
The Simplex Algorithm

Prominent algorithm for solving optimization problems over a
set (conjunction) of linear inequations.
For automated reasoning, optimization is not the focus, but
solvability of a set of linear inequations.
In this context the simplex algorithm is useful as well, due to its
incremental nature.

May 23, 2017 2/1



Incremental Nature

Given a set N of inequations where the simplex algorithm has
already found a solution.
Add an inequation A to N.
The algorithm needs not to start from scratch, but continues
with the solution found for N.
In practice, we only need a few steps to derive a solution for
N ∪ {A} if it exists.

May 23, 2017 3/1



Preview CDCL(T)

A theory T is the ground conjunctive fragment of a logic.
CDCL(T) extends a solver for a theory T (theory solver) to the
complete ground fragment of the logic. It even allows us to build
a solver that combines different logics.

Important properties for a good theory solver for CDCL(T):
good runtime
produces an assignment/model in case of satisfiability
good incremental behavior

May 23, 2017 4/1



Drawbacks of Fourier-Motzkin

worst case runtime O(n2m
) (exponential runtime observed on

relevant industrial problems)
produces no assignments (would require additional
bookkeeping)
poor incremental behavior (would require additional expensive
bookkeeping)

May 23, 2017 5/1



The Simplex Algorithm

Idea: incrementally update a variable assignment until
a) the assignment is a solution, or
b) a conflict has been found

Advantages:
worst case runtime single exponential (but very rare & not on
relevant problems)
provides an assignment or a conflict (with no overhead)
good incremental behavior (just continue updating the
assignment)

May 23, 2017 6/1



The Input Problem

A set N (conjunction) of (non-strict)1 inequations over a set of
variables X .

The inequations have the form:
(
∑

xj∈X ai,jxj) ◦i ci ,

where ◦i ∈ {≥,≤} for all i , and gcd{ai,j |xj ∈ X} = 1

Additional assumptions (without loss of generality):
we assume that the xj are all different
we assume that the variables xj ∈ X are totally ordered by
some ordering ≺2

1We will later describe how to handle strict inequalities.
2The ordering ≺ will eventually guarantee termination of the algorithm.

May 23, 2017 7/1



The Goal

Decide whether there exists an assignment β from the xj into Q
such that LRA(β) |=

∧
i [(
∑

xj∈X ai,jxj) ◦i ci ], or equivalently,
LRA(β) |= N

So the xj are free variables, i.e., placeholders for concrete values,
i.e., existentially quantified.

May 23, 2017 8/1



First Step: Transforming N

The first step is to transform N into two disjoint sets E , B of
equations and simple bounds, respectively.

Hence, we split every inequation
∑

xj∈X ai,jxj ◦i ci from N into:

an equation yi ≈
∑

xj∈X ai,jxj (moved to E),
where yi is a fresh variable3,
a (simple) bound yi ◦i ci (moved to B)

Optimized Transformation:
Just move simple bounds xi ◦i ci from N to B.
Use the same variable/equation for inequations with the same
left hand side

3The yi are also part of the total ordering ≺ on all variables!

May 23, 2017 9/1



Equivalence of the Transformation

Clearly, for any assignment β and its respective extension on the
yi , the two representations are equivalent:

LRA(β) |= N

iff

LRA(β[yi 7→ β(
∑

xj∈X ai,jxj)]) |= E

and
LRA(β[yi 7→ β(

∑
xj∈X ai,jxj)]) |= B.

May 23, 2017 10/1



(In)dependent Variables

Given E and B a variable z is called dependent if it occurs on the
left hand side of an equation in E , i.e., there is an equation
(z ≈

∑
xj∈X ai,jxj) ∈ E . Otherwise, z is called independent.

By construction the initial yi are all dependent and do not occur
on the right hand side of an equation.

Any assignment over the independent variables can be extended
into an assignment over all variables that satisfies E .

Note: when we write (x ≈ ay + t) for some equation, we always
assume that y 6∈ vars(t).

