
Chapter 3

First-Order Logic

First-Order logic is a generalization of propositional logic. Propositional logic
can represent propositions, whereas first-order logic can represent individuals
and propositions about individuals. For example, in propositional logic from
“Socrates is a man” and “If Socrates is a man then Socrates is mortal” the
conclusion “Socrates is mortal” can be drawn. In first-order logic this can be
represented much more fine-grained. From “Socrates is a man” and “All man
are mortal” the conclusion “Socrates is mortal” can be drawn.

This chapter introduces first-order logic with equality. However, all calculi
presented here, namely Tableau and Free-Variable Tableau (Sections 3.6, 3.8),
Resolution (Section 3.10), and Superposition (Section 3.12) are presented only
for its restriction without equality. Purely equational logic and first-order logic
with equality are presented separately in Chapter 4 and Chapter 5, respectively.

3.1 Syntax

Most textbooks introduce first-order logic in an unsorted way. Like in program-
ming languages, sorts support distinguishing “apples from oranges” and there-
fore move part of the reasoning to a more complex syntax of formulas. Many-
sorted logic is a generalization of unsorted first-order logic where the universe
is separated into disjoint sets of objects, called sorts. Functions and predicates
are defined with respect to these sorts in a unique way. The resulting language:
many-sorted first-order logic has a very simple, but already useful sort struc-
ture, sometimes also called type structure. It can distinguish apples from oranges
by providing two different, respective sorts, but it cannot express relationships
between sorts. For example, it cannot express the integers to be a subsort of
the reals, because all sorts are assumed to be disjoint. On the other hand, the
simple many-sorted language comes at no extra cost when considering inference
or simplification rules, whereas more expressive sort languages need extra and
sometimes costly reasoning.
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Definition 3.1.1 (Many-Sorted Signature). A many-sorted signature Σ =
(S,Ω,Π) is a triple consisting of a finite non-empty set S of sort symbols, a
non-empty set Ω of operator symbols (also called function symbols) over S and
a set Π of predicate symbols. Every operator symbol f ∈ Ω has a unique sort
declaration f : S1× . . .×Sn → S, indicating the sorts of arguments (also called
domain sorts) and the range sort of f , respectively, for some S1, . . . , Sn, S ∈ S
where n ≥ 0 is called the arity of f , also denoted with arity(f). An operator
symbol f ∈ Ω with arity 0 is called a constant. Every predicate symbol P ∈ Π
has a unique sort declaration P ⊆ S1 × . . . × Sn. A predicate symbol P ∈ Π
with arity 0 is called a propositional variable. For every sort S ∈ S there must
be at least one constant a ∈ Ω with range sort S.

In addition to the signature Σ, a variable set X , disjoint from Ω is assumed, so
that for every sort S ∈ S there exists a countably infinite subset of X consisting
of variables of the sort S. A variable x of sort S is denoted by xS .

Definition 3.1.2 (Term). Given a signature Σ = (S,Ω,Π), a sort S ∈ S and
a variable set X , the set TS(Σ,X ) of all terms of sort S is recursively defined
by (i) xS ∈ TS(Σ,X ) if xS ∈ X , (ii) f(t1, . . . , tn) ∈ TS(Σ,X ) if f ∈ Ω and
f : S1 × . . .× Sn → S and ti ∈ TSi(Σ,X ) for every i ∈ {1, . . . , n}.

The sort of a term t is denoted by sort(t), i.e., if t ∈ TS(Σ,X ) then sort(t) =
S. A term not containing a variable is called ground.

For the sake of simplicity it is often written: T (Σ,X ) for
⋃
S∈S TS(Σ,X ), the

set of all terms, TS(Σ) for the set of all ground terms of sort S ∈ S, and T (Σ)
for
⋃
S∈S TS(Σ), the set of all ground terms over Σ.

A term t is called shallow if t is of the form f(x1, . . . , xn). A term t is called
linear if every variable occurs at most once in t.

Note that the sets TS(Σ) are all non-empty, because there is at least one
constant for each sort S in Σ. The sets TS(Σ,X ) include infinitely many variables
of sort S.

Definition 3.1.3 (Equation, Atom, Literal). If s, t ∈ TS(Σ,X ) then s ≈ t is an
equation over the signature Σ. Any equation is an atom (also called atomic for-
mula) as well as every P (t1, . . . , tn) where ti ∈ TSi(Σ,X ) for every i ∈ {1, . . . , n}
and P ∈ Π, arity(P ) = n, P ⊆ S1 × . . . × Sn. An atom or its negation of an
atom is called a literal.

The literal s
.
≈ t denotes either s ≈ t or t ≈ s. A literal is positive if it is an

atom and negative otherwise. A negative equational literal ¬(s ≈ t) is written
as s 6≈ t.

C

Non equational atoms can be transformed into equations: For this a
given signature is extended for every predicate symbol P as follows:
(i) add a distinct sort Bool to S, (ii) introduce a fresh constant true

of the sort Bool to Ω, (iii) for every predicate P , P ⊆ S1 × . . .× Sn add a fresh
function fP : S1, . . . , Sn → Bool to Ω, and (iv) encode every atom P (t1, . . . , tn)
as an equation fP (t1, . . . , tn) ≈ true, see Section 3.4. Definition 3.1.3 implicitly
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overloads the equality symbol for all sorts S. An alternative would be to have a
separate equality symbol for each sort.

Definition 3.1.4 (Formulas). The set FOL(Σ,X ) of many-sorted first-order
formulas with equality over the signature Σ is defined as follows for formulas
φ, ψ ∈ FΣ(X ) and a variable x ∈ X :

FOL(Σ,X ) Comment
⊥ false
> true

P (t1, . . . , tn), s ≈ t atom
(¬φ) negation

(φ ∧ ψ) conjunction
(φ ∨ ψ) disjunction
(φ→ ψ) implication
(φ↔ ψ) equivalence
∀x.φ universal quantification
∃x.φ existential quantification

A consequence of the above definition is that PROP(Σ) ⊆ FOL(Σ′,X ) if
the propositional variables of Σ are contained in Σ′ as predicates of arity 0. A
formula not containing a quantifier is called quantifier-free.

Definition 3.1.5 (Positions). It follows from the definitions of terms and for-
mulas that they have a tree-like structure. For referring to a certain subtree,
called subterm or subformula, respectively, sequences of natural numbers are
used, called positions (as introduced in Chapter 2.1.3). The set of positions of
a term, formula is inductively defined by:

pos(x) := {ε} if x ∈ X
pos(φ) := {ε} if φ ∈ {>,⊥}

pos(¬φ) := {ε} ∪ {1p | p ∈ pos(φ)}
pos(φ ◦ ψ) := {ε} ∪ {1p | p ∈ pos(φ)} ∪ {2p | p ∈ pos(ψ)}
pos(s ≈ t) := {ε} ∪ {1p | p ∈ pos(s)} ∪ {2p | p ∈ pos(t)}

pos(f(t1, . . . , tn)) := {ε} ∪
⋃n
i=1{ip | p ∈ pos(ti)}

pos(P (t1, . . . , tn)) := {ε} ∪
⋃n
i=1{ip | p ∈ pos(ti)}

pos(∀x.φ) := {ε} ∪ {1p | p ∈ pos(φ)}
pos(∃x.φ) := {ε} ∪ {1p | p ∈ pos(φ)}

where ◦ ∈ {∧,∨,→,↔} and ti ∈ T (Σ,X ) for all i ∈ {1, . . . , n}.

The prefix orders (above, strictly above and parallel), the selection and re-
placement with respect to positions are defined exactly as in Chapter 2.1.3.

An term t (formula φ) is said to contain another term s (formula ψ) if t|p = s
(φ|p = ψ). It is called a strict subexpression if p 6= ε. The term t (formula φ)
is called an immediate subexpression of s (formula ψ) if |p| = 1. For terms a
subexpression is called a subterm and for formulas a subformula, respectively.

The size of a term t (formula φ), written |t| (|φ|), is the cardinality of pos(t),
i.e., |t| := |pos(t)| (|φ| := |pos(φ)|). The depth of a term, formula is the maximal
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length of a position in the term, formula: depth(t) := max{|p| | p ∈ pos(t)}
(depth(φ) := max{|p| | p ∈ pos(φ)}).

The set of all variables occurring in a term t (formula φ) is denoted by
vars(t) (vars(φ)) and formally defined as vars(t) := {x ∈ X | x = t|p, p ∈ pos(t)}
(vars(φ) := {x ∈ X | x = φ|p, p ∈ pos(φ)}). A term t (formula φ) is
ground if vars(t) = ∅ (vars(φ) = ∅). Note that vars(∀x.a ≈ b) = ∅ where
a, b are constants. This is justified by the fact that the formula does not de-
pend on the quantifier, see the semantics below. The set of free variables of
a formula φ (term t) is given by fvars(φ, ∅) (fvars(t, ∅)) and recursively de-
fined by fvars(ψ1 ◦ ψ2, B) := fvars(ψ1, B) ∪ fvars(ψ2, B) where ◦ ∈ {∧,∨,→
,↔}, fvars(∀x.ψ,B) := fvars(ψ,B ∪ {x}), fvars(∃x.ψ,B) := fvars(ψ,B ∪ {x}),
fvars(¬ψ,B) := fvars(ψ,B), fvars(L,B) := vars(L)\B (fvars(t, B) := vars(t)\B.
For fvars(φ, ∅) I also write fvars(φ).

The function top maps terms to their top symbols, i.e., top(f(t1, . . . , tn)) :=
f and top(x) := x for some variable x.

In ∀x.φ (∃x.φ) the formula φ is called the scope of the quantifier. An oc-
currence q of a variable x in a formula φ (φ|q = x) is called bound if there is
some p < q with φ|p = ∀x.φ′ or φ|p = ∃x.φ′. Any other occurrence of a vari-
able is called free. A formula not containing a free occurrence of a variable is
called closed. If {x1, . . . , xn} are the variables freely occurring in a formula
φ then ∀x1, . . . , xn.φ and ∃x1, . . . , xn.φ (abbreviations for ∀x1.∀x2 . . . ∀xn.φ,
∃x1.∃x2 . . . ∃xn.φ, respectively) are the universal and the existential closure of
φ, respectively.

Example 3.1.6. For the literal ¬P (f(x, g(a))) the atom P (f(x, g(a))) is an
immediate subformula occurring at position 1. The terms x and g(a) are
strict subterms occurring at positions 111 and 112, respectively. The for-
mula ¬P (f(x, g(a)))[b]111 = ¬P (f(b, g(a))) is obtained by replacing x with b.
pos(¬P (f(x, g(a)))) = {ε, 1, 11, 111, 112, 1121} meaning its size is 6, its depth 4
and vars(¬P (f(x, g(a)))) = {x}.

Definition 3.1.7 (Polarity). The polarity of a subformula ψ = φ|p at position
p is pol(φ, p) where pol is recursively defined by

pol(φ, ε) := 1
pol(¬φ, 1p) := −pol(φ, p)

pol(φ1 ◦ φ2, ip) := pol(φi, p) if ◦ ∈ {∧,∨}
pol(φ1 → φ2, 1p) := −pol(φ1, p)
pol(φ1 → φ2, 2p) := pol(φ2, p)
pol(φ1 ↔ φ2, ip) := 0

pol(P (t1, . . . , tn), p) := 1
pol(t ≈ s, p) := 1

pol(∀x.φ, 1p) := pol(φ, p)
pol(∃x.φ, 1p) := pol(φ, p)
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3.2 Semantics

Definition 3.2.1 (Σ-algebra). Let Σ = (S,Ω,Π) be a signature with set of
sorts S, operator set Ω and predicate set Π. A Σ-algebra A, also called Σ-
interpretation, is a mapping that assigns (i) a non-empty carrier set SA to every
sort S ∈ S, so that (S1)A∩(S2)A = ∅ for any distinct sorts S1, S2 ∈ S, (ii) a total
function fA : (S1)A× . . .×(Sn)A → (S)A to every operator f ∈ Ω, arity(f) = n
where f : S1 × . . . × Sn → S, (iii) a relation PA ⊆ ((S1)A × . . . × (Sm)A) to
every predicate symbol P ∈ Π, arity(P ) = m. (iv) the equality relation becomes
≈A= {(e, e) | e ∈ UA} where the set UA :=

⋃
S∈S(S)A is called the universe of

A.

A (variable) assignment, also called a valuation for an algebra A is a function
β : X → UA so that β(x) ∈ SA for every variable x ∈ X , where S = sort(x). A
modification β[x 7→ e] of an assignment β at a variable x ∈ X , where e ∈ SA
and S = sort(x), is the assignment defined as follows:

β[x 7→ e](y) =

{
e if x = y

β(y) otherwise.

Informally speaking, the assignment β[x 7→ e] is identical to β for every variable
except x, which is mapped by β[x 7→ e] to e.

The homomorphic extension A(β) of β onto terms is a mapping T (Σ,X )→
UA defined as (i) A(β)(x) = β(x), where x ∈ X and (ii) A(β)(f(t1, . . . , tn)) =
fA(A(β)(t1), . . . ,A(β)(tn)), where f ∈ Ω, arity(f) = n.

Given a term t ∈ T (Σ,X ), the value A(β)(t) is called the interpretation of
t under A and β. If the term t is ground, the value A(β)(t) does not depend
on a particular choice of β, for which reason the interpretation of t under A is
denoted by A(t).

An algebra A is called term-generated, if every element e of the universe UA
of A is the image of some ground term t, i.e., A(t) = e.

Definition 3.2.2 (Semantics). An algebra A and an assignment β are extended
to formulas φ ∈ FOL(Σ,X ) by

A(β)(⊥) := 0
A(β)(>) := 1

A(β)(s ≈ t) := 1 if A(β)(s) = A(β)(t) and 0 otherwise
A(β)(P (t1, . . . , tn)) := 1 if (A(β)(t1), . . . ,A(β)(tn)) ∈ PA and 0 otherwise

A(β)(¬φ) := 1−A(β)(φ)
A(β)(φ ∧ ψ) := min({A(β)(φ),A(β)(ψ)})
A(β)(φ ∨ ψ) := max({A(β)(φ),A(β)(ψ)})
A(β)(φ→ ψ) := max({(1−A(β)(φ)),A(β)(ψ)})
A(β)(φ↔ ψ) := if A(β)(φ) = A(β)(ψ) then 1 else 0
A(β)(∃xS .φ) := 1 if A(β[x 7→ e])(φ) = 1 for some e ∈ SA and 0 otherwise
A(β)(∀xS .φ) := 1 if A(β[x 7→ e])(φ) = 1 for all e ∈ SA and 0 otherwise
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A formula φ is called satisfiable by A under β (or valid in A under β) if
A, β |= φ; in this case, φ is also called consistent ; satisfiable by A if A, β |= φ
for some assignment β; satisfiable if A, β |= φ for some algebra A and some
assignment β; valid in A, written A |= φ, if A, β |= φ for any assignment β; in
this case, A is called a model of φ; valid, written |= φ, if A, β |= φ for any algebra
A and any assignment β; in this case, φ is also called a tautology ; unsatisfiable
if A, β 6|= φ for any algebra A and any assignment β; in this case φ is also called
inconsistent.

Note that ⊥ is inconsistent whereas > is valid. If φ is a sentence that is a
formula not containing a free variable, it is valid in A if and only if it is satisfiable
by A. This means the truth of a sentence does not depend on the choice of an
assignment.

Given two formulas φ and ψ, φ entails ψ, or ψ is a consequence of φ, written
φ |= ψ, if for any algebra A and assignment β, if A, β |= φ then A, β |= ψ. The
formulas φ and ψ are called equivalent, written φ |=| ψ, if φ |= ψ and ψ |= φ. Two
formulas φ and ψ are called equisatisfiable, if φ is satisfiable iff ψ is satisfiable (not
necessarily in the same models). Note that if φ and ψ are equivalent then they
are equisatisfiable, but not the other way around. The notions of “entailment”,
“equivalence” and “equisatisfiability” are naturally extended to sets of formulas,
that are treated as conjunctions of single formulas. Thus, given formula sets M1

and M2, the set M1 entails M2, written M1 |= M2, if for any algebra A and
assignment β, ifA, β |= φ for every φ ∈M1 thenA, β |= ψ for every ψ ∈M2. The
sets M1 and M2 are equivalent, written M1 |=|M2, if M1 |= M2 and M2 |= M1.
Given an arbitrary formula φ and formula set M , M |= φ is written to denote
M |= {φ}; analogously, φ |= M stands for {φ} |= M .

Clauses are implicitly universally quantified disjunctions of literals. A clause
C is satisfiable by an algebra A if for every assignment β there is a literal L ∈ C
with A, β |= L. Note that if C = {L1, . . . , Lk} is a ground clause, i.e., every Li
is a ground literal, then A |= C if and only if there is a literal Lj in C so that
A |= Lj . A clause set N is satisfiable iff all clauses C ∈ N are satisfiable by the
same algebra A. Accordingly, if N and M are two clause sets, N |= M iff every
model A of N is also a model of M .

