mathcal{P}}(N)$$
: Done
(N) $\Gamma \neq \operatorname{grd} {}^{<\mathcal{P}}(N)$: False clause under Γ
(N) $\rightarrow \operatorname{Choose} G_{3}(N)$
(N) $= \operatorname{Grd} {}^{<\mathcal{P}}(N) \rightarrow \operatorname{Choose} G_{3}(N)$
(N) $= \operatorname{Grd} {}^{<\mathcal{P}}(N) \rightarrow \operatorname{Choose} G_{3}(N)$

3.16.14 Theorem (Correct Termination)

If in a regular run no rules are applicable to a state $(\Gamma; N; U; \beta; k; D)$ then either $D = \bot$ and N is unsatisfiable or $D = \top$ and $grd(N)^{\prec_{\beta}\beta}$ is satisfiable and $\Gamma \models grd(N)^{\prec_{\beta}\beta}$.

3.16.15 Lemma (Resolve in regular runs)

Consider the derivation of a conflict state $(\Gamma, L; N; U; \beta; k; \top) \Rightarrow_{\text{Conflict}} (\Gamma, L; N; U; \beta; k; D)$. In a regular run, during conflict resolution *L* is not a decision literal and at least the literal *L* is resolved.

Proof (Idea). How did we end up in (F,L;N;U;B;k;T) · Complid, skip, Fadorie, Resolve : Obviously hol (D = · Decide: hol allowed by reasonability had (D = T)what's laft? · Bachtach: (T,L,T; N;U;k; D.O) Propagate Foodsad (T,L; N; UUED), K.T) Conflict to D: impossible ' regularity

3.16.15 Lemma (Resolve in regular runs)

Consider the derivation of a conflict state $(\Gamma, L; N; U; \beta; k; \top) \Rightarrow_{\text{Conflict}} (\Gamma, L; N; U; \beta; k; D)$. In a regular run, during conflict resolution *L* is not a decision literal and at least the literal *L* is resolved.

What can we apply to (F,L;N;U;B;L;D) · Bacht rach: no requires L to be a decision literal. · Skip: no (it L dog not occur in D, 4 regularly. apply constict to (F;N; U; P; E; T) I regularly. · Factorize: does not really make progress

3.16.16 Definition (State Induced Ordering)

Let $(L_1, L_2, ..., L_n; N; U; \beta; k; D)$ be a sound state of SCL. The trail induces a total well-founded strict order on the defined literals by

 $L_1 \prec_{\Gamma} \operatorname{comp}(L_1) \prec_{\Gamma} L_2 \prec_{\Gamma} \operatorname{comp}(L_2) \prec_{\Gamma} \cdots \prec_{\Gamma} L_n \prec_{\Gamma} \operatorname{comp}(L_n).$ We extend \prec_{Γ} to a strict total order on all literals where all undefined literals are larger than $\operatorname{comp}(L_n)$. We also extend \prec_{Γ} to a strict total order on ground clauses by multiset extension and also on multisets of ground clauses and overload \prec_{Γ} for all these cases. With \preceq_{Γ} we denote the reflexive closure of \prec_{Γ} .

3.16.17 Theorem (Learned Clauses in Regular Runs)

Let $(\Gamma; N; U; \beta; k; C_0 \cdot \sigma_0)$ be the state resulting from the application of Conflict in a regular run and let *C* be the clause learned at the end of the conflict resolution, then *C* is not redundant with respect to $N \cup U$ and \prec_{Γ} .

(Idea) Consider (T'.N.U.O;k.C.O) = Bochtrode There was a literal Line Cooo which is not in Co-(3. 76. 15) • Co is false under T' (soundness) • Assume Co is redundant TH grd. (NUW)^S F, Co F CO There is a take dance in grd (NoW)⁵ There is a take dance in grd (NoW)⁵ maximum could have gyptical cartier December 22, 2022 39/50

- During a run, the ordering of literals changes
- Hence, \prec_{Γ} changes as well!
- Non-redundancy property of Theorem 3.16.17 reflects state at time of creation of learned clause
- At time of creation, no need to check for redundancy
- Still, all \prec_{Γ} contain the fixed clause subset ordering \prec_{\subseteq}

3.16.19 Theorem (Termination)

Any regular run of \Rightarrow_{SCL} terminates.

Lemma (Termination without Backtrack)

Any regular run of \Rightarrow_{SCL} that does not use the Backtrack rule terminates.