May 23, 2017 11/1



Update

Given:
an assignment β,
an independent variable y ,
a rational value c,
a set of equations E

then the update of β with respect to y , c, and E is

upd(β, y , c,E) := β[y 7→ c, {x 7→ β[y 7→ c](t) | x ≈ t ∈ E}].

upd(β, y , c,E) is a solution for E .

May 23, 2017 12/1



Pivot
Given:

a dependant variable x ,
an independent variable y ,
a set of equations E , and
the defining equation (x ≈ ay + t) ∈ E of x with a 6= 0,

then the pivot operation exchanges the roles of x , y in E , i.e., x
becomes independent and y dependent.

Let E ′ be E without the defining equation of x . Then

piv(E , x , y) :=
{

y ≈ 1
a

x +
1
−a

t
}
∪ E ′

{
y 7→

(
1
a

x +
1
−a

t
)}

.

E and piv(E , x , y) are equivalent.

May 23, 2017 13/1



A Simplex State

A Simplex problem state is a quintuple (E ;B;β;S; s) where:
E is a set of equations,
B a set of simple bounds,
β an assignment to all variables in E , B,
S a set of derived bounds, and
s the status of the problem with s ∈ {>, IV,DV,⊥}.

May 23, 2017 14/1



The Status s

Given a state (E ;B;β;S; s):
s = > indicates that LRA(β) |= S;
s = IV indicates that potentially LRA(β) 6|= x ◦ c for some
independent variable x , x ◦ c ∈ S;
s = DV indicates that LRA(β) |= x ◦ c for all independent
variables x , x ◦ c ∈ S, but potentially LRA(β) 6|= x ′ ◦ c′ for some
dependent variable x ′, x ′ ◦ c′ ∈ S;
s = ⊥ indicates that the problem is unsatisfiable

May 23, 2017 15/1



Start and Final States

(E ;B;β0; ∅;>) is the start state for N and its transformation
into E , B, and assignment β0(x) := 0 for all
x ∈ vars(E ∪ B)

(E ; ∅;β;S;>) is a final state, where LRA(β) |= E ∪ S and
hence the problem is solvable

(E ;B;β;S;⊥) is a final state, where E ∪ B ∪ S has no model

May 23, 2017 16/1



Invariants

The important invariants of the simplex algorithm are:

i) for every dependent variable there is exactly one equation in
E defining the variable

ii) dependent variables do not occur on the right hand side of an
equation

iii) LRA(β) |= E
iv) Any assignment satisfying N can be extended to an

assignment satisfying E ∪ B ∪ S
v) Any assignment satisfying E ∪ B ∪ S is an assignment

satisfying N

These invariants hold initially and are maintained by a pivot (piv)
or an update (upd) operation.

May 23, 2017 17/1



Rough Draft

The simplex algorithm:
1. >: moves one bound from B to S
2. IV: repair β for all bounds in S over independent variables

(update)
3. DV: repair β for all bounds in S over dependent variables (pivot

& update)
4. repeat

May 23, 2017 18/1



FailBounds
(E ;B;β;S;>) ⇒SIMP (E ;B;β;S;⊥)

if there are two contradicting bounds x ≤ c1 and x ≥ c2 in B ∪ S
for some variable x

May 23, 2017 19/1



EstablishBound
(E ;B ] {x ◦ c};β;S;>) ⇒SIMP (E ;B;β;S ∪ {x ◦ c}; IV)