Definition 3.2.3 (Congruence). Let Σ = (S,Ω,Π) be a signature and A a
Σ-algebra. A congruence ∼ is an equivalence relation on (S1)A ∪ . . . ∪ (Sn)A

such that

1. if a ∼ b then there is an S ∈ S such that a ∈ SA and b ∈ SA

2. for all ai ∼ bi, ai, bi ∈ (Si)
A and all functions f : S1 × . . . × Sn → S it

holds fA(a1, . . . , an) ∼ fA(b1, . . . , bn)

3. for all ai ∼ bi, ai, bi ∈ (Si)
A and all predicates P ⊆ S1 × . . .× Sn it holds

(a1, . . . , an) ∈ PA iff (b1, . . . , bn) ∈ PA

The first condition guarantees that a congruence ∼ respects the disjoint sort
structure. The second requires compatibility with function applications and the
third compatibility with predicate definitions. Actually, for any Σ-algebra A the
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interpretation of equality ≈A is a congruence, Exercise ??. Further on in this
chapter I will also show that the other way round can hold as well: given a
suitable congruence on some set, the equivalence classes of the congruence can
then serve as the domain of a Σ-algebra providing a suitable interpretation for
equality.

3.3 Substitutions

For a concrete propositional logic interpretation, it is sufficient select a valuation,
i.e., truth values for the propositional variables, see Section 2.2. In first-order
logic this becomes more versatile. The truth values for propositional variables
correspond to n-ary relations on the domain with respect to valuations for the
first-order variables, see Section 3.2. So in addition to the 0-relations for propo-
sitional variables, n-ary relations need to be considered under an assignment
β for the first-order variables. When calculi for propositional logic considered
partial interpretations, e.g., Tableau (Section 2.4) or CDCL (Section ??)), they
are presented by sets of propositional literals taken from the processed clause
set. For first-order logic this corresponds to taking first-order literals from the
clause set and then instantiating the variables in these literals with terms in
order to detect conflicts or for propagation. For example, a first-order clause
¬P (x) ∨ T (x) with universally quantified x propagates the literal T (f(y)) un-
der the partial interpretation P (f(y)) where x is instantiated with f(y). This
instantiation is the syntactic counterpart of an assignment and represented by
substitutions represented below.

Definition 3.3.1 (Substitution (well-sorted)). A well-sorted substitution is a
mapping σ : X → T (Σ,X ) so that

1. σ(x) 6= x for only finitely many variables x and

2. sort(x) = sort(σ(x)) for every variable x ∈ X .

The application σ(x) of a substitution σ to a variable x is often written in
postfix notation as xσ. The variable set dom(σ) := {x ∈ X | xσ 6= x} is called
the domain of σ. The term set codom(σ) := {xσ | x ∈ dom(σ)} is called the
codomain of σ. From the above definition it follows that dom(σ) is finite for
any substitution σ. The composition of two substitutions σ and τ is written as
a juxtaposition στ , i.e., tστ = (tσ)τ . A substitution σ is called idempotent if
σσ = σ. A substitution σ is idempotent iff dom(σ) ∩ vars(codom(σ)) = ∅.

Substitutions are often written as sets of pairs {x1 7→ t1, . . . , xn 7→ tn} if
dom(σ) = {x1, . . . , xn} and xiσ = ti for every i ∈ {1, . . . , n}. The modification
of a substitution σ at a variable x is defined as follows:

σ[x 7→ t](y) =

{
t if y = x
σ(y) otherwise
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A substitution σ is identified with its extension to formulas and defined as
follows:

1. ⊥σ = ⊥,

2. >σ = >,

3. (f(t1, . . . , tn))σ = f(t1σ, . . . , tnσ),

4. (P (t1, . . . , tn))σ = P (t1σ, . . . , tnσ),

5. (s ≈ t)σ = (sσ ≈ tσ),

6. (¬φ)σ = ¬(φσ),

7. (φ ◦ ψ)σ = φσ ◦ ψσ where ◦ ∈ {∨,∧},

8. (Qxφ)σ = Qz(φσ[x 7→ z]) where Q ∈ {∀,∃}, z and x are of the same sort
and z is a fresh variable.

The result tσ (φσ) of applying a substitution σ to a term t (formula φ)
is called an instance of t (φ). The substitution σ is called ground if it maps
every domain variable to a ground term, i.e., the codomain of σ consists of
ground terms only. If the application of a substitution σ to a term t (formula
φ) produces a ground term tσ (a variable-free formula, vars(φσ) = ∅), then tσ
(φσ) is called ground instance of t (φ) and σ is called grounding for t (φ). The
set of ground instances of a clause set N is given by grd(Σ, N) = {Cσ | C ∈
N, σ is grounding for C} is the set of ground instances of N . A substitution σ
is called a variable renaming if codom(σ) ⊆ X and for any x, y ∈ X , if x 6= y
then xσ 6= yσ.

The following lemma establishes the relationship between substitutions and
assignments.

Lemma 3.3.2 (Substitutions and Assignments). Let β be an assignment of
some interpretation A of a term t and σ a substitution. Then

β(tσ) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t)

where dom(σ) = {x1, . . . , xn}.
Proof. By structural induction on t. If t = a is a constant, then β(aσ) = aA =
β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](a). The case t = x is a variable and x /∈
dom(σ) is identical to the case that t is a constant. So t = xi is a variable
and xi ∈ dom(σ), where xiσ = s. If s is a variable, then β(tσ) = β(xiσ) =
β(s) = β[xi 7→ β(s)](xi) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t). The case
s is a constant is analogous to the case t is a constant. So let xiσ = s =
f(s1, . . . , sm). β(xiσ) = β(f(s1, . . . , sm)) = fA(β(s1), . . . , β(sm)) = β[xi 7→
f(s1, . . . , sm)](xi) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t).
For the inductive case let t = f(t1, . . . , tm). Then β(tσ) = fA(β(t1σ), . . . , β(tmσ)) =
fA(β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t1), . . . , β[x1 7→ β(x1σ), . . . , xn 7→
β(xnσ)](tm)) = β[x1 7→ β(x1σ), . . . , xn 7→ β(xnσ)](t).
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3.4 Equality

The equality predicate is build into the first-order language in Section 3.1 and
not part of the signature. It is a first class citizen. This is the case although
it can be actually axiomatized in the language. The motivation is that firstly,
many real world problems naturally contain equations. They are a means to
define functions. Then predicates over terms model properties of the functions.
Secondly, without special treatment in a calculus, it is almost impossible to
automatically prove non-trivial properties of a formula containing equations.

In this section I firstly show that any formula can be transformed into a
formula where all atoms are equations. Secondly, that any formula containing
equations can be transformed into a formula where the equality predicate is
replaced by a fresh predicate together with some axioms. In the first case the
respective clause sets are equivalent, in the second case the transformation is
satisfiability preserving. For the replacement of any predicate R by equations
over a fresh function fR we assume an additional fresh sort Bool with a fresh
constant true.

InjEq χ[R(t1,1, . . . , t1,n)]p1 . . . [R(tm,1, . . . , tm,n)]pm ⇒IE χ[fR(t1,1, . . . , t1,n) ≈
true]p1 . . . [fR(tm,1, . . . , tm,n) ≈ true]pm
provided R is a predicate occurring in χ, {p1, . . . , pm} are all positions of atoms
with predicate R in χ and fR is new with appropriate sorting

Proposition 3.4.1. Let χ⇒∗IE χ′ then χ is satisfiable (valid) iff χ′ is satisfiable
(valid).

Proof. (Sketch) The basic proof idea is to establish the relation (tA1 , . . . , t
A
n ) ∈

RA iff fAR (tA1 , . . . , t
A
n ) = trueA. Furthermore, the sort of true is fresh to χ and

the equations fR(t1, . . . , tn) ≈ true do not interfere with any term ti because
the fR are all fresh and only occur on top level of the equations.

When removing equality from a formula it needs to be axiomatized. For
simplicity, I assume here that the considered formula χ is one-sorted, i.e., there
is only one sort occurring for functions, relations in χ. The extension to formulas
with many sorts is straightforward and discussed below.

RemEq χ[l1 ≈ r1]p1
. . . [lm ≈ rm]pm ⇒RE χ[E(l1, r1)]p1

. . . [E(lm, rm)]pm∧
def(χ,E)

provided {p1, . . . , pm} are all positions of equations li = ri in χ and E is a new
binary predicate

The formula def(χ,E) is the axiomatization of equality for χ and it consists
of a conjunction of the equivalence relation axioms for E

∀x.E(x, x)
∀x, y.(E(x, y)→ E(y, x))
∀x, y, z.((E(x, y) ∧ E(x, z))→ E(x, z))

plus the congruence axioms for E for every n-ary function symbol f
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∀x1, y1, . . . , xn, yn.((E(x1, y1) ∧ . . . ∧ E(xn, yn))
→ E(f(x1, . . . , xn), f(y1, . . . , yn)))

plus the congruence axioms for E for every m-ary predicate symbol P
∀x1, y1, . . . , xm, ym.((E(x1, y1) ∧ . . . ∧ E(xm, ym) ∧ P (x1, . . . , xm))

→ P (y1, . . . , ym)

Proposition 3.4.2. Let χ⇒RE χ
′ then χ is satisfiable iff χ′ is satisfiable.

Proof. (Sketch) The identity on an algebra (see Definition 3.2.2) is a congruence
relation proving the direction from left to right. The direction from right to left
is more involved.

Note that ⇒RE is not validity preserving. Consider the simple example for-
mula a ≈ a which is valid for any constant a. Its translation E(a, a) ∧ def(a ≈
a,E) is not valid, e.g., consider an algebra with EA = ∅.

Now in case χ has many different sorts then for each sort S one new fresh
predicate ES is needed for the translation. For each of these predicates equiv-
alence relation and congruence axioms need to be generated where for every
function f only one axiom using ES is needed, where S is the range sort of S.
Similar for the domain sorts of f and accordingly for predicates.

3.5 Herbrand’s Theorem

There are substantial differences between propositional logic and its general-
ization first-order logic. There are only finitely many formulas in propositional
logic that can be semantically distinguished for some finite signature. Given
a finite propositional signature Σ there are “only” 2|Σ| different valuations. In
first-order logic there are infinitely many different interpretations for formulas
over some finite first-order signature Σ. As we will see, this moves the satisfia-
bility problem for some set of clauses from NP (propositional) to undecidable
(first-order), see Section 3.15. In this section I present two results that are the
basis for most first-order calculi. Firstly, I show that when considering satisfi-
ability of a clause set, it is not necessary to consider arbitrary interpretations.
Instead, one specific interpretation, called Herbrand interpretation, is sufficient
for establishing satisfiability. Secondly, interpretations for first-order clause sets,
including Herbrand interpretations, typically consider an infinite domain. This
implies infinitely many different assignments defining the semantics for a clause
set. Still, if some clause set is unsatisfiable, then finitely many assignments are
sufficient to prove unsatisfiability. This property is called Compactness of first-
order logic. Putting the two results together, it is sufficient to consider finitely
many assignments from the Herbrand interpretation in order to prove unsatisfi-
ability of a set of clauses: the basis for all modern automated reasoning calculi
for first-order logic.

Definition 3.5.1 (Herbrand Interpretation). A Herbrand Interpretation (over
Σ) is a Σ-algebra H such that
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1. SH := TS(Σ) for every sort S ∈ S

2. fH : (s1, . . . , sn) 7→ f(s1, . . . , sn) where f ∈ Ω, arity(f) = n, si ∈ SHi and
f : S1 × . . .× Sn → S is the sort declaration for f

3. PH ⊆ (SH1 × . . .×SHm) where P ∈ Π, arity(P ) = m and P ⊆ S1× . . .×Sm
is the sort declaration for P

Lemma 3.5.2 (Herbrand Interpretations are Well-Defined). Every Herbrand
Interpretation is a Σ-algebra.

Proof. (i) the carriers are non-empty because every signature contains a con-
stant declaration for each sort. If SH ∩ TH 6= ∅, then there must be two decla-
rations for the same function symbol in Σ which is forbidden. Furthermore, ∼
is well-sorted.

(ii) functions are total by definition.
(iii) relations are assigned.

In other words, values for ground terms are fixed to be the ground terms
itself and functions are fixed to be the term constructors. Predicate symbols
may be freely interpreted as relations over ground terms.

Proposition 3.5.3 (Representing Herbrand Interpretations). A Herbrand in-
terpretation A can be uniquely determined by a set of ground atoms I

(s1, . . . , sn) ∈ PA iff P (s1, . . . , sn) ∈ I

Thus Herbrand interpretations (over Σ) can be identified with sets of Σ-
ground atoms. A Herbrand interpretation I is called a Herbrand model of φ,
where I assume φ does not contain equations, if I |= φ.

C

Historically, Herbrand interpretations have been defined for first-order
logic without equality. These are exactly the definitions above. Later
on, I’ll extend these notions such that they also cover the case of
equations.

Example 3.5.4. Consider the signature Σ = ({S}, {a, b}, {P,Q}), where a, b
are constants, arity(P ) = 1, arity(Q) = 2, and all constants, predicates are
defined over the sort S. Then the following are examples of Herbrand interpre-
tations over Σ, where for all interpretations SA = {a, b}.

I1 : = ∅
I2 : = {P (a), Q(a, a), Q(b, b)}
I3 : = {P (a), P (b), Q(a, a), Q(b, b), Q(a, b), Q(b, a)}

Now consider the extension Σ′ of Σ by one unary function symbol g : S → S.
Then the following are examples of Herbrand interpretations over Σ′, where for
all interpretations SA = {a, b, g(a), g(b), g(g(a)), . . .}.

I ′1 : = ∅
I ′2 : = {P (a), Q(a, g(a)), Q(b, b)}
I ′3 : = {P (a), P (g(a)), P (g(g(a))), . . . , Q(a, a), Q(b, b), Q(b, g(b)), Q(b, g(g(b))), . . .}
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Theorem 3.5.5 (Herbrand’s Theorem). Let N be a finite set of Σ-clauses
without equality. Then N is satisfiable iff N has a Herbrand model over Σ iff
grd(Σ, N) has a Herbrand model over Σ.

Proof. Firstly, I prove that if N has a model, then it has a Herbrand model
over Σ. So let A be a model for N . Since N is finite let’s consider exactly the
subsignature of N . Then PH = {(t1, . . . , tn) | (tA1 , . . . , t

A
n ) ∈ PA, ti ∈ T (Σ)}.

Finally, I need to prove that H is a model for N . Assume not. Then there is a
clause C ∈ N and an assignment βH such thatH(βH)(C) = 0 where βH(xi) = ti
for all xi ∈ vars(C) with ti ∈ Tsort(xi)(Σ). Let σ = {x1 7→ t1, . . . , xm 7→ tm}.
Now consider an assignment βA where βA(xi) = tAi . Since A |= N also A(βA) |=
C, in particular, there is a literal L ∈ C with A(βA)(L) = 1. If it is an atom
P (l1, . . . , ln) with (A(βA)(l1), . . . ,A(βA)(ln)) ∈ PA, but then (l1σ, . . . , lnσ) ∈
PH by definition of H and Lemma 3.3.2. Hence (H(βH)(l1), . . . ,H(βH)(ln)) ∈
PH, a contradiction. The case where L is negative is dual.
Secondly, due to Lemma 3.5.2 the existence of a Herbrand model implies satis-
fiability.
It remains to be shown that N has a Herbrand model over Σ iff grd(Σ, N) has a
Herbrand model. Firstly, assume N has a Herbrand model H over Σ. Then H is
also a model for grd(Σ, N). Assume not. Then there is a clause Cσ ∈ grd(Σ, N),
C ∈ N , such thatH 6|= Cσ. But thenH(βH[x1 7→ (x1σ), . . . , xn 7→ (xnσ)])(C) =
0, dom(σ) = {x1, . . . , xn}, contradicting H is a model for N . Secondly, assume
H is a model for grd(Σ, N). Then H is also a model for N . Assume not, then
there is a clause C ∈ N and ad assignment βH[x1 7→ (x1σ), . . . , xn 7→ (xnσ)],
vars(C) = {x1, . . . , xn}, such thatH(βH[x1 7→ (x1σ), . . . , xn 7→ (xnσ)])(C) = 0.
But then H 6|= Cσ, contradicting H is a model for grd(Σ, N).

Example 3.5.6 (Example of a grd(Σ, N)). Consider Σ′ from Example 3.5.4
and the clause set N = {Q(x, x) ∨ ¬P (x),¬P (x) ∨ P (g(x))}. Then the set of
ground instances grd(Σ′, N) = {

Q(a, a) ∨ ¬P (a)
Q(b, b) ∨ ¬P (b)
Q(g(a), g(a)) ∨ ¬P (g(a))
. . .
¬P (a) ∨ P (g(a))
¬P (b) ∨ P (g(b))
¬P (g(a)) ∨ P (g(g(a)))
. . .}

is satisfiable. For example by the Herbrand models
I1 : = ∅
I2 : = {P (b), Q(b, b), P (g(b)), Q(g(b), g(b)), . . .}

Definition 3.5.7 (Herbrand Interpretation with Equality). A Herbrand Inter-
pretation (over Σ) is a Σ-algebra H such that

1. a well-sorted equivalence relation ∼ on T (Σ), i.e., if s ∼ t then s, t ∈ TS(Σ)
for some S where [s] denotes the equivalence class containing s
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2. SH := TS(Σ)/ ∼ for every sort S ∈ S

3. fH : ([s1], . . . , [sn]) 7→ [f(s1, . . . , sn)] where f ∈ Ω, arity(f) = n, si ∈
TSi(Σ) and f : S1 × . . .× Sn → S is the sort declaration for f

4. PH ⊆ (SH1 × . . .×SHm) where P ∈ Π, arity(P ) = m and P ⊆ S1× . . .×Sm
is the sort declaration for P

Lemma 3.5.8 (Herbrand Interpretations are Well-Defined). Every Herbrand
Interpretation is a Σ-algebra.