$\mathcal{M}(\Gamma, N; U; \beta; k; \top) = (1, |\{P \mid P \prec_B \beta\}| - |\Gamma|, 0)$ $\mathcal{M}(\Gamma, N; U; \beta; k; C) = (0, \text{ #possible resolutions, } |C|)$

3.16.19 Theorem (Termination)

Any regular run of \Rightarrow_{SCL} terminates.

Lemma (Termination without Backtrack)

Any regular run of \Rightarrow_{SCL} that does not use the Backtrack rule terminates.

 $\mathcal{M}(\Gamma, N; U; \beta; k; \top) = (1, |\{P \mid P \prec_B \beta\}| - |\Gamma|, 0)$ $\mathcal{M}(\Gamma, N; U; \beta; k; C) = (0, \text{ #possible resolutions, } |C|)$

3.16.19 Theorem (Termination)

Any regular run of \Rightarrow_{SCL} terminates.

Lemma (Termination without Backtrack)

Any regular run of \Rightarrow_{SCL} that does not use the Backtrack rule terminates.

$$\mathcal{M}(\Gamma, N; U; \beta; k; \top) = (1, N; U; \beta; k; C) = (0, N; U; \beta; k; C)$$

Decide, Propagate

$$|\{P \mid P \prec_B \beta\}| - |\Gamma|, 0)$$

#possible resolutions, $|C|$)
Resolve, Skip Factorize

Lemma (Termination with Backtrack)

Any regular run of \Rightarrow_{SCL} cannot use the Backtrack rule infinitely often.

Proof.

Firstly, for a regular run, by Theorem 3.16.17, all learned clauses are non-redundant under \prec_{Γ} . Those clauses are also non-redundant under the fixed subset ordering \prec_{\subseteq} , which is well-founded. Due to the restriction of all clauses to be smaller than $\{\beta\}$, the overall number of non-redundant ground clauses is finite. So Backtrack can only be invoked finitely many times.

Lemma (Termination with Backtrack)

Any regular run of \Rightarrow_{SCL} cannot use the Backtrack rule infinitely often.

Proof.

Firstly, for a regular run, by Theorem 3.16.17, all learned clauses are non-redundant under \prec_{Γ} . Those clauses are also non-redundant under the fixed subset ordering \prec_{\subseteq} , which is well-founded. Due to the restriction of all clauses to be smaller than $\{\beta\}$, the overall number of non-redundant ground clauses is finite. So Backtrack can only be invoked finitely many times.

3.16.20 Theorem (SCL Refutational Completeness)

If *N* is unsatisfiable, such that some finite $N' \subseteq \operatorname{grd}(N)$ is unsatisfiable and β is \prec_{β} larger than all literals in *N'* then any regular run from $(\epsilon; N; \emptyset; \beta; 0; \top)$ of SCL derives \bot .

Proof.

By Theorem 3.16.19 and Theorem 3.16.14.

3.16.18 Theorem (BS Non-Redundancy is NEXPTIME-Complete)

Deciding non-redundancy of a BS clause *C* with respect to a finite BS clause set $N^{\leq C}$ is NEXPTIME-Complete.

 containwend: solve N≤C ≠ C CENEXPTIME)
 hordness: N = EC₁, ..., C_n] -finite BS-dane set
 Define a <_{LPO}. Add fresh P s.J. P is <_{LPO}-larger
 Hom any Gleat in N In {C1, ..., Cn, EP3.5 N unsalisfiable EP3 is redundant (sadis-frasility of BS-dause is NEXPTIME-zoupled

Obviously, given some unsatisfiable clause set *N* there is no way to efficiently compute some β such that $ground(N)^{\prec_{\beta}}$ is unsatisfiable. Therefore, in an implementation, the below rule Grow is needed to eventually provide a semi-decision procedure.

Grow $(\Gamma; N; U; \beta; k; \top) \Rightarrow_{\text{SCL}} (\epsilon; N; U; \beta'; 0; \top)$ provided $\Gamma \models \operatorname{grd}(N)^{\prec_{\beta}}$ and $\beta \prec_{\beta} \beta'$

3.16.21 Theorem (SCL decides the BS fragment)

SCL restricted to regular runs decides satisfiability of a BS clause set if β is set appropriately.

Proof.

Let *B* be the set of constants in the BS clause set *N*. Then define \prec_{β} and β such that $L \prec_{\beta} \beta$ for all $L \in \operatorname{grd}^{\prec_{\beta}\beta}(N)$. Following the proof of Theorem 3.16.19, any SCL regular run will terminate on a BS clause set.