May 23, 2017 20/1



AckBounds
(E ;B;β;S;V ) ⇒SIMP (E ;B;β;S;>)

if LRA(β) |= S, V ∈ {IV,DV}

May 23, 2017 21/1



FixIndepVar
(E ;B;β;S; IV) ⇒SIMP (E ;B;upd(β, x , c,E);S; IV)

if (x ◦ c) ∈ S, LRA(β) 6|= x ◦ c, x independent

May 23, 2017 22/1



AckIndepBound
(E ;B;β;S; IV) ⇒SIMP (E ;B;β;S;DV)

if LRA(β) |= x ◦ c, for all independent variables x with bounds
x ◦ c in S

May 23, 2017 23/1



FixDepVar≥
(E ;B;β;S;DV) ⇒SIMP (E ′;B;upd(β, x , c,E ′);S;DV)

if (x ≥ c) ∈ S, x dependent, LRA(β) 6|= x ≥ c, there is an
independent variable y and equation (x ≈ ay + t) ∈ E where
(a > 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or
(a < 0 and β(y) > c′ for all (y ≥ c′) ∈ S) and E ′ := piv(E , x , y)

May 23, 2017 24/1



FixDepVar≤
(E ;B;β;S;DV) ⇒SIMP (E ′;B;upd(β, x , c,E ′);S;DV)

if (x ≤ c) ∈ S, x dependent, LRA(β) 6|= x ≤ c, there is an
independent variable y and equation (x ≈ ay + t) ∈ E where
(a < 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or
(a > 0 and β(y) > c′ for all (y ≥ c′) ∈ S) and E ′ := piv(E , x , y)

May 23, 2017 25/1



FailDepVar≤
(E ;B;β;S;DV) ⇒SIMP (E ;B;β;S;⊥)

if (x ≤ c) ∈ S, x dependent, LRA(β) 6|= x ≤ c and there is no
independent variable y and equation (x ≈ ay + t) ∈ E where
(a < 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or
(a > 0 and β(y) > c′ for all (y ≥ c′) ∈ S)

May 23, 2017 26/1



FailDepVar≥
(E ;B;β;S;DV) ⇒SIMP (E ;B;β;S;⊥)

if (x ≥ c) ∈ S, x dependent, β 6|=LA x ≥ c and there is no
independent variable y and equation (x ≈ ay + t) ∈ E where
(a > 0 and β(y) < c′ for all (y ≤ c′) ∈ S) or
(a < 0 and β(y) > c′ for all (y ≥ c′) ∈ S)

May 23, 2017 27/1



6.2.5 Definition (Reasonable Strategy)
A reasonable strategy prefers FailBounds over EstablishBounds
and the FixDepVar rules select minimal variables x , y in the
ordering ≺.

What does this mean?

We apply the FixDepVar rules only to the smallest dependent
variable x in the ordering ≺ with a violated bound
For the FixDepVar rules, we select the smallest variable y in
the ordering ≺ that can be used to fix x

May 23, 2017 28/1



6.2.6 Theorem (Simplex Soundness, Completeness &
Termination)
Given a reasonable strategy and initial set N of inequations and
its separation into E and B :
(i)⇒SIMP terminates on (E ;B;β0; ∅;>),
(ii) if (E ;B;β0; ∅;>)⇒∗SIMP (E ′;B′;β;S;⊥), then N has no
solution,
(iii) if (E ;B;β0; ∅;>)⇒∗SIMP (E ′; ∅;β;B;>) and (E ; ∅;β;B;>) is a
normal form, then LRA(β) |= N,
(iv) all final states (E ′;B′;β;S;V ) match either (ii) or (iii).

May 23, 2017 29/1



Strict Bounds

Introduce an infinitesimal small constant δ > 0 and replace the
strict bound by a non-strict one. For example, a bound x < c is
replaced by x ≤ c − δ and x > c is replaced by x ≥ c + δ.

Now δ is treated symbolically through the overall computation,
i.e., we extend Q to Qδ with new pairs (q, k) with q, k ∈ Q where
(q, k) represents q + kδ and the operations, relations on Q are
lifted to Qδ:

(q1, k1) + (q2, k2) := (q1 + q2, k1 + k2)
p(q, k) := (pq,pk)

(q1, k1) ≤ (q2, k2) := (q1 < q2) ∨ (q1 = q2 ∧ k1 ≤ k2)

May 23, 2017 30/1