Proof. (i) the carriers are non-empty because every signature contains a con-
stant declaration for each sort. If SH ∩ TH 6= ∅, then there must be two decla-
rations for the same function symbol in Σ which is forbidden. Furthermore, ∼
is well-sorted.

(ii) functions are total by definition.
(iii) relations are assigned.

In other words, values are fixed to be equivalence classes of ground terms
and functions are fixed to be the term constructors. Predicate symbols may be
freely interpreted as relations over equivalence classes of ground terms.

Proposition 3.5.9. A Herbrand interpretation A can be uniquely determined
by a set of ground atoms I

(s1, . . . , sn) ∈ PA iff P (s1, . . . , sn) ∈ I
t ∼ s iff s ≈ t ∈ I

Thus Herbrand interpretations (over Σ) can be identified with sets of Σ-
ground atoms. A Herbrand interpretation I is called a Herbrand model of φ, if
I |= φ.

C

Historically, Herbrand interpretations have been defined for first-order
logic without equality. The above definition and the below Herbrand
theorem are generalizations. If no equality atoms are present, then
they coincide with the classical definitions. However, I chose to include equality,
because the definition now already suggests what is needed for a calculus in
order to cope explicitly with equality.

Example 3.5.10. Consider the signature Σ = ({S}, {a, b}, {P,Q}), where a, b
are constants, arity(P ) = 1, arity(Q) = 2, and all constants, predicates are
defined over the sort S. Then the following are examples of Herbrand interpre-
tations over Σ, where for all interpretations SA = {a, b}.

I1 : = ∅
I2 : = {P (a), Q(a, a), Q(b, b)}
I3 : = {P (a), P (b), Q(a, a), Q(b, b), Q(a, b), Q(b, a)}

Now consider the extension Σ′ of Σ by one unary function symbol g : S → S.
Then the following are examples of Herbrand interpretations over Σ′, where for
all interpretations SA = {a, b, g(a), g(b), g(g(a)), . . .}.
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Proof. If N is unsatisfiable, saturation via the tableau calculus generates a
closed tableau. So there is an i such that N ⇒i

TAB N ′ and N ′ is closed. Every
closed branch is the result of finitely many tableau rule applications on finitely
many clauses {C1, . . . , Cn} ⊆ N . Let M be the union of all these finite clause
sets, so M ⊆ N . Tableau is sound, so M is a finite, unsatisfiable subset of N .

3.7 Unification

Definition 3.7.1 (Unifier). Two terms s and t of the same sort are said to
be unifiable if there exists a well-sorted substitution σ so that sσ = tσ, the
substitution σ is then called a well-sorted unifier of s and t. The unifier σ is
called most general unifier, written σ = mgu(s, t), if any other well-sorted unifier
τ of s and t it can be represented as τ = στ ′, for some well-sorted substitution
τ ′.

Obviously, two terms of different sort cannot be made equal by well-sorted
instantiation. Since well-sortedness is preserved by all rules of the unification
calculus, we assume from now an that all equations, terms, and substitutions
are well-sorted.

The first calculus is the naive standard unification calculus that is typically
found in the (old) literature on automated reasoning [?]. A state of the naive
standard unification calculus is a set of equations E or ⊥, where ⊥ denotes that
no unifier exists. The set E is also called a unification problem. The start state
for checking whether two terms s, t, sort(s) = sort(t), (or two non-equational
atoms A, B) are unifiable is the set E = {s = t} (E = {A = B}). A variable x
is solved in E if E = {x = t} ] E′, x 6∈ vars(t) and x 6∈ vars(E).

A variable x ∈ vars(E) is called solved in E if E = E′ ] {x = t} and
x 6∈ vars(t) and x 6∈ vars(E′).

Tautology E ] {t = t} ⇒SU E

Decomposition E ] {f(s1, . . . , sn) = f(t1, . . . , tn)} ⇒SU E ∪ {s1 =
t1, . . . , sn = tn}

Clash E ] {f(s1, . . . , sn) = g(s1, . . . , sm)} ⇒SU ⊥
if f 6= g

Substitution E ] {x = t} ⇒SU E{x 7→ t} ∪ {x = t}
if x ∈ vars(E) and x 6∈ vars(t)

Occurs Check E ] {x = t} ⇒SU ⊥
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if x 6= t and x ∈ vars(t)

Orient E ] {t = x} ⇒SU E ∪ {x = t}
if t 6∈ X

Theorem 3.7.2 (Soundness, Completeness and Termination of ⇒SU). If s, t
are two terms with sort(s) = sort(t) then

1. if {s = t} ⇒∗SU E then any equation (s′ = t′) ∈ E is well-sorted, i.e.,
sort(s′) = sort(t′).

2. ⇒SU terminates on {s = t}.

3. if {s = t} ⇒∗SU E then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of
{s = t}.

4. if {s = t} ⇒∗SU ⊥ then s and t are not unifiable.

5. if {s = t} ⇒∗SU {x1 = t1, . . . , xn = tn} and this is a normal form, then
{x1 7→ t1, . . . , xn 7→ tn} is an mgu of s, t.

Proof. 1. by induction on the length of the derivation and a case analysis for
the different rules.
2. for a state E = {s1 = t1, . . . , sn = tn} take the measure µ(E) := (n,M, k)
where n is the number of unsolved variables, M the multiset of all term depths of
the si, ti and k the number of equations t = x in E where t is not a variable. The
state ⊥ is mapped to (0, ∅, 0). Then the lexicographic combination of > on the
naturals and its multiset extension shows that any rule application decrements
the measure.
3. by induction on the length of the derivation and a case analysis for the
different rules. Clearly, for any state where Clash, or Occurs Check generate ⊥
the respective equation is not unifiable.
4. a direct consequence of 3.
5. if E = {x1 = t1, . . . , xn = tn} is a normal form, then for all xi = ti we have
xi 6∈ vars(ti) and xi 6∈ vars(E \ {xi = ti}), so {x1 = t1, . . . , xn = tn}{x1 7→
t1, . . . , xn 7→ tn} = {t1 = t1, . . . , tn = tn} and hence {x1 7→ t1, . . . , xn 7→ tn} is
an mgu of {x1 = t1, . . . , xn = tn}. By 3. it is also an mgu of s, t.

Example 3.7.3 (Size of Standard Unification Problems). Any normal form of
the unification problem E given by
{f(x1, g(x1, x1), x3, . . . , g(xn, xn)) = f(g(x0, x0), x2, g(x2, x2), . . . , xn+1)}

with respect to ⇒SU is exponentially larger than E.

The second calculus, polynomial unification, prevents the problem of expo-
nential growth by introducing an implicit representation for the mgu. For this
calculus the size of a normal form is always polynomial in the size of the input
unification problem.

Tautology E ] {t = t} ⇒PU E



3.7. UNIFICATION 135

Decomposition E ] {f(s1, . . . , sn) = f(t1, . . . , tn)} ⇒PU E ] {s1 =
t1, . . . , sn = tn}

Clash E ] {f(t1, . . . , tn) = g(s1, . . . , sm)} ⇒PU ⊥
if f 6= g

Occurs Check E ] {x = t} ⇒PU ⊥
if x 6= t and x ∈ vars(t)

Orient E ] {t = x} ⇒PU E ] {x = t}
if t 6∈ X

Substitution E ] {x = y} ⇒PU E{x 7→ y} ] {x = y}
if x ∈ vars(E) and x 6= y

Cycle E ] {x1 = t1, . . . , xn = tn} ⇒PU ⊥
if there are positions pi with ti|pi = xi+1, tn|pn = x1 and some pi 6= ε

Merge E ] {x = t, x = s} ⇒PU E ] {x = t, t = s}
if t, s 6∈ X and |t| ≤ |s|

Theorem 3.7.4 (Soundness, Completeness and Termination of ⇒PU). If s, t
are two terms with sort(s) = sort(t) then

1. if {s = t} ⇒∗PU E then any equation (s′ = t′) ∈ E is well-sorted, i.e.,
sort(s′) = sort(t′).

2. ⇒PU terminates on {s = t}.

3. if {s = t} ⇒∗PU E then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of
{s = t}.

4. if {s = t} ⇒∗PU ⊥ then s and t are not unifiable.

Theorem 3.7.5 (Normal Forms generated by ⇒PU). Let {s = t} ⇒∗PU {x1 =
t1, . . . , xn = tn} be a normal form. Then

1. xi 6= xj for all i 6= j and without loss of generality xi /∈ vars(ti+k) for all
i, k, 1 ≤ i < n, i+ k ≤ n.

2. the substitution {x1 7→ t1}{x2 7→ t2} . . . {xn 7→ tn} is an mgu of s = t.

Proof. 1. If xi = xj for some i 6= j then Merge is applicable. If xi ∈ vars(ti)
for some i then Occurs Check is applicable. If the xi cannot be ordered in the
described way, then either Substitution or Cycle is applicable.
2. Since xi /∈ vars(ti+k) the composition yields the mgu.
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Lemma 3.7.6 (Size of Unifiers). Let {s = t} be a unification problem between
two non-variable terms. Then

1. if s and t are linear then for any unifier σ and any term r ∈ codom(σ),
|r| < |s| and |r| < |t| as well as depth(r) < depth(s) and depth(r) <
depth(t),

2. if s is shallow and linear, then the mgu σ of s and t is also a matcher from
s to t, i.e., sσ = t

Proof. Both parts follow directly from the structure of the terms s, t: if they are
both linear then the substitution rule is never applied. If s is shallow and linear,
it has the form f(x1, . . . , xn), all xi different, then the unifier is σ = {xi 7→ t|i |
1 ≤ i ≤ n}.

3.8 First-Order Free-Variable Tableau

An important disadvantage of standard first-order tableau is that the γ ground
term instances need to be guessed. The main complexity in proving a formula
to be valid lies in this guessing as for otherwise tableau terminates with a proof.
Guessing useless ground terms may result in infinite branches. A natural idea is
to guess ground terms that can eventually be used to close a branch. Of course,
it is not known which ground term will close a branch. Therefore, it would be
great to postpone the γ instantiations. This is the idea of free-variable first-order
tableau. Instead of guessing a ground term for a γ formula, free-variable tableau
introduces a fresh variable. Then a branch can be closed if two complementary
literals have a common ground instance, i.e., their atoms are unifiable. The
instantiation is delayed until a branch is closed for two literals via unification.
As a consequence, for δ formulas no longer constants are introduced but shallow,
so called Skolem terms in the formerly universally quantified variables that had
the δ formula in their scope.

The new calculus needs to keep track of scopes of variables, so I move from
a state as a set of pairs of a sequence and a set of constants, see standard first-
order tableau Section 3.6, to a set of sequences of pairs (Mi, Xi) where Xi is a
set of variables.

Definition 3.8.1 (Direct Free-Variable Tableau Descendant). Given a γ- or
δ-formula φ, Figure 3.2 shows its direct descendants.

The notion of closedness, Section 3.6, transfers exactly from standard to
free-variable tableau. For α- and β-formulas the definition of an open formula
remains unchanged as well. A γ- or δ-formula is called open in (M,X) if no direct
descendant is contained in M . Note that instantiation of a tableau may remove
direct descendants of γ- or δ-formulas by substituting terms for variables. Then
a branch, pair (M,X), sequence M , is open if it is not closed and there is an
open formula in M or there is pair of unifiable, complementary literals in M .
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γ Descendant γ(y)
∀xS .ψ ψ{xS 7→ yS}
¬∃xS .ψ ¬ψ{xS 7→ yS}

for a fresh variable yS

δ Descendant δ(f(y1, . . . , yn))
∃xS .ψ ψ{xS 7→ f(y1, . . . , yn)}
¬∀xS .ψ ¬ψ{xS 7→ f(y1, . . . , yn)}

for some fresh Skolem function f,
f : sort(y1)× . . .× sort(yn)→ S

Figure 3.2: γ- and δ-Formulas

γ-Expansion N]{((φ1, . . . , ψ, . . . , φn), X)} ⇒FT N∪{((φ1, . . . , ψ, . . . , φn, ψ
′), X∪

{y})}
provided ψ is a γ-formula, ψ′ a γ(y) descendant where y is fresh to the overall
tableau and the sequence is not closed.

δ-Expansion N]{((φ1, . . . , ψ, . . . , φn), X)} ⇒FT N∪{(φ1, . . . , ψ, . . . , φn, ψ
′), X)}

provided ψ is an open δ-formula, X = {y1, . . . , yn}, ψ′ a δ(f(y1, . . . , yn)) de-
scendant where f is fresh to the sequence, and the sequence is not closed.

Branch-Closing N ] {((φ1, . . . , φn), X)} ⇒FT (N ∪ {((φ1, . . . , φn), X)})σ
provided there are complementary literals φi and φj , atom(φi)σ = atom(φj)σ
for an mgu σ, and the sequence is not closed.

The first-order free-variable tableau calculus consists of the rules α-, and β-
expansion, see Section 3.6, which are adapted to pairs of sequences and variable
sets, and the above three rules γ-Expansion, δ-Expansion and Branch-Closing.
It remains to define the instantiation of a tableau by a substitution. As usual the
application of a substitution to a set means application to the elements. For a
pair ((φ1, . . . , φn), X) it is defined by ((φ1, . . . , φn), X)σ := ((φ1σ, . . . , φnσ), X \
dom(σ)).

For free-varianle tableau, the γ rule has to be applied several times to the
same formula as well in order to close a tableau, see the below example in
Section 3.6. Constructing a closed tableau from initial state

{((∀xS .(P (xS)→ P (f(xS))), P (b), ¬P (f(f(b)))), ∅)}

is impossible without applying γ-Expansion twice to ∀xS .(P (xS)→ P (f(xS)))
on some branch, where b :→ S, f : S → S and P ⊆ S. Below is the derivation
of a closed tableau where I only show the added formulas and often abbreviate
the parent sequence with an indexed M .
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{((∀xS .(P (xS)→ P (f(xS))), P (b), ¬P (f(f(b)))), ∅)
⇒γ

FT {((M1, P (yS)→ P (f(yS))), {ys})
⇒β

FT {((M2,¬P (yS)), {ys}), ((M2, P (f(yS))), {ys})}
⇒Closing

FT {((M2σ,¬P (b)), ∅), ((M2σ, P (f(b))), ∅)}
the unifier is σ = {yS 7→ b}, of the literals ¬P (yS) and P (b)

⇒γ
FT {((M2σ, P (f(b)), P (f(zS))→ P (f(f(zS))))), {zS})}

⇒β
FT {((M3,¬P (f(zS))), {zS}), ((M3, P (f(f(zS)))), {zS})}

⇒Closing
FT {((M3δ,¬P (f(b))), ∅), ((M3δ, P (f(f(b)))), ∅)}

the unifier is δ = {zS 7→ f(b)}, of the literals ¬P (zS) and P (f(b))

now the tableau is closed

where M1 = (∀xS .(P (xS) → P (f(xS))), P (b), ¬P (f(f(b)))), M2 =
M1, (P (yS)→ P (f(yS))) and M3 = M2σ, (P (f(b)), P (f(zS))→ P (f(f(zS))).

A possibly infinite tableau derivation s0 ⇒FT s1 ⇒FT . . . is called saturated
if for all its open sequences Mi of some pair (Mi, Xi) ∈ si where not all successor
sequences of Mi are closed and all formulas φ occurring in Mi, there is an index
j > i and some pair (Mj , Xj) ∈ sj , Mi is a prefix of Mj , if in case φ is an
α-formula then both direct descendants are part of Mj , if it is a β-formula then
one of its descendants is part of Mj , if it is a δ- or γ-formula then one direct
descendant is part of Mj , and if Branch-Closing is applicable to Mi then Mj is
closed.

Theorem 3.8.2 (Free-variable First-Order Tableau is Sound and Complete).
A formula φ is valid iff free-variable tableau computes a closed state out of
{(¬φ, ∅)}.
Proof Idea: By lifting from standard first-order tableau.

Here is another example including δ-Expansion applications. I assume the
exsitence of exactly one sort with the respective defintions for the constants,
functions, variables, and predicates.

{((¬[∃w∀xR(x,w, f(x,w))→ ∃w∀x∃yR(x,w, y)]), ∅)
⇒α,∗

FT {((M1,∃w∀x R(x,w, f(x,w)),¬∃w∀x∃y R(x,w, y)), ∅)}
⇒δ

FT {((M2,∀x R(x, c, f(x, c))), ∅)}
⇒γ

FT {((M2,∀x R(x, c, f(x, c)),¬∀x∃y R(x, v1, y)), {v1})}
⇒δ

FT {((M2,∀x R(x, c, f(x, c)),¬∀x∃y R(x, v1, y),∀x R(x, c, f(x, c)),¬∃y R(g(v1), v1, y)), {v1})}
⇒γ

FT {((M3, R(v2, c, f(v2, c))), {v1, v2})}
⇒γ

FT {((M3, R(v2, c, f(v2, c)),¬R(g(v1), v1, v3)), {v1, v2, v3})}
⇒Closing

FT {((M3σ,R(g(c), c, f(g(c), c)),¬R(g(c), c, f(g(c), c))), ∅)}
the unifier is σ = {v1 7→ c, v2 7→ g(c), v3 7→ f(g(c), c)}
now the tableau is closed
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where M1 = ¬[∃w∀xR(x,w, f(x,w))→ ∃w∀x∃yR(x,w, y)],
M2 = M1,∃w∀x R(x,w, f(x,w)),¬∃w∀x∃y R(x,w, y), and
M3 = M2,∀x R(x, c, f(x, c)),¬∀x∃y R(x, v1, y),∀x R(x, c, f(x, c)),¬∃y R(g(v1), v1, y).

Semantic Tableau vs. Resolution

1. Tableau: global, goal-oriented, “backward”.

2. Resolution: local, “forward”.

3. Goal-orientation is a clear advantage if only a small subset of a large set
of formulas is necessary for a proof. (Note that resolution provers saturate
also those parts of the clause set that are irrelevant for proving the goal.)

4. Resolution can be combined with more powerful redundancy elimination
methods; because of its global nature this is more difficult for the tableau
method.

5. Resolution can be refined to work well with equality; for tableau this seems
to be impossible.

6. On the other hand tableau calculi can be easily extended to other logics;
in particular tableau provers are very successful in modal and description
logics.

3.9 First-Order CNF Transformation

Similar to the propositional case, first-order resolution and superposition op-
erate on clauses. In this section I show how any first-order sentence can be
efficiently transformed into a CNF, preserving satisfiability. To this end all ex-
istentially quantified variables are replaced with so called Skolem functions.
Similar to the renaming of subformulas this replacement preserves satisfiability
only. Eventually, all variables in clauses are implicitly universally quantified.

More concretely, the acnf CNF transformation is algorithm from Sec-
tion 2.5.3 is generalized to first-order logic with equality. The adiitional com-
plications are: (i) additional rules for the quantifiers, (ii) the formula renaming
technique is extended to cope with variables and (iii) removal of existential quan-
tifiers through the introduction of Skolem functions. Basically, all rules known
from the propositional case apply.

The first two extra rules eliminate > and ⊥ from first-order formula starting
with a quantifier.

ElimTB13 χ[{∀,∃}x.>]p ⇒ACNF χ[>]p
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ElimTB14 χ[{∀,∃}x.⊥]p ⇒ACNF χ[⊥]p

Next, in order to obtain a negation normal form with negation symbols in
front of atoms only, the respective rules for pushing negations over the quantifiers
are needed as well.

PushNeg4 χ[¬∀x.φ]p ⇒ACNF χ[∃x.¬φ]p

PushNeg5 χ[¬∃x.φ]p ⇒ACNF χ[∀x.¬φ]p

where the expression {∀,∃}x.φ covers both cases ∀x.φ and ∃x.φ. The next
step is to rename all variables such that different quantifiers bind different vari-
ables. This step is necessary to prevent a later on confusion of variables, once
the quantifiers are dropped.

RenVar φ ⇒ACNF φσ

for σ = {}

In first-order logic, the renaming of subformulas has to take care of variables
as well. The notion of an obvious position remains unchanged. Therefore, the
basic mechanism of renaming and the concept of a beneficial subformula is
exactly the same as in propositional logic. The only difference is that renaming
does introduce an atom in the free variables of the respective subformula. When
some formula ψ is renamed at position p an atom P (~xn), ~xn = x1, . . . , xn
replaces ψ|p where fvars(ψ|p) = {x1 . . . , xn}. The respective definition of P (~xn)
becomes

def(ψ, p, P (~xn)) :=

 ∀~xn.(P (~xn)→ ψ|p) if pol(ψ, p) = 1
∀~xn.(ψ|p → P (~xn)) if pol(ψ, p) = −1
∀~xn.(P (~xn)↔ ψ|p) if pol(ψ, p) = 0

and the rule SimpleRenaming is changed accordingly.

SimpleRenaming φ ⇒ACNF φ[P1( ~x1, j1)]p1
[P2( ~x2, j2)]p2

. . . [Pn( ~xn, jn)]pn ∧
def(φ, p1, P1( ~x1, j1))∧. . .∧def(φ[P1( ~x1, j1)]p1 [P2( ~x2, j2)]p2 . . . [Pn−1( ~xn−1, jn−1

)]pn−1 , pn, Pn( ~xn, jn))

provided {p1, . . . , pn} ⊂ pos(φ) and for all i, i + j either pi ‖ pi+j or pi > pi+j
and where fvars(φ|pi) = {xi,1, . . . , xi, ji} and all Pi are different and new to φ

SimpleRenaming shares the variables of φ with the variables used for the def-
initions of the new predicates. This does not cause any confusion, because there
will never be a clause consisting of literals from the remaning φ after renaming
and literals from a definition. In propositional logic after subformula renaming,
removal of equivalences and implications, and pushing negations down in front
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of atoms, the CNF can be generated using distributivity. In first-order logic the
existential quantifiers are eliminated first by the introduction of Skolem func-
tions. In order to receive Skolem functions with few arguments, the quantifiers
are first moved inwards as far as passible. This step is called mini-scoping.

MiniScope1 χ[∀x.(ψ1 ◦ ψ2)]p ⇒ACNF χ[(∀x.ψ1) ◦ ψ2]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)

MiniScope2 χ[∃x.(ψ1 ◦ ψ2)]p ⇒ACNF χ[(∃x.ψ1) ◦ ψ2]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)

MiniScope3 χ[∀x.(ψ1 ∧ ψ2)]p ⇒ACNF χ[(∀x.ψ1) ∧ (∀x.ψ2)σ]p

where σ = {}, x ∈ (fvars(ψ1) ∩ fvars(ψ2))

MiniScope4 χ[∃x.(ψ1 ∨ ψ2)]p ⇒ACNF χ[(∃x.ψ1) ∨ (∃x.ψ2)σ]p

where σ = {}, x ∈ (fvars(ψ1) ∩ fvars(ψ2))

The rules MiniScope1, MiniScope2 are applied modulo the commutativity
of ∧, ∨. Once the quantifiers are moved inwards Skolemization can take place.
Skolemization replaces all existentially quantified variables by shallow Skolem
function terms.

Skolemization χ[∃x.φ]p ⇒ACNF χ[φ{x 7→ f(y1, . . . , yn)}]p
provided there is no q, q < p with φ|q = ∃x′.ψ′, fvars(∃x.ψ) = {y1, . . . , yn},
f : sort(y1)× . . .× sort(yn)→ sort(x) is a new function symbol

Theorem 3.9.1 (Skolemization Preserves Satisfiability). A formula χ[∃x.φ]p is
satisfiable iff the formula χ[φ{x 7→ f(y1, . . . , yn)}]p is, where χ is in negation
normal form, p the maximal position of an existential quantifier, fvars(∃x.ψ) =
{y1, . . . , yn}, and arity(f) = n is a new function symbol to φ, f : sort(y1)× . . .×
sort(yn)→ sort(x).

Proof. Both directions of the proof are done by induction on the length of p and
then by a case analysis on the structure of the formula. I only show the relevant
cases.
⇒: If A, β |= ∃x.φ then there exists an a ∈ (sort(x))A such that A, β[x 7→

a] |= φ. Now define fA(β(y1), . . . , β(yn)) := a. Then obviously A, β |= χ[φ{x 7→
f(y1, . . . , yn)}]p. The function fA is well-defined, because the truth value of
∃x.φ under A, β depends only on the values β assigns to the free variables of
∃x.φ, i.e., the free variables fvars(∃x.ψ) = {y1, . . . , yn} the function f depends
on.
⇐: IfA, β |= χ[φ{x 7→ f(y1, . . . , yn)}]p thenA, β[x 7→ fA(β(y1), . . . , β(yn))] |=

φ and therefore A, β |= ∃x.φ.
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Example 3.9.2 (Mini-Scoping and Skolemization). Consider the simple for-
mula ∀x.∃y.(R(x, x) ∧ P (y). Applying Skolemization directly to this formula,
without mini-scoping results in

∀x.∃y.(R(x, x) ∧ P (y))⇒Skolem
ACNF ∀x.(R(x, x) ∧ P (g(x))

for a unary Skolem function g because fvars(∃y.(R(x, x)∧P (y))) = {x}. Apply-
ing mini-scoping and then Skolemization generates

∀x.∃y.(R(x, x) ∧ P (y)) ⇒MiniScope,*
ACNF ∀x.R(x, x) ∧ ∃y.P (y)
⇒Skolem

ACNF ∀x.R(x, x) ∧ P (a)

for some Skolem constant a :→ sort(y) because fvars(∃y.P (y)) = ∅. Now the
former formula after Skolemization is seriously more complex than the latter.
The former belongs to an undecidable fragment of first-order logic while the
latter belongs to a decidable one (see Section 3.15).

Finally, the universal quantifiers are removed. In a first-order logic CNF any
variable is universally quantified by default. Furthermore, the variables of two
different clauses are always assumed to be different.

RemForall χ[∀x.ψ]p ⇒ACNF χ[ψ]p

The actual CNF is then done by distributivity, exactly as it is done in propo-
sitional logic.

Algorithm 11: acnf(φ)

Input : A first-order formula φ.
Output: A formula ψ in CNF satisfiability preserving to φ.

1 whilerule ( ElimTB1(φ),. . .,ElimTB14(φ)) do ;
2 RenVar(φ);
3 SimpleRenaming(φ) on obvious positions;
4 whilerule ( ElimEquiv1(φ),ElimEquiv2(φ)) do ;
5 whilerule ( ElimImp(φ)) do ;
6 whilerule ( PushNeg1(φ),. . .,PushNeg5(φ)) do ;
7 whilerule ( MiniScope1(φ),. . .,MiniScope4(φ)) do ;
8 whilerule ( Skolemization(φ)) do ;
9 whilerule ( RemForall(φ)) do ;

10 whilerule ( PushDisj(φ)) do ;
11 return φ;

Theorem 3.9.3 (Properties of the ACNF Transformation). Let φ be a first-
order sentence, then

1. acnf(φ) terminates
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2. φ is satisfiable iff acnf(φ) is satisfiable

Proof. (Idea) 1. is a straightforward extension of the propositional case. It is
easy to define a measure for any line of Algorithm 11.

2. can also be established separately for all rule applications. The rules SimpleR-
enaming and Skolemization need separate proofs, the rest is straightforward or
copied from the propositional case.

C

In addition to the consideration of repeated subformulas, discussed
in Section 2.5, for first-order renaming another technique can pay off:
generalization. Consider the formula [φ1 ∨ (Q1(a1) ∧Q2(a1))] ∧ [φ2 ∨
(Q1(a2)∧Q2(a2))]∧ . . .∧ [φn ∨ (Q1(an)∧Q2(an)]. SimpleRenaming on obvious
renamings applied to this formula will independently rename any occurrences
of a formula (Q1(ai)∧Q2(ai)). However generalization pays off here. By adding
the definition ∀x, y (R(x, y)→ (Q1(x)∧Q2(y))) and replacing the ith occurrence
of the conjunct by R(x, y){x 7→ ai, y 7→ ai} one definition for all subformula
occurrences suffices.

3.10 First-Order Resolution

As already mentioned, I still consider first-order logic without equality. First-
order resolution on ground clauses corresponds to propositional resolution. Each
ground atom becomes a propositional variable. However, since there are up to
infinitely many ground instances for a first-oder clause set with variables and
it is not a priori known which ground instances are needed in a proof, the
first-order resolution calculus operates on clauses with variables. Roughly, the
relationship between ground resolution and first-order resolution corresponds to
the relationship between standard tableau and free-variable tableau. However,
the variables in free-variable tablea can only be instantiated once, thereas in
resolution they can be instantiated arbitrarily often.

Propositional (or first-order ground) resolution is refutationally complete,
without reduction rules it is not guaranteed to terminate for satisfiable sets of
clauses, and inferior to the CDCL calculus. However, in contrast to the CDCL
calculus, resolution can be easily extended to non-ground clauses via unifica-
tion. The problem to lift the CDCL calculus lies in the lifting of the model
representation of the trail. I’ll discuss this in more detail in Section 3.15.

Lemma 3.10.1. Let A be a Σ− algebra and let φ be a Σ− formula with free
variables x1, . . . , xn. Then A |= ∀x1, . . . , xnφ iff A |= φ

Lemma 3.10.2. Let φ be a Σ−formula with free variables x1, . . . , xn, let σ be
a substitution and let y1, . . . , ym be free variables of φσ. Then A |= ∀x1, . . . , xnφ
implies A |= ∀y1, . . . , ymφσ.
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In particular, if A is a model of an (implicitly universally quantified) clause
C then it is also a model of all (implicitly universally quantified) instances Cσ
of C. Consequently, if it is shown that some instances of clauses in a set N are
unsatisfiable then it is also shown that N itself is unsatisfiable.

General Resolution through Instantiation
The approach is to instantiate clauses appropriately. An example is shown

in Figure 3.3. However, this may lead to several problems. First of all, more
than one instance of a clause can participate in a proof and secondly, which is
even worse, there are infinitely many possible instances. Due to the fact that
instantiation must produce complementary literals so that inferences become
possible, the idea is to not instantiate more than necessary to get complemen-
tary literals. An instantiation of the clause set from Figure 3.3 is again shown
in Figure 3.4 with the difference that the latter instantiates only as much as
necessary, inevitably reducing the number of substitutions.

P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(f(a, b))

¬P (a, a) ¬P (a, b)

P (a, b) ∨Q(f(a, b))

¬Q(f(a, b)) Q(f(a, b))

⊥

{z′ 7→ a,
z 7→ f(a, b)}

{y 7→ a} {y 7→ b} {x′ 7→ a,
x 7→ b}

Figure 3.3: Instantiation of the clause set N =
P (z′, z′) ∨ ¬Q(z),¬P (a, y), P (x′, b) ∨Q(f(x′, x))

Lifting Principle
In order to overcome the problem of effectively and efficiently saturating in-

finite sets of clauses as they arise from taking the (ground) instances of finitely
many general clauses (with variables), the general idea is to lift the resolution
principle as proposed by Robinson [?]. The lifting is as follows: For the reso-
lution of general clauses, equality of ground atoms is generalized to unifiability
of general atoms and only the most general (minimal) unifiers (mgu) are com-
puted.

The advantage of the method in Robinson [?] compared with Gilmore [?]
is that unification enumerates only those instances of clauses that participate
in an inference. Moreover, clauses are not right away instantiated into ground
clauses. Rather they are instantiated only as far as required for an inference.
Inferences with non-ground clauses in general represent infinite sets of ground
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P (z′, z′) ∨ ¬Q(z) ¬P (a, y) P (x′, b) ∨Q(f(x′, x))

P (a, a) ∨ ¬Q(z)

¬P (a, a) ¬P (a, b)

P (a, b) ∨Q(f(a, x))

¬Q(z) Q(f(a, x))

¬Q(f(a, x)) Q(f(a, x))

⊥

{z′ 7→ a}
{y 7→ a} {y 7→ b}

{x′ 7→ a}

{z 7→ f(a, x)}

Figure 3.4: Instantiation of the clause set N =
P (z′, z′) ∨ ¬Q(z),¬P (a, y), P (x′, b) ∨ Q(f(x′, x)) with a reduced number
of instantiations.

inferences which are computed simultaneously in a single step.

The first-order resolution calculus consists of the inference rules Resolution
and Factoring and generalizes the propositional resolution calculus (Section 2.6).
Variables in clauses are implicitely universally quantified, so they can be instan-
tiated in an arbitrary way. For the application of any inference or reduction rule,
I can therefore assume that the involved clauses don’t share any variables, i.e.,
variables are a priori renamed. Furthermore, clauses are assumed to be unique
with respect to renaming in a set.

Resolution (N]{D∨A,¬B∨C}) ⇒RES (N∪{D∨A,¬B∨C}∪{(D∨C)σ})
if σ = mgu(A,B) for atoms A,B

Factoring (N ]{C ∨L∨K}) ⇒RES (N ∪{C ∨L∨K}∪{(C ∨L)σ})
if σ = mgu(L,K) for literals L,K

The reduction rules are

Subsumption (N ] {C1, C2}) ⇒RES (N ∪ {C1})
provided C1σ ⊂ C2 for some matcher σ

Tautology Dele-
tion

(N ] {C ∨A ∨ ¬A}) ⇒RES (N)
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Condensation (N ] {C}) ⇒RES (N ∪ {C ′})
where C ′ is the result of removing duplicate literals from Cσ for some matcher
σ and C ′ subsumes C

Subsumption
Resolution

(N ] {C1 ∨ L,C2 ∨K}) ⇒RES (N ∪ {C1 ∨ L,C2})

where Lσ = comp(K) and C1σ ⊆ C2

Lifting Lemma

Lemma 3.10.3. Let C and D be variable-disjoint clauses. If

Propositional Resolution (N ] {Dσ,Cρ}) ⇒ (N ∪ {Dσ,Cρ} ∪ {C ′})
where σ and ρ are substitutions then there exists a substitution τ so that

General Resolution (N ] {D,C}) ⇒ (N ∪ {D,C} ∪ {C ′′τ = C ′})
An analogous lifting lemma holds for factorization.

Saturation of Sets of General Clauses

Definition 3.10.4 (Resolution Saturation). A set of clauses N is saturated up
to redundancy

Corollary 3.10.5. Let N be a set of general clauses saturated under Res, i.e.,
Res(N) ⊆ N . Then also GΣ(N) is saturated, that is, Res(GΣ(N)) ⊆ GΣ(N).

Proof. W.l.o.g. assume that clauses in N are pairwise variable-disjoint. (Other-
wise they have to be made disjoint and this renaming process changes neither
Res(N) nor GΣ(N).) Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable
ground instances Dσ and Cρ of N with resolvent C ′, or else (ii) C ′ is a factor
of a ground instance Cσ of C.

Case (i): By the Lifting Lemma, D and C are resolvable with a resolvent
C ′′ with C ′′τ = C ′, for a suitable substitution τ . As C ′′ ∈ N by assumption,
C ′ ∈ GΣ(N) is obtained.

Case (ii): Similar.

Herbrand’s Theorem

Lemma 3.10.6. Let N be a set of Σ-clauses, let A be an interpretation. Then
A |= N implies A |= GΣ(N).

Lemma 3.10.7. LetN be a set of Σ-clauses, letA be a Herbrand interpretation.
Then A |= GΣ(N) implies A |= N .

Theorem 3.10.8 (Herbrand). A set N of Σ-clauses is satisfiable if and only if
it has a Herbrand model over Σ.
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Proof. (⇐) Assume N has a Herbrand model I over Σ, i.e., I |= N . Then N is
satisfiable.

(⇒) Let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res∗(N) (resolution is sound)
⇒ ⊥ 6∈ GΣ(Res∗(N))
⇒ IGΣ(Res∗(N)) |= GΣ(Res∗(N)) (Theorem ; Corollary 3.10.5)
⇒ IGΣ(Res∗(N)) |= Res∗(N) (Lemma 3.10.7)
⇒ IGΣ(Res∗(N)) |= N (N ⊆ Res∗(N))

The Theorem of Löwenheim-Skolem

Theorem 3.10.9 (Löwenheim–Skolem). Let Σ be a countable signature and
let S be a set of closed Σ-formulas. Then S is satisfiable iff S has a model over
a countable universe.

Proof. If both X and Σ are countable, then S can be at most countably infinite.
Now generate, maintaining satisfiability, a set N of clauses from S. This extends
Σ by at most countably many new Skolem functions to Σ′. As Σ′ is countable,
so is TΣ′ , the universe of Herbrand-interpretations over Σ′. Now apply Theo-
rem 3.10.8.

Refutational Completeness of General Resolution

Theorem 3.10.10 (Soundness and Completenss of Resolution). The resolution
calculus is sound and complete:

N is unsatisfiable iff N ⇒∗RES N
′ and ⊥ ∈ N ′ for some N ′

Theorem 3.10.11 (Soundness and Completenss of Resolution). Let N be a
set of first-clauses where Res(N) ⊆ N . Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof. Let Res(N) ⊆ N . By Corollary 3.10.5: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 3.10.6/3.10.7; Theorem 3.10.8)
⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)
⇔ ⊥ ∈ N

Compactness of First-Order Logic

Theorem 3.10.12 (Compactness Theorem for First-Order Logic). Let S be
a set of first-order formulas. S is unsatisfiable if and only if some finite subset
S′ ⊆ S is unsatisfiable.
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Proof. (⇐) Assume that S′ is unsatisfiable. Then there exists at least one un-
satisfiable formula φ ∈ S′. Since S′ ⊆ S, S is also unsatisfiable.

(⇒) Let S be unsatisfiable and let N be the set of clauses obtained by Skolemiza-
tion and CNF transformation of the formulas in S. Clearly Res∗(N) is unsatis-
fiable. By Theorem 3.10.11, ⊥ ∈ Res∗(N), and therefore ⊥ ∈ Resn(N) for some
n ∈ N. Consequently, ⊥ has a finite resolution proof B of depth≤ n. Choose
S′ as the subset of formulas in S so that the corresponding clauses contain the
assumptions (leaves) of B.

3.11 Orderings

Propositional superposition is based on an ordering on the propositional vari-
ables, Section 2.7. The ordering is total and well-founded. Basically, proposi-
tional variables correspond to ground atoms in first-order logic. This section
generalizes the ideas of the propositional superposition ordering to first-order
logic. In first-order logic the ordering has to also consider terms and variables
and operations on terms like the application of a substitution.

Definition 3.11.1 (Σ-Operation Compatible Relation). A binary relation
A over T (Σ,X ) is called compatible with Σ-operations, if s A s′ implies
f(t1, . . . , s, . . . , tn) A f(t1, . . . , s

′, . . . , tn) for all f ∈ Ω and s, s′, ti ∈ T (Σ,X ).

Lemma 3.11.2 (Σ-Operation Compatible Relation). A relationA is compatible
with Σ-operations iff s A s′ implies t[s]p A t[s′]p for all s, s′, t ∈ T (Σ,X ) and
p ∈ pos(t).

In the literature compatible with Σ-operations is sometimes also called com-
patible with contexts.

Definition 3.11.3 (Substitution Stable Relation, Rewrite Relation). A binary
relation A over T (Σ,X ) is called stable under substitutions, if s A s′ implies
sσ A s′σ for all s, s′ ∈ T (Σ,X ) and substitutions σ. A binary relation A is
called a rewrite relation, if it is compatible with Σ-operations and stable under
substitutions.

A rewrite ordering is then an ordering that is a rewrite relation.

Definition 3.11.4 (Subterm Ordering). The proper subterm ordering s > t is
defined by s > t iff s|p = t for some position p 6= ε of s.

Definition 3.11.5 (Simplification Ordering). A rewrite ordering � over
T (Σ,X ) is called simplification ordering, if it enjoys the subterm property s � t
implies s > t for all s, t ∈ T (Σ,X ) of the same sort.

Definition 3.11.6 (Lexicographical Path Ordering (LPO)). Let Σ = (S,Ω,Π)
be a signature and let � be a strict partial ordering on operator symbols in Ω,
called precedence. The lexicographical path ordering �lpo on T (Σ,X ) is defined
as follows: if s, t are terms in TS(Σ,X ) then s �lpo t iff
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1. t = x ∈ X , x ∈ vars(s) and s 6= t or

2. s = f(s1, . . . , sn), t = g(t1, . . . , tm) and

(a) si �lpo t for some i ∈ {1, . . . , n} or

(b) f � g and s �lpo tj for every j ∈ {1, . . . ,m} or

(c) f = g, s �lpo tj for every j ∈ {1, . . . ,m} and (s1, . . . , sn)(�lpo
)lex(t1, . . . , tm).

Theorem 3.11.7 (LPO Properties). 1. The LPO is a rewrite ordering.

2. LPO enjoys the subterm property, hence is a simplification ordering.

3. If the precedence � is total on Ω then �lpo is total on the set of ground
terms T (Σ).

4. If Ω is finite then �lpo is well-founded.

Example 3.11.8. Consider the terms g(x), g(y), g(g(a)), g(b), g(a), b, a. With
respect to the precedence g � b � a the ordering on the ground terms is
g(g(a)) �lpo g(b) �lpo g(a) �lpo b �lpo a. The terms g(x) and g(y) are not
comparable. Note that the terms g(g(a)), g(b), g(a) are all instances of both
g(x) and g(y).

With respect to the precedence b � a � g the ordering on the ground terms
is g(b) �lpo b �lpo g(g(a)) �lpo g(a) �lpo a.

Definition 3.11.9 (The Knuth-Bendix Ordering). Let Σ = (S,Ω,Π) be a finite
signature, let � be a strict partial ordering (“precedence”) on Ω, let w : Ω∪X →
R+ be a weight function, so that the following admissibility condition is satisfied:
w(x) = w0 ∈ R+ for all variables x ∈ X ; w(c) ≥ w0 for all constants c ∈ Ω.

Then, the weight function w can be extended to terms recursively:

w(f(t1, . . . , tn)) = w(f) +
∑

1≤i≤n

w(ti)

or alternatively∑
w(t) =

∑
x∈vars(t)

w(x) ·#(x, t) +
∑
f∈Ω

w(f) ·#(f, t)

where #(a, t) is the number of occurrences of a in t.
The Knuth-Bendix ordering �kbo on T (Σ,X ) induced by � and admissible

w is defined by: s �kbo t iff

1. #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

2. #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f � g, or
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(b) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm)(�kbo
)lex(t1, . . . , tm).

Theorem 3.11.10 (KBO Properties). 1. The KBO is a rewrite ordering.

2. KBO enjoys the subterm property, hence is a simplification ordering.

3. If the precedence � is total on Ω then �kbo is total on the set of ground
terms T (Σ).

4. If Ω is finite then �kbo is well-founded.

The KBO ordering can be extended to contain unary function symbols with
weight zero. This was motivated by completion of the group axioms, see Chap-
ter 4.

Definition 3.11.11 (The Knuth-Bendix Ordering Extended). The additional
requirements added to Definition 3.11.9 are

1. Extend w to w : Ω ∪ X → R+
0

2. If w(f) = 0 for some f ∈ Ω with arity(f) = 1, then f � g for all g ∈ Ω.

3. As a first case to the disjunction of 3.11.9-2.
(a’) t = x, s = fn(x) for some n ≥ 1

The LPO ordering as well as the KBO ordering can be extended to atoms in
a straightforward way. The precedence � is extended to Π. For LPO atoms are
then compared according to Definition 3.11.6-2. For KBO the weight function
w is also extended to atoms by giving predicates a non-zero positive weight and
then atoms are compared according to terms.

Actually, since atoms are never substituted for variables in first-order logic,
an alternative to the above would be to first compare the predicate symbols and
let � decide the ordering. Only if the atoms share the same predicate symbol,
the argument terms are considered, e.g., in a lexicographic way and are then
compared with respect to KBO or LPO, respectively.

3.12 First-Order Ground Superposition

Propositional clauses and ground clauses are essentially the same, as long as
equational atoms are not considered. This section deals only with ground clauses
and recalls mostly the material from Section 2.7 for first-order ground clauses.
The main difference is that the atom ordering is more complicated, see Sec-
tion 3.11. Let N be a possibly infinite set of ground clauses.

Definition 3.12.1 (Ground Clause Ordering). Let ≺ be a strict rewrite order-
ing total on ground terms and ground atoms. Then ≺ can be lifted to a total
ordering ≺L on literals by its multiset extension ≺mul where a positive literal
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P (t1, . . . , tn) is mapped to the multiset {P (t1, . . . , tn)} and a negative literal
¬P (t1, . . . , tn) to the multiset {P (t1, . . . , tn), P (t1, . . . , tn)}. The ordering ≺L
is further lifted to a total ordering on clauses ≺C by considering the multiset
extension of ≺L for clauses.

Proposition 3.12.2 (Properties of the Ground Clause Ordering). 1. The or-
derings on literals and clauses are total and well-founded.

2. Let C and D be clauses with P (t1, . . . , tn) = atom(max(C)),
Q(s1, . . . , sm) = atom(max(D)), where max(C) denotes the maximal lit-
eral in C.

(a) If Q(s1, . . . , sm) ≺L P (t1, . . . , tn) then D ≺C C.

(b) If P (t1, . . . , tn) = Q(s1, . . . , sm), P (t1, . . . , tn) occurs negatively in C
but only positively in D, then D ≺C C.

Eventually, as I did for propositional logic, I overload ≺ with ≺L and ≺C . So
if ≺ is applied to literals it denotes ≺L, if it is applied to clauses, it denotes ≺C .
Note that ≺ is a total ordering on literals and clauses as well. For superposition,
inferences are restricted to maximal literals with respect to ≺. For a clause set
N , I define N≺C = {D ∈ N | D ≺ C}.
Definition 3.12.3 (Abstract Redundancy). A ground clause C is redundant
with respect to a set of ground clauses N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if ⊆ is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

C

Note that for finite N , and any C ∈ N redundancy N≺C |= C can
be decided but is as hard as testing unsatisfiability for a clause set
N . So the goal is to invent redundancy notions that can be efficiently
decided and that are useful.

Definition 3.12.4 (Selection Function). The selection function sel maps clauses
to one of its negative literals or ⊥. If sel(C) = ¬P (t1, . . . , tn) then ¬P (t1, . . . , tn)
is called selected in C. If sel(C) = ⊥ then no literal in C is selected.

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected in a clause, any
superposition inference must be on the selected literal.

Definition 3.12.5 (Partial Model Construction). Given a clause set N and an
ordering ≺ we can construct a (partial) model NI for N inductively as follows:

NC :=
⋃
D≺C δD

δD :=


{P (t1, . . . , tn)} if D = D′ ∨ P (t1, . . . , tn), P (t1, . . . , tn) strictly maximal, no literal

selected in D and ND 6|= D

∅ otherwise

NI :=
⋃
C∈N δC
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Clauses C with δC 6= ∅ are called productive.

Proposition 3.12.6 (Propertied of the Model Operator). Some properties of
the partial model construction.

1. For every D with (C ∨¬P (t1, . . . , tn)) ≺ D we have δD 6= {P (t1, . . . , tn)}.

2. If δC = {P (t1, . . . , tn)} then NC ∪ δC |= C.

3. If NC |= D and D ≺ C then for all C ′ with C ≺ C ′ we have NC′ |= D
and in particular NI |= D.

4. There is no clause C with P (t1, . . . , tn) ∨ P (t1, . . . , tn) ≺ C such that
δC = {P (t1, . . . , tn)}.

T

Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N≺C is of set of clauses from N strictly
smaller than C with respect to ≺. NI , NC are Herbrand interpreta-

tions (see Proposition 3.5.3). NI is the overall (partial) model for N , whereas
NC is generated from all clauses from N strictly smaller than C.

Superposition Left (N]{C1∨P (t1, . . . , tn), C2∨¬P (t1, . . . , tn)}) ⇒SUP

(N ∪ {C1 ∨ P (t1, . . . , tn), C2 ∨ ¬P (t1, . . . , tn)} ∪ {C1 ∨ C2})
where (i) P (t1, . . . , tn) is strictly maximal in C1 ∨ P (t1, . . . , tn) (ii) no literal in
C1∨P (t1, . . . , tn) is selected (iii) ¬P (t1, . . . , tn) is maximal and no literal selected
in C2 ∨ ¬P (t1, . . . , tn), or ¬P (t1, . . . , tn) is selected in C2 ∨ ¬P (t1, . . . , tn)

Factoring (N ] {C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn)}) ⇒SUP

(N ∪ {C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn)} ∪ {C ∨ P (t1, . . . , tn)})
where (i) P (t1, . . . , tn) is maximal in C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn) (ii) no
literal is selected in C ∨ P (t1, . . . , tn) ∨ P (t1, . . . , tn)

Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals.

Definition 3.12.7 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N .

Examples for specific redundancy rules that can be efficiently decided are

Subsumption (N ] {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Dele-
tion

(N ] {C ∨ P (t1, . . . , tn) ∨ ¬P (t1, . . . , tn)}) ⇒SUP (N)

Condensation (N ] {C1 ∨ L ∨ L}) ⇒SUP (N ∪ {C1 ∨ L})
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Subsumption
Resolution

(N ] {C1 ∨ L,C2 ∨ ¬L}) ⇒SUP (N ∪ {C1 ∨ L,C2})

where C1 ⊆ C2

Proposition 3.12.8 (Completeness of the Reduction Rules). All clauses re-
moved by Subsumption, Tautology Deletion, Condensation and Subsumption
Resolution are redundant with respect to the kept or added clauses.

Theorem 3.12.9 (Completeness). Let N be a, possibly countably infinite, set
of ground clauses. If N is saturated up to redundancy and ⊥ /∈ N then N is
satisfiable and NI |= N .

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N≺D |= D,
(ii) ⊥ /∈ N and (iii) NI 6|= N . Then there is a minimal, with respect to ≺, clause
C∨L ∈ N such that NI 6|= C∨L and L is a selected literal in C∨L or no literal
in C ∨ L is selected and L is maximal. This clause must exist because ⊥ /∈ N .

The clause C ∨ L is not redundant. For otherwise, N≺C∨L |= C ∨ L and
hence NI |= C ∨ L, because NI |= N≺C∨L, a contradiction.

I distinguish the case L is a positive and no literal selected in C ∨ L or L
is a negative literal. Firstly, assume L is positive, i.e., L = P (t1, . . . , tn) for
some ground atom P (t1, . . . , tn). Now if P (t1, . . . , tn) is strictly maximal in
C ∨P (t1, . . . , tn) then actually δC∨P = {P (t1, . . . , tn)} and hence NI |= C ∨P ,
a contradiction. So P (t1, . . . , tn) is not strictly maximal. But then actually C ∨
P (t1, . . . , tn) has the form C ′1∨P (t1, . . . , tn)∨P (t1, . . . , tn) and Factoring derives
C ′1∨P (t1, . . . , tn) where (C ′1∨P (t1, . . . , tn)) ≺ (C ′1∨P (t1, . . . , tn)∨P (t1, . . . , tn)).
Now C ′1 ∨ P (t1, . . . , tn) is not redundant, strictly smaller than C ∨ L, we have
C ′1∨P (t1, . . . , tn) ∈ N and NI 6|= C ′1∨P (t1, . . . , tn), a contradiction against the
choice that C ∨ L is minimal.

Secondly, let us assume L is negative, i.e., L = ¬P (t1, . . . , tn) for some
ground atom P (t1, . . . , tn). Then, since NI 6|= C ∨ ¬P (t1, . . . , tn) we know
P (t1, . . . , tn) ∈ NI . So there is a clause D ∨ P (t1, . . . , tn) ∈ N where
δD∨P (t1,...,tn) = {P (t1, . . . , tn)} and P (t1, . . . , tn) is strictly maximal in D ∨
P (t1, . . . , tn) and (D ∨ P (t1, . . . , tn)) ≺ (C ∨ ¬P (t1, . . . , tn)). So Superposition
Left derives C ∨ D where (C ∨ D) ≺ (C ∨ ¬P (t1, . . . , tn)). The derived clause
C ∨ D cannot be redundant, because for otherwise either N≺D∨P (t1,...,tn) |=
D ∨ P (t1, . . . , tn) or N≺C∨¬P (t1,...,tn) |= C ∨ ¬P (t1, . . . , tn). So C ∨D ∈ N and
NI 6|= C ∨D, a contradiction against the choice that C ∨L is the minimal false
clause.

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

Theorem 3.12.10 (Compactness of First-Order Logic). Let N be a, possibly
countably infinite, set of first-order logic ground clauses. Then N is unsatisfiable
iff there is a finite subset N ′ ⊆ N such that N ′ is unsatisfiable.
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Proof. If N is unsatisfiable, saturation via superposition generates ⊥. So there
is an i such that N ⇒i

SUP N ′ and ⊥ ∈ N ′. The clause ⊥ is the result of at
most i-many superposition inferences, reductions on clauses {C1, . . . , Cn} ⊆ N .
Superposition is sound, so {C1, . . . , Cn} is a finite, unsatisfiable subset of N .

Corollary 3.12.11 (Compactness of First-Order Logic: Classical). A set N of
clauses is satisfiable iff all finite subsets of N are satisfiable.

Theorem 3.12.12 (Soundness and Completeness of Ground Superposition). A
first-order Σ-sentence φ is valid iff there exists a ground superposition refutation
for grd(Σ, cnf(¬φ)).

Proof. A first-order sentence φ is valid iff ¬φ is unsatisfiable iff acnf(¬φ) is unsat-
isfiable iff grd(Σ, cnf(¬φ)) is unsatisfiable iff superposition provides a refutation
of grd(Σ, cnf(¬φ)).

Theorem 3.12.13 (Semi-Decidability of First-Order Logic by Ground Super-
position). If a first-order Σ-sentence φ is valid then a ground superposition
refutation can be computed.

Proof. In a fair way enumerate grd(Σ, acnf(¬φ)) and perform superposition in-
ference steps. The enumeration can, e.g., be done by considering Herbrand terms
of increasing size.

Example 3.12.14 (Ground Superposition). Consider the below clauses 1-4
and superposition refutation with respect a KBO with precedence P � Q �
g � f � c � b � a where the weight function w returns 1 for all signature
symbols. Maximal literals are marked with a ∗.

1. ¬P (f(c))∗ ∨ ¬P (f(c))∗ ∨Q(b) (Input)
2. P (f(c))∗ ∨Q(b) (Input)
3. ¬P (g(b, c))∗ ∨ ¬Q(b) (Input)
4. P (g(b, c))∗ (Input)
5. ¬P (f(c))∗ ∨Q(b) (Cond(1))
6. Q(b)∗ ∨Q(b)∗ (Sup(5, 2)))
7. Q(b)∗ (Fact(6))
8. ¬Q(b)∗ (Sup(3, 4))

10. ⊥ (Sup(8, 7))

Note that clause 5 cannot be derived by Factoring whereas clause 7 can also be
derived by Condensation. Clause 8 is also the result of a Subsumption Resolution
application to clauses 3, 4.

Theorem 3.12.15 (Craig Theorem [?]). Let φ and ψ be two propositional (first-
order ground) formulas so that φ |= ψ. Then there exists a formula χ (called
the interpolant for φ |= ψ), so that χ contains only propositional variables
(first-order signature symbols) occurring both in φ and in ψ so that φ |= χ and
χ |= ψ.
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Proof. Translate φ and ¬ψ into CNF. let N and M , respectively, denote the
resulting clause set. Choose an atom ordering � for which the propositional
variables that occur in φ but not in ψ are maximal. Saturate N into N∗ w.r.t.
Sup�sel with an empty selection function sel. Then saturate N∗∪M w.r.t. Sup�sel
to derive ⊥. As N∗ is already saturated, due to the ordering restrictions only
inferences need to be considered where premises, if they are from N∗, only
contain symbols that also occur in ψ. The conjunction of these premises is an
interpolant χ. The theorem also holds for first-order formulas. For universal for-
mulas the above proof can be easily extended. In the general case, a proof based
on superposition technology is more complicated because of Skolemization.

3.13 First-Order Superposition

Now the result for ground superposition are lifted to superposition on first-order
clauses with variables, still without equality. The completeness proof of ground
superposition above talks about (strictly) maximal literals of ground clauses.
The non-ground calculus considers those literals that correspond to (strictly)
maximal literals of ground instances.

The used ordering is exactly the ordering of Definition 3.12.1 where clauses
with variables are projected to their ground instances for ordering computations.

Definition 3.13.1 (Maximal Literal). A literal L is called maximal in a clause
C if and only if there exists a grounding substitution σ so that Lσ is maximal
in Cσ, i.e., there is no different L′ ∈ C: Lσ ≺ L′σ. The literal L is called strictly
maximal if there is no different L′ ∈ C such that Lσ � L′σ.

Note that the orderings KBO and LPO cannot be total on atoms with vari-
ables, because they are stable under substitutions. Therefore, maximality can
also be defined on the basis of absence of greater literals. A literal L is called
maximal in a clause C if L 6≺ L′ for all other literals L′ ∈ C. It is called strictly
maximal in a clause C if L 6� L′ for all other literals L′ ∈ C.

Superposition Left (N]{C1∨P (t1, . . . , tn), C2∨¬P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C1 ∨ P (t1, . . . , tn), C2 ∨ ¬P (s1, . . . , sn)} ∪ {(C1 ∨ C2)σ})
where (i) P (t1, . . . , tn)σ is strictly maximal in (C1 ∨ P (t1, . . . , tn))σ (ii) no
literal in C1 ∨ P (t1, . . . , tn) is selected (iii) ¬P (s1, . . . , sn)σ is maximal and
no literal selected in (C2 ∨ ¬P (s1, . . . , sn))σ, or ¬P (s1, . . . , sn) is selected in
(C2 ∨ ¬P (s1, . . . , sn))σ (iv) σ is the mgu of P (t1, . . . , tn) and P (s1, . . . , sn)

Factoring (N ] {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)} ∪ {(C ∨ P (t1, . . . , tn))σ})
where (i) P (t1, . . . , tn)σ is maximal in (C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn))σ
(ii) no literal is selected in C ∨P (t1, . . . , tn)∨P (s1, . . . , sn) (iii) σ is the mgu of
P (t1, . . . , tn) and P (s1, . . . , sn)
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Note that the above inference rules Superposition Left and Factoring are
generalizations of their respective counterparts from the ground superposition
calculus above. Therefore, on ground clauses they coincide. Therefore, we can
safely overload them in the sequel.

Definition 3.13.2 (Abstract Redundancy). A clause C is redundant with
respect to a clause set N if for all ground instances Cσ there are clauses
{C1, . . . , Cn} ⊆ N with ground instances C1τ1, . . . , Cnτn such that Ciτi ≺ Cσ
for all i and C1τ1, . . . , Cnτn |= Cσ.

Definition 3.13.3 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N or is contained in N .

In contrast to the ground case, the above abstract notion of redundancy is
not effective, i.e., it is undecidable for some clause C whether it is redundant, in
general. Nevertheless, the concrete ground redundancy notions carry over to the
non-ground case. Note also that a clause C is contained in N modulo renaming
of variables.

Let rdup be a function from clauses to clauses that removes duplicate literals,
i.e., rdup(C) = C ′ where C ′ ⊆ C, C ′ does not contain any duplicate literals,
and for each L ∈ C also L ∈ C ′.

Subsumption (N ] {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1σ ⊂ C2 for some σ

Tautology Dele-
tion

(N ] {C ∨ P (t1, . . . , tn) ∨ ¬P (t1, . . . , tn)}) ⇒SUP (N)

Condensation (N ]{C1 ∨L∨L′}) ⇒SUP (N ∪{rdup((C1 ∨L∨L′)σ)})
provided Lσ = L′ and rdup((C1 ∨ L ∨ L′)σ) subsumes C1 ∨ L ∨ L′ for some σ

Subsumption
Resolution

(N ] {C1 ∨ L,C2 ∨ L′}) ⇒SUP (N ∪ {C1 ∨ L,C2})

where Lσ = ¬L′ and C1σ ⊆ C2 for some σ

Lemma 3.13.4. All reduction rules are instances of the abstract redundancy
criterion.

Proof. Do it

Lemma 3.13.5 (Subsumption is NP-complete). Subsumption is NP-complete.

Proof. Let C1 subsume C2 with substitution σ Subsumption is in NP because
the size of σ is bounded by the size of C2 and the subset relation can be checked
in time at most quadratic in the size of C1 and C2.

Propositional SAT can be reduced as follows. Assume a 3-SAT clause set
N . Consider a 3-place predicate R and a unary function g and a mapping from
propositional variables P to first order variables xP .
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Lemma 3.13.6 (Lifting). Let D∨L and C∨L′ be variable-disjoint clauses and
σ a grounding substitution for C ∨L and D ∨L′. If there is a superposition left
inference

(N ] {(D ∨ L)σ, (C ∨ L′)σ})⇒SUP (N ∪ {(D ∨ L)σ, (C ∨ L′)σ} ∪ {Dσ ∨ Cσ})

and if sel((D ∨ L)σ) = sel((D ∨ L))σ, sel((C ∨ L′)σ) = sel((C ∨ L′))σ , then
there exists a mgu τ such that

(N ] {D ∨ L,C ∨ L′})⇒SUP (N ∪ {D ∨ L,C ∨ L′} ∪ {(D ∨ C)τ}).

Let C ∨L∨L′ be a clause and σ a grounding substitution for C ∨L∨L′. If
there is a factoring inference

(N ] {(C ∨ L ∨ L′)σ})⇒SUP (N ∪ {(C ∨ L ∨ L′)σ} ∪ {(C ∨ L)σ})

and if sel((C ∨ L ∨ L′)σ) = sel((C ∨ L ∨ L′))σ , then there exists a mgu τ such
that

(N ] {C ∨ L ∨ L′})⇒SUP (N ∪ {C ∨ L ∨ L′} ∪ {(C ∨ L)τ})

Note that in the above lemma the clause Dσ∨Cσ is an instance of the clause
(D∨C)τ . The reduction rules cannot be lifted in the same way as the following
example shows.

Example 3.13.7 (First-Order Reductions are not Liftable). Consider the two
clauses P (x) ∨ Q(x), P (g(y)) and grounding substitution {x 7→ g(a), y 7→ a}.
Then P (g(y))σ subsumes (P (x)∨Q(x))σ but P (g(y)) does not subsume P (x)∨
Q(x). For all other reduction rules similar examples can be constructed.

Lemma 3.13.8 (Soundness and Completeness). First-Order Superposition is
sound and complete.

Proof. Soundness is obvious. For completeness, Theorem 3.12.12 proves the
ground case. Now by applying Lemma 3.13.6 to this proof it can be lifted to the
first-order level, as argued in the following.

Let N be a an unsatisfiable set of first-order clauses. By Theorem 3.5.5 and
Lemma 3.6.10 there exist a finite unsatisfiable set N ′ of ground instances from
clauses from N such that for each clause Cσ ∈ N ′ there is a clause C ∈ N . Now
ground superposition is complete, Theorem 3.12.12, so there exists a derivation
of the empty clause by ground superposition from N ′: N ′ = N ′0 ⇒SUP . . .⇒SUP

N ′k and ⊥ ∈ N ′k. Now by an inductive argument on the length of the derivation
k this derivation can be lifted to the first-order level. The invariant is: for any
ground clause Cσ ∈ N ′i used in the ground proof, there is a clause C ∈ Ni on
the first-order level. The induction base holds for N and N ′ by construction.
For the induction step Lemma 3.13.6 delivers the result.

There are questions left open by Lemma 3.13.8. It just says that a ground
refutation can be lifted to a first-order refutation. But what about abstract
redundancy, Definition 3.13.2? Can first-order redundant clauses be deleted
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without harming completeness? And what about the ground model operator
with respect to clause sets N saturated on the first-order level. Is in this case
grd(Σ, N)I a model? The next two lemmas answer these questions positively.

Lemma 3.13.9 (Redundant Clauses are Obsolete). If a clause set N is unsat-
isfiable, then there is a derivation N ⇒∗SUP N

′ such that ⊥ ∈ N ′ and no clause
in the derivation of ⊥ is redundant.

Proof. If N is unsatisfiable then there is a ground superposition refutation of
grd(Σ, N) such that no ground clause in the refutation is redundant. Now ac-
cording to Lemma 3.13.8 this proof can be lifted to the first-order level. Now
assume some clause C in the first-order proof is redundant that is the lifting of
some clause Cσ from the ground proof with respect to a grounding substitution
σ. The clause C is redundant by Definition 3.13.2 if all its ground instances are,
in particular, Cσ. But this contradicts the fact that the lifted ground proof does
not contain redundant clauses.

Lemma 3.13.10 (Model Property). If N is a saturated clause set and ⊥ 6∈ N
then grd(Σ, N)I |= N .

Proof. As usual we assume that selection on the ground and respective non-
ground clauses is identical. Assume grd(Σ, N)I 6|= N . Then there is a minimal
ground clause Cσ, C 6= ⊥, C ∈ N such that grd(Σ, N)I 6|= Cσ. Note that
Cσ is not redundant as for otherwise grd(Σ, N)I |= Cσ. So grd(Σ, N) is not
saturated. If Cσ is productive, i.e., Cσ = (C ′ ∨ L)σ such that L is positive, Lσ
strictly maximal in (C ′∨L)σ then Lσ ∈ grd(Σ, N)I and hence grd(Σ, N)I |= Cσ
contradicting grd(Σ, N)I 6|= Cσ.

If Cσ = (C ′∨L∨L′)σ such that L is positive, Lσ maximal in (C ′∨L∨L′)σ
then, because N is saturated, there is a clause (C ′ ∨ L)τ ∈ N such that (C ′ ∨
L)τσ = (C ′ ∨ L)σ. Now (C ′ ∨ L)τ is not redundant, grd(Σ, N)I 6|= (C ′ ∨ L)τ ,
contradicting the minimal choice of Cσ.

If Cσ = (C ′∨L)σ such that L is selected, or negative and maximal then there
is a clause (D′∨L′) ∈ N and grounding substitution ρ, such that L′ρ is a strictly
maximal positive literal in (D′∨L′)ρ, L′ρ ∈ grd(Σ, N)I and L′ρ = ¬Lσ. Again,
since N is saturated, there is variable disjoint clause (C ′ ∨D′)τ ∈ N for some
unifier τ , (C ′ ∨ D′)τσρ ≺ Cσ, and grd(Σ, N)I 6|= (C ′ ∨ D′)τσρ contradicting
the minimal choice of Cσ.

Dynamic stuff: a clause C is called persistent in a derivation N →∗SUP N
′ if

there is some i such that C ∈ Ni for N →i
SUP Ni and for all j > i, N →j

SUP Nj
then C ∈ Nj . A derivation N →∗SUP N ′ is called fair if any two persistent
clauses C, D and any superposition inference C ′ out of the two clauses, there is
an index j such with N →j

SUP Nj →∗SUP N
′ such that C ′ ∈ Nj .

Definition 3.13.11 (Persistent Clause). Let N0 ⇒SUP N1 ⇒SUP . . . be a,
possibly infinite, superposition derivation. A clause C is called persistent in this
derivation if C ∈ Ni for some i and for all j > i also C ∈ Nj .
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Definition 3.13.12 (Fair Derivation). A derivation N0 ⇒SUP N1 ⇒SUP . . . is
called fair if for any persistent clause C ∈ Ni where factoring is applicable to
C, there is a j such that the factor of C ′ ∈ Nj or ⊥ ∈ Nj . If {C,D} ⊆ Ni are
persistent clauses such that superposition left is applicable to C, D then the
superposition left result is also in Nj for some j or ⊥ ∈ Nj .

Theorem 3.13.13 (Dynamic Superposition Completeness). If N is unsatisfi-
able and N = N0 ⇒SUP N1 ⇒SUP . . . is a fair derivation, then there is ⊥ ∈ Nj
for some j.

Proof. If N is unsatisfiable, then by Lemma 3.13.8 there is a derivation of ⊥
by superposition. Furthermore, no clause contributing to the derivation of ⊥ is
redundant (Lemma 3.13.9). So all clauses in the derivation of ⊥ are persistent.
The derivation N0 ⇒SUP N1 ⇒SUP . . . is fair, hence ⊥ ∈ Nj for some j.

Algorithm 12: SupProver(N)

Input : A set of clauses N .
Output: A saturated set of clauses N ′, equivalent to N .

1 WO := ∅;
2 US := N ;
3 while (US 6= ∅ and ⊥ 6∈ US) do
4 Given:= pick a clause from US;
5 WO := WO ∪ {Given};
6 New := SupLeft(WO,Given) ∪ Fact(Given);
7 while (New 6= ∅) do
8 Given:= pick a clause from New;
9 if (!TautDel(Given)) then

10 if (!SubDel(Given,WO ∪US)) then
11 Given:= Cond(Given);
12 Given:= SubRes(Given,WO);
13 WO:= SubDel(WO,Given);
14 US:= SubDel(US,Given);
15 New:= New ∪ SubRes(WO ∪US,Given);
16 US:= US ∪ {Given };
17

18

19 end

20 end
21 return WO;

Lemma 3.13.14. Let red(N) be all clauses that are redundant with respect to
the clauses in N and N , M be clause sets. Then

1. if N ⊆M then red(N) ⊆ red(M)
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clause Q(f(x1, . . . , xn)) is the only strictly maximal literal. The second form is
¬P1(x) ∨ . . . ∨ ¬Pn(x) ∨Q(x)

where maximality depends on the precedence on the predicates. Importantly,
there are only finitely many different clauses of the above two forms with respect
to condensation and subsumption. If the positive Q contains a non-constant
ground term initially, this can also be transformed into a finite set of equivalent
clauses of the above first form. In addition, only for the above two forms a
positive literal can become maximal and therefore be used in a superposition
inference. Then any superposition inference generates either a clause of the
obove form, and there are only finitely many, or the resulting clause is strictly
smaller with respect to the multiset of all subterms of the parent clause that
has not the above form.

3.16 Decision Procedures for the Bernays-
Schönfinkel (BS) Fragment

In Section 3.15 I showed that unsatisfiability (validity) of first-order logic (clause
sets) is undecidable, Theorem 3.15.1. So decision procedures can only exists for
fragments, e.g., the Bernays-Schönfinkel (BS) or the MSLH fragment introduced
in Section 3.15. This section presents several decision procedures for the BS
fragment. Some of them can be extended to complete calculi for full first-order
logic and some are refinements of full first-order logic calculi.

Historically, the BS fragment has been defined as all first-order sentences
of the form ∃~x.∀~y.φ where φ does not contain constant or function symbols,
Definition 3.15.3. After Skolemization, satisfiability is equivalent to the formula
∀∗~y.(φ{x1 7→ a1, . . . , xn 7→ an}) for (fresh) constants a1, . . . , an which can then
be further transformed into CNF.

Thus the Herbrand domain of a BS clause set N is finite, consisting of all
constants in N . So is the equisatisfiable set grd(N) where satisfiability can then
be decided by any decision procedure for propositional logic. However, the set
grd(N) is exponentially larger than N , in general. If k is the maximal number
of variables of a clause in N , and n the number of different constants in N , then
worst-case | grd(N)| = O(|N | · nk). This motivates research for more flexible
calculi without a worst-case initial blow-up.

3.16.1 Superposition

The superposition calculus, Section 3.13, is not a decision procedure for the BS
fragment, i.e., it does not necessarily terminate on a clause set N of BS clauses,
see also Example 3.15.5. Consider a BS clause set consisting of the following
two clauses

1 ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z)

2 R(x, y) ∨R(y, x)
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describing a transitive and total relation R. With respect to any ordering
stable under substitution, the R literals are all incomparable in their respective
clauses. The only way to restrict inferences via the superposition calculus is
to select one of the negative literals in the transitivity clause, clause 1. The
superposition calculus generates an infinite number of clauses including

N0 = {1 : ¬R(x, y) ∨ ¬R(y, z) ∨R(x, z), 2 : R(x, y) ∨R(y, x)}

⇒1.1,2.1
SUP N0 ∪ {3 : ¬R(y, z) ∨R(x, z) ∨R(y, x)}

⇒3.1,2.1
SUP N1 ∪ {4 : R(x, z) ∨R(y, x) ∨R(z, y)}

⇒4.1,4.2
SUP N2 ∪ {5 : R(x, x)}

⇒4.1,3.1
SUP N3 ∪ {6 : R(x, z) ∨R(y, x) ∨R(y′, y) ∨R(z, y′)}

...

The crucial point is that neither clause 4 nor clause 6 is redundant because of
the underlying variable chains. The variable chain can be extended generating
clauses of length five, six, . . .. Obviously, such a clause containing a variable
chain contributes a refutation at most of the length of square of the number of
different constant symbols. Otherwise, it becomes redundant by the existence
of shorter clauses. So one way to turn superposition into a decision procedure
for the BS class is to add an additional condensation rule that unifies literals
in clauses as soon as all potential ground instantiations with constants yield
duplicates.

Condensation-BS (N ] {L1 ∨ · · · ∨ Ln}) ⇒SUP (N ∪ {rdup((L1 ∨
. . . Ln)σi,j) | σi,j = mgu(Li, Lj) and σi,j 6= ⊥})
provided any ground instance (L1 ∨ · · · ∨ Ln)δ contains at least two duplicate
literals

Another way to prevent non-termination is by preventing the generation of
arbitrary long clauses. This can be done by a special splitting rule, that splits
non-Horn clauses into their Horn parts through instantiation. Assuming two
constants a, b for the above example, then clause 2 is replaced by clauses

2.1 R(a, b) ∨R(b, a)

2.2 R(a, a)

2.3 R(b, b)

.

Next the clause R(a, b)∨R(b, a) can be split, similar to a β-rule application
of tableau, resulting in two clause sets

M1 = {¬R(x, y) ∨ ¬R(y, z) ∨R(x, z), R(a, a), R(b, b), R(a, b)}
M2 = {¬R(x, y) ∨ ¬R(y, z) ∨R(x, z), R(a, a), R(b, b), R(b, a)}.
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Now the original clause set N0 is satisfiable iff M1 or M2 are satisfiable. Em-
ploying a rigourous selection strategy where in every clause containing negative
literals one negative literal is selected, the superposition calculus will always
infer from a positive unit clause and a clause containing at least one negative
literal a shorter clause. So it will terminate.

A state is now a set of clause sets. Let k be the number of different constants
a1, . . . , ak in the initial clause set N . Then the initial state is the set M = {N},
Superposition Left is adopted to the new setting, Factoring is no longer needed
and the rules Instantiate and Split are added. The variables x1, . . . , xk constitute
a variable chain between literals L1, Lk inside a clause C, if there are literals
{L1, . . . , Lk} ⊆ C such that xi ∈ (vars(Li) ∩ vars(Li+1)), 1 ≤ i < k.

Superposition-BS M ]{N ]{P (t1, . . . , tn), C∨¬P (s1, . . . , sn)}} ⇒SUPBS

M ∪ {N ∪ {P (t1, . . . , tn), C ∨ ¬P (s1, . . . , sn)} ∪ {Cσ}}
where (i) ¬P (s1, . . . , sn) is selected in (C ∨ ¬P (s1, . . . , sn))σ (ii) σ is the mgu
of P (t1, . . . , tn) and P (s1, . . . , sn) (iii) C ∨ ¬P (s1, . . . , sn) is a Horn clause

Instantiation M ] {N ] {C ∨ A1 ∨ A2}} ⇒SUPBS M ∪ {N ∪ {(C ∨
A1 ∨A2)σi | σi = {x 7→ ai}, 1 ≤ i ≤ k}}}
where x occurs in a variable chain between A1 and A2

Split M ] {N ] {C1 ∨ A1 ∨ C2 ∨ A2}} ⇒SUPBS M ∪ {N ∪
{C1 ∨A1}, N ∪ {C2 ∨A2}}
where vars(C1 ∨A1) ∩ vars(C2 ∨A2) = ∅

As usual, the clause parts C, C1, C2 may be empty. Note that after ex-
haustive application of Instantiation and Split, every clause purely containing
positive literals is a unit clause. This together with the below rigorous selection
strategy justifies the strong side conditions of Superposition BS compared to
Superposition Left and explains whi Factoring is not needed.

Definition 3.16.1 (Rigorous Selection Strategy). A selection strategy is rigor-
ous of in any clause containing a negative literal, a negative literal is selected.

Lemma 3.16.2 (SUPBS Basic Properties). The SUPBS rules have the follow-
ing properties:

1. Superposition BS is sound.

2. Instantiation is sound and complete.

3. Split is sound and complete.

Proof. 1. Follows from the soundness of Superposition Left.

2. Soundness follows from the soundness of variable instantiation. Complete-
ness follows from the fact that grd(C ∨A1 ∨A2) = grd({(C ∨A1 ∨A2)σi | σi =
{x 7→ ai}, 1 ≤ i ≤ k}}).
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3. I prove N]{C1∨A1∨C2∨A2} is satisfiable iff N∪{C∨A1} or N∪{C2∨A2}
is satisfiable. The direction from right to left is obvious, because both C1 ∨ A1

and C2 ∨ A2 subsume C1 ∨ A1 ∨ C2 ∨ A2. For the other direction assume an
interpretation A satisfying N ]{C1∨A1∨C2∨A2}, in partiular A |= C1∨A1∨
C2 ∨ A2. This means for any valuation β we have A, β |= C1 ∨ A1 ∨ C2 ∨ A2.
The sub-clauses C1 ∨A1, C2 ∨A2 are variable disjoint so β can be split into β1

assigning values to variables in C1 ∨ A1 and β2 assigning values to variables in
C2∨A2. Then A, β |= C1∨A1∨C2∨A2 for all β iff A, β1β2 |= C1∨A1∨C2∨A2

for all β1, β2 iff A, β1 |= C1 ∨A1 or A, β2 |= C2 ∨A2 for all β1, β2.

3.16.2 Non-Redundant Clause Learning (NRCL)

The NRCL calculus is a generalization of the CDCL calculus, Section ??, to
the BS fragment. The BS fragment can be finitely grounded, but with a worst-
case exponential blow up. So an obvious procedure would be to perform the
grounding and then run CDCL on the resulting first-order ground clauses. Every
first-order ground atom then corresponds to a propositional variable. However,
in general, it is not wise to incorporate into an automated reasoning calculus
a worst-case exponential preprocessing step. Therefore, NRCL rather lifts the
CDCL calculus to the first-order BS fragment.

Similar to a CDCL state, an NRCL state is a five tuple (Γ;N ;U ; j;C), where
Γ is a (partial) model assumption build from ground literals, N the initial BS
clause set, U the set of learned BS clauses, j the current level and C is either
>, ⊥ or a BS clause. Literals L ∈ Γ are either annotated with a number, a
level, i.e., they have the form Lk meaning that L is the k − th guessed decision
literal, or they are annotated with a pair consisting of a clause and a (ground)
substitution Lσ(C∨L)·σ that forced the literal to become true. A pair (C · σ)
is called a closure. A literal L is of level k with respect to a problem state
(Γ;N ;U ; j;C) if L or comp(L) occurs in Γ and the first decision literal left from
L (comp(L)) in Γ is annotated with k or L (comp(L)) is a decision literal in
Γ annotated with k. If there is no such decision literal then k = 0. A clause D
is of level k with respect to a problem state (Γ;N ;U ; j;C) if k is the maximal
level of a literal in D.

The initial state for testing satisfiability of a BS clause set N is (ε;N ; ∅; 0;>),
the final state (Γ;N ;U ; 0;⊥) indicates unsatsifiability of the clause set and a
final state (Γ;N ;U ; k;>) where if H = {A | atom A ∈ Γ} then H |= N .

The rules are:

Propagate(Γ;N ;U ; k;>) ⇒NRCL (ΓLσ(C\{L1...,Ln}∨L)δ·σ;N ;U ; k;>)

provided C ∨L ∈ (N ∪U), Cσ is false under Γ for some grounding substitution
σ, Lσ is undefined in Γ, let L1σ, . . . , Lnσ be all copies of Lσ in Cσ and δ be the
mgu of the L1, . . . , Ln

Decide (Γ;N ;U ; k;>) ⇒NRCL (Γ, Lk+1;N ;U ; k + 1;>)



184 CHAPTER 3. FIRST-ORDER LOGIC

provided L is a ground literal undefined under Γ

Conflict (Γ;N ;U ; k;>) ⇒NRCL (Γ;N ;U ; k;D · σ)

provided D ∈ (N ∪ U), Dσ false in Γ for grounding σ

Skip (ΓLδ(C∨L)·δ;N ;U ; k;D · σ) ⇒NRCL (Γ;N ;U ; k;D · σ)

provided comp(Lδ) does not occur in Dσ

Factorize (Γ;N ;U ; k; (D ∨ L ∨ L′) · σ) ⇒NRCL (Γ;N ;U ; k; ((D ∨ L)τ) · σ)

provided Lσ = L′σ, τ = mgu(L,L′)

Resolve (ΓLδ(C∨L)·δ;N ;U ; k; (D∨L′) ·σ) ⇒NRCL (Γ;N ;U ; k; ((D∨C)γ) ·σδ)
provided Dσ is of level k, L′σ 6∈ Dσ, Lδ = comp(L′σ), and γ =
mgu(L, comp(L′))

Backtrack (ΓKi+1Γ′;N ;U ; k; (D ∨ L) · σ) ⇒NRCL (ΓLσ(D∨L)·σ;N ;U ∪ {D ∨
L}; i;>)

provided Lσ is of level k and Dσ is of level i.

Compared to the propositional CDCL calculs the ground literals on the trail
correspond to propositional variables. However, the clauses in N , the learned
clauses in U and also the annotated clauses for propagating literals from the trail
contain first-order variables. While the model assumption is always a ground
model, inferences are performed via the Resolve rule on non-ground clauses, in
general. Because of this, an additional rule is needed: Factorize and the Propa-
gate rule also factorizes all occurrences of the propagated literal in the respective
clause. In the propositional CDCL calculus factorization happened silently via
duplicate literal elimination, here it has to be done explicitely, because for two
literals L,K where Lσ = Kσ for some grounding substitution σ, the literals are
unfiable but not necesserily identical.

Theorem 3.16.3 (NRCL Overall Properties). NRCL is sound, complete and
terminating on a set of BS clauses.

3.16.3 Instance Generaction (InstGen)

A substitution σ is a proper instantiator with respect to a literal L (clause C),
if for some variable x ∈ vars(L) (x ∈ vars(C)), xσ is not a variable. Let � be
a well-founded closure ordering satifying C · σ � D · γτ if (i) Cσ = Dγτ but
Cρ = D for some proper instantiator ρ, or, (ii) Dγ ⊂ C, or (iii) Dγ = C where
γ is not a renaming, nor a proper instantiator for D.

Similar to superposition, Section 3.13, a model operator explicitely con-
structs a model in case of a saturated clause set. For otherwise, if the model
out of the model operator does not satisfy all clauses, the minimal false clause
indicates the next minimal inference, in case of the instance generation calculus,
the generation of additional clause instances.
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The candidate model IN is inductively defined over the well-founded closure
ordering � with respect to a ground model INα of the grounded clause set Nα.
The ground clause set Nα is constructed by mapping all variables in N to a
distinguished single constant α. Then if Nα is unsatisfiable, so is N . If Nα is
satisfiable, N is not necessarily satisfiable and IN lifts the model INα of Nα to a
candidate model for N . Satisfiability of the clause set Nα can be more efficiently
decided by a procedure for SAT (NP 6= NEXPTIME), e.g., a CDCL-based SAT
solver.

Similar to the model construction for superposition, suppose the sets δD · σ
have been defined for all closures D · σ smaller than C · γ.

IC·γ :=
⋃
D·σ≺C·γ δD·σ

δC·γ :=


{Lγ} if Cγ is false in IC·γ

C · γ is the minimal representation of Cγ in N

L ∈ C and Lγ undefined in IC·γ and Lα ∈ INα
∅ otherwise

IN :=
⋃
C∈N δC·γ

Falsify (N,>) ⇒IGEN (N,M)

where M = ⊥ if Nα is unsatisfiable and M = {L1, . . . , Ln} if {L1, . . . , Ln} is a
model for Nα

Instantiate(N ] {C ∨ A,D ∨ ¬B},M) ⇒IGEN (N ] {C ∨ A,D ∨ ¬B, (C ∨
A)σ, (D ∨ ¬B)σ},>)

where M = {L1, . . . , Ln}, σ = mgu(A,B), and σ is a proper instantiator of A
or B

It is important that the grounding of Nα is obtained by substituting the same
constant α for all variables, for otherwise the calculus becomes incomplete. For
example, the two unit clauses P (x, y);¬P (x, x) are unsatisfiable. A grounding
P (a, b);¬P (a, a) results in the model INα = {P (a, b);¬P (a, a)} but Instantiate
is not applicable, because the unifier {x 7→ y} is not a proper instantiater for
both literals.

The model M is actially not used in rule Instantiate. The proof of the therem
below, however, shows that it is sufficient to consider a minimal false clause C∨A
or D ∨ ¬B with respect to IN , for the inference.

Theorem 3.16.4 (Completeness of InstGen). Let (N,>)⇒∗IGEN (N ′,M) and
let (N ′,M) be a final state. If N is satisfiable then M 6= ⊥ and IN ′ |= N ′.

Proof. Suppose IN ′ is not a model for N ′. Then there exists a minimal ground
closure C · γ such that IN ′ 6|= Cγ. Obviously, C · γ was not productive in
IN ′ . So there is no literal L ∈ C such that Lγ is undefined in IC·γ and Lα ∈
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INα . However, Kα ∈ INα for some K ∈ C because INα |= Nα. So C = C ′ ∨
K and comp(Kγ) ∈ IC·γ . Therefore, there is some ground instance Dσ =
(D′ ∨K ′)σ that produces comp(Kγ) in IC·γ , i.e., comp(K ′)σ = Kγ. Let ρ =
mgu(K, comp(K ′)) and γ′ be a substitution such that (D′ ∨K ′)ργ′ = Dσ and
(C ′ ∨K)ργ′ = Cγ.

Firstly, ρ is a proper instatiator for K ′ or K. Assume not, then Kα =
comp(K ′α) so both K ′α ∈ INα and comp(K ′α) ∈ INα , a contradiction.

Therefore, secondly, ρ is a proper instatiator for K ′ or K leading to two
cases. If ρ is a proper instatiator for K ′, i.e., it instantiates a variable in K ′

with some constant then (D′ ∨K ′)ρ · γ′ ≺ (D′ ∨K ′) · σ contradicting that N ′

is saturated or (D′ ∨K ′) · σ is a minimal representation.
If ρ is a proper instatiator for K, it instantiates a variable in K with some

constant then (C ′∨K)ρ·γ′ ≺ (C ′∨K)·γ contradicting that that N ′ is saturated
or C · γ was a minimal ground closure.

Redundancy can be defined analogoulsy to superposition as well. A ground
closure C ·σ is redundant in a clause set N , if there are closures C1 ·σ1, . . . , Cn ·
σn from clauses C1, . . . , Cn from N such that Ci · σi ≺ C · σ for all i and
C1σ1, . . . , Cnσn |= Cσ. A clause C from N is redundant if all its ground closures
C · σ are redundant.

3.17 First-Order Logic Theories

In Section 3.2 the semantics of a first-order formula is defined with respect
to all algebras that assign meaning to the symbols of the signature. For
many applications this is too crude. For example, let us assume we consider
the signature of simple linear integer arithmetic without divisibility relations,
ΣLIA = ({LIA}, {0, 1,+,−} ∪ Z, {≤, <,>,≥}), see also Section 6.2.4. Then a
standard first-order algebra A is, e.g., LIAA = {0, 1}, 0A = 0, 1A = 1, kA = (|k|
mod 2) for all k ∈ Z, +A(0, 0) = 0, +A(1, 0) = +A(0, 1) = +A(1, 1) = 1,
−A(0, 0) = −A(1, 1) = −A(0, 1) = 0, −A(1, 0) = 1, and the relations ≤, <,
>, ≥ are interpreted as usual over the domain {0, 1}. Obviously, A is not the
standard interpretation of linear integer arithmetic, because the domain is not
the integers, and , e.g., A |= 8 < 9 but also A |= 10 < 9.

Is there a way to fix the semantics to the intended interpretation? Actually,
there are two: the syntactic way by requiring any algebraA of the signature ΣLIA

to satisfy a set of closed first-order formulas, called axioms, or the semantic way
of fixing a set of algebras for ΣLIA. In both cases, the set of algebras and axioms
is a called a theory T . For both cases I assume that the axioms are satisfiable
and there is either at least on algebra in T , respectively.

For the above example, the semantic way would be simply to fix the standard
linear integer interpretation for T = {ΣLIA} as the only algebra to be considered.
The syntactic way would mean to add enough formulas such that any algebra
satisfying the formulas is the desired algebra. More concretely, the formulas
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T = {{k 6≈ l | for all k, l ∈ Z, k 6= l}∪
{k < l | for all k, l ∈ Z, k < l}}

Note, that the right hand side 6= and< are the standard relations on the integers.
For any algebra A satisfying the infinitely many axioms of T , A |= 8 < 9 and
A |= 9 < 10 and LIAA will contain at least as many different elements as
the integers. So LIAA = Z is a possible domain of an algebra for T , but also
LIAA = Q would satisfy the above axioms.

Fixing a set of algebras is actually the more general and powerful mechanism.
However, it has also disadvantages. Given a finite set of axioms T proving with
respect to T amounts to classical first-order theorem proving, e.g., validity is
semi-decidable. Given a set T of algebras, proving with respect to the algebras is
typically beyond first-order logic theorem proving, e.g., for T = {ΣLIA} theorem
proving means inductive theorem proving, in general, hence, validity is no longer
semi-decidable, but undecidable.

Definition 3.17.1 (First-Order Logic Theory). Given a first-order many-sorted
signature Σ, a theory T is a non-empty set of Σ-algebras.

For some first-order formula φ over Σ we say that φ is T -satisfiable if there
is some A ∈ T such that A(β) |= φ for some β. We say that φ is T -valid (T -
unsatisfiable) if for all A ∈ T and all β it holds A(β) |= φ (A(β) 6|= φ). In case
of validity I also write |=T φ.

Alternatively, T may contain a set of satisfiable axioms which then stand
for all algebras satisfying the axioms.

C

The Σ-algebras can be restricted to term-generated models as long
as there are “enough” constants (function) symbols in Σ, in general
infinitely many are sufficient. Due to the Löwenheim-Skolem theorem
different infinite cardinalities cannot be distinguished by first-order formulas.
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Chapter 4

Equational Logic

From now on First-order Logic is considered with equality. In this chapter, I
investigate properties of a set of unit equations. For a set of unit equations I
write E. Full first-order clauses with equality are studied in Chapter 5. I recall
certain definitions from Section 1.6 and Chapter 3.

The main reasoning problem considered in this chapter is given a set of unit
equations E and an additional equation s ≈ t, does E |= s ≈ t hold? As usual, all
variables are implicitely universally quantified. The idea is to turn the equations
E into a convergent term rewrite system (TRS) R such that the above problem
can be solved by checking identity of the respective normal forms: s ↓R= t ↓R.
Showing E |= s ≈ t is as difficult as proving validity of any first-order formula,
see Section 3.15.

For example consider the euqational ground clauses E = {g(a) ≈ b, a ≈ b}
over a signature consisting of the constants a, b and unary function g, all defined
over some unique sort. Then for all algebras A satifying E, all ground terms
over a, b, and g, are mapped to the same domain element. In particular, it
holds E |= g(b) ≈ b. Now the idea is to turn E into a convergent term rewrite
system R such that g(b) ↓R= b ↓R. To this end, the equations in E are oriented,
e.g., a first guess might be the TRS R0 = {g(a) → b, a → b}. For R0 we get
g(b) ↓R0

= g(b), b ↓R0
= b, so not the desired result. The TRS R0 is not confluent

an all ground terms, because g(a) →R0
b and g(a) →R0

g(b), but b and g(b)
are R0 normal forms. This problem can be repaired by adding the extra rule
g(b)→ b and this process is called completion and is studied in this chapter. Now
the extended rewrite system R1 = {g(a) → b, a → b, g(b) → b} is convergent
and g(b) ↓R1

= b ↓R1
= b. Termination can be shown by using a KBO (or LPO)

with precedence g � a � b. Then the left hand sides of the rules are strictly
larger than the right hand sides. Actually, R1 contains some redundancy, even
removing the first rewrite rule g(a) → b from R1 does not violate confluence.
Detecting redundant rules is also discussed in this chapter.

Definition 4.0.1 (Equivalence Relation, Congruence Relation). An equivalence
relation ∼ on a term set T (Σ,X ) is a reflexive, transitive, symmetric binary

189
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relation on T (Σ,X ) such that if s ∼ t then sort(s) = sort(t).
Two terms s and t are called equivalent, if s ∼ t.
An equivalence ∼ is called a congruence if s ∼ t implies u[s] ∼ u[t], for all

terms s, t, u ∈ T (Σ,X ). Given a term t ∈ T (Σ,X ), the set of all terms equivalent
to t is called the equivalence class of t by ∼, denoted by [t]∼ := {t′ ∈ T (Σ,X ) |
t′ ∼ t}.

If the matter of discussion does not depend on a particular equivalence rela-
tion or it is unambiguously known from the context, [t] is used instead of [t]∼.
The above definition is equivalent to Definition 3.2.3.

The set of all equivalence classes in T (Σ,X ) defined by the equivalence re-
lation is called a quotient by ∼, denoted by T (Σ,X )|∼ := {[t] | t ∈ T (Σ,X )}.
Let E be a set of equations then ∼E denotes the smallest congruence relation
“containing” E, that is, (l ≈ r) ∈ E implies l ∼E r. The equivalence class [t]∼E
of a term t by the equivalence (congruence) ∼E is usually denoted, for short,
by [t]E . Likewise, T (Σ,X )|E is used for the quotient T (Σ,X )|∼E of T (Σ,X ) by
the equivalence (congruence) ∼E .

4.1 Term Rewrite System

I instantiate the abstract rewrite systems of Section 1.6 with first-order terms.
The main difference is that rewriting takes not only place at the top position of
a term, but also at inner positions.

Definition 4.1.1 (Rewrite Rule, Term Rewrite System). A rewrite rule is an
equation l ≈ r between two terms l and r so that l is not a variable and
vars(l) ⊇ vars(r). A term rewrite system R, or a TRS for short, is a set of
rewrite rules.

Definition 4.1.2 (Rewrite Relation). Let E be a set of (implicitly universally
quantified) equations, i.e., unit clauses containing exactly one positive equation.
The rewrite relation →E⊆ T (Σ,X )× T (Σ,X ) is defined by

s→E t iff there exist (l ≈ r) ∈ E, p ∈ pos(s),
and matcher σ, so that s|p = lσ and t = s[rσ]p.

Note that in particular for any equation l ≈ r ∈ E it holds l →E r, so the
equation can also be written l→ r ∈ E.

Often s = t ↓R is written to denote that s is a normal form of t with
respect to the rewrite relation →R. Notions →0

R,→
+
R,→∗R,↔∗R, etc. are defined

accordingly, see Section 1.6. An instance of the left-hand side of an equation
is called a redex (reducible expression). Contracting a redex means replacing
it with the corresponding instance of the right-hand side of the rule. A term
rewrite system R is called convergent if the rewrite relation →R is confluent
and terminating. A set of equations E or a TRS R is terminating if the rewrite
relation →E or →R has this property. Furthermore, if E is terminating then it
is a TRS. A rewrite system is called right-reduced if for all rewrite rules l → r
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in R, the term r is irreducible by R. A rewrite system R is called left-reduced
if for all rewrite rules l → r in R, the term l is irreducible by R\{l → r}. A
rewrite system is called reduced if it is left- and right-reduced.

Lemma 4.1.3 (Left-Reduced TRS). Left-reduced terminating rewrite systems
are convergent. Convergent rewrite systems define unique normal forms.

Lemma 4.1.4 (TRS Termination). A rewrite system R terminates iff there
exists a reduction ordering � so that l � r, for each rule l→ r in R.

4.1.1 E-Algebras

Let E be a set of universally quantified equations. A model A of E is also called
an E-algebra. If E |= ∀~x(s ≈ t), i.e., ∀~x(s ≈ t) is valid in all E-algebras, this is
also denoted with s ≈E t. The goal is to use the rewrite relation →E to express
the semantic consequence relation syntactically: s ≈E t if and only if s ↔∗E t.
Let E be a set of (well-sorted) equations over T (Σ,X ) where all variables are
implicitly universally quantified. The following inference system allows to derive
consequences of E:

Reflexivity E ⇒E E ∪ {t ≈ t}

Symmetry E ] {t ≈ t′} ⇒E E ∪ {t ≈ t′} ∪ {t′ ≈ t}

Transitivity E ] {t ≈ t′, t′ ≈ t′′} ⇒E E ∪ {t ≈ t′, t′ ≈ t′′} ∪ {t ≈ t′′}

Congruence E ] {t1 ≈ t′1, . . . , tn ≈ t′n} ⇒E E ∪ {t1 ≈ t′1, . . . , tn ≈ t′n} ∪
{f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)}

for any function f : sort(t1)× . . .× sort(tn)→ S for some S

Instance E ] {t ≈ t′} ⇒E E ∪ {t ≈ t′} ∪ {tσ ≈ t′σ}
for any well-sorted substitution σ

Lemma 4.1.5 (Equivalence of ↔∗E and ⇒∗E). The following properties are
equivalent:

1. s↔∗E t

2. E ⇒∗E s ≈ t is derivable.

where E ⇒∗E s ≈ t is an abbreviation for E ⇒∗E E′ and s ≈ t ∈ E′.
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Proof. (i)⇒(ii): s ↔E t implies E ⇒∗E s ≈ t by induction on the depth of the
position where the rewrite rule is applied; then s↔∗E t implies E ⇒∗E s ≈ t by
induction on the number of rewrite steps in s↔∗E t.

(ii)⇒(i): By induction on the size (number of symbols) of the derivation for
E ⇒∗E s ≈ t.

Corollary 4.1.6 (Convergence of E). If a set of equations E is convergent then
s ≈E t if and only if s↔∗ t if and only if s ↓E= t ↓E .

Corollary 4.1.7 (Decidability of ≈E). If a set of equations E is finite and
convergent then ≈E is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined re-
lations ↔∗E and ⇒∗E . What is missing, in analogy to Herbrand’s theorem for
first-order logic without equality Theorem 3.5.5, is a semantic characterization
of the relations by a particular algebra.

Definition 4.1.8 (Quotient Algebra). For sets of unit equations this is a
quotient algebra: Let X be a set of variables. For t ∈ T (Σ,X ) let [t] =
{t′ ∈ T (Σ,X )) | E ⇒∗E t ≈ t′} be the congruence class of t. Define a
Σ-algebra IE , called the quotient algebra, technically T (Σ,X )/E, as follows:
SIE = {[t] | t ∈ TS(Σ,X )} for all sorts S and fIE ([t1], . . . , [tn]) = [f(t1, . . . , tn)]
for f : sort(t1)× . . .× sort(tn)→ T ∈ Ω for some sort T .

Lemma 4.1.9 (IE is an E-algebra). IE = T (Σ,X )/E is an E-algebra.

Proof. Firstly, all functions fIE are well-defined: if [ti] = [t′i], then
[f(t1, . . . , tn)] = [f(t′1, . . . , t

′
n)]. This follows directly from the Congruence rule

for ⇒∗.
Secondly, let ∀x1 . . . xn(s ≈ t) be an equation in E. Let β be an arbitrary

assignment. It has to be shown that IE(β)(∀~x(s ≈ t)) = 1, or equivalently, that
IE(γ)(s) = IE(γ)(t) for all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n] with [ti] ∈ sort(xi)

IE .
Let σ = {x1 7→ t1, . . . , xn 7→ tn}, with ti ∈ Tsort(xi)(Σ,X ), then sσ ∈ IE(γ)(s)
and tσ ∈ IE(γ)(t). By the Instance rule, E ⇒∗ sσ ≈ tσ is derivable, hence
IE(γ)(s) = [sσ] = [tσ] = IE(γ)(t).

Lemma 4.1.10 (⇒E is complete). Let X be a countably infinite set of variables;
let s, t ∈ TS(Σ,X ). If IE |= ∀~x(s ≈ t), then E ⇒∗E s ≈ t is derivable.

Proof. Assume that IE |= ∀~x(s ≈ t), i.e., IE(β)(∀~x(s ≈ t)) = 1. Consequently,
IE(γ)(s) = IE(γ)(t) for all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n ] with [ti] ∈ sort(xi)

IE .
Choose ti = xi, then [s] = IE(γ)(s) = IE(γ)(t) = [t], so E ⇒∗ s ≈ t is derivable
by definition of IE .

Theorem 4.1.11 (Birkhoff’s Theorem). Let X be a countably infinite set of
variables, let E be a set of (universally quantified) equations. Then the following
properties are equivalent for all s, t ∈ TS(Σ,X ):

1. s↔∗E t.
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2. E ⇒∗E s ≈ t is derivable.

3. s ≈E t, i.e., E |= ∀~x(s ≈ t).

4. IE |= ∀~x(s ≈ t).

Proof. (1.)⇔(2.): Lemma 4.1.5.
(2.)⇒(3.): By induction on the size of the derivation for E ⇒∗ s ≈ t.
(3.)⇒(4.): Obvious, since IE = T (Σ,X )/E is an E-algebra.
(4.)⇒(2.): Lemma 4.1.10.

Universal Algebra
T (Σ,X )/E = T (Σ,X )/≈E = T (Σ,X )/↔∗E is called the free E-algebra with

generating set X/≈E = {[x] | x ∈ X}: Every mapping φ : X/≈E → B for some

E-algebra B can be extended to a homomorphism φ̂ : T (Σ,X )/E → B.
T (Σ, ∅)/E = T (Σ, ∅)/≈E = T (Σ, ∅)/↔∗E is called the initial E-algebra.
≈E = {(s, t) | E |= s ≈ t} is called the equational theory of E.
≈IE = {(s, t) | T (Σ, ∅)/E |= s ≈ t} is called the inductive theory of E.

Example 4.1.12. Let E = {∀x(x+ 0 ≈ x), ∀x∀y(x+ s(y) ≈ s(x+ y))}. Then
x+ y ≈IE y + x, but x+ y 6≈E y + x.

4.2 Critical Pairs

By Theorem 4.1.11 the semantics of E and ↔∗E conincide. In order to decide
↔∗E we need to turn →∗E in a confluent and terminating relation. If ↔∗E is
terminating then confluence is equivalent to local confluence, see Newman’s
Lemma, Lemma 1.6.6. Local confluence is the following problem for TRS: if
t1 E← t0 →E t2, does there exist a term s so that t1 →∗E s ∗E← t2? If the two
rewrite steps happen in different subtrees (disjoint redexes) then a repitition of
the respective other step yields the common term s. If the two rewrite steps
happen below each other (overlap at or below a variable position) again a rep-
etition of the respective other step yields the common term s. If the left-hand
sides of the two rules overlap at a non-variable position there is no ovious way
to generate s.

More technically two rewrite rules l1 → r1 and l2 → r2 overlap if there exist
some non-variable subterm l1|p such that l2 and l1|p have a common instance
(l1|p)σ1 = l2σ2. If the two rewrite rules do not have common variables, then
only a single substitution is necessary, the mgu σ of (l1|p) and l2.

Definition 4.2.1 (Critical Pair). Let li → ri (i = 1, 2) be two rewrite rules in a
TRS R whithout common variables, i.e., vars(l1)∩ vars(l2) = ∅. Let p ∈ pos(l1)
be a position so that l1|p is not a variable and σ is an mgu of l1|p and l2. Then
r1σ ← l1σ → (l1σ)[r2σ]p. 〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R. The
critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.
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Recall that vars(li) ⊇ vars(ri) for the two rewrite rules by Definition 4.1.1.

Theorem 4.2.2 (“Critical Pair Theorem”). A TRS R is locally confluent iff
all its critical pairs are joinable.

Proof. (⇒) Obvious, since joinability of a critical pair is a special case of local
confluence.

(⇐) Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at positions
pi ∈ pos(s), where i = 1, 2. The two rules are variable disjoint, hence s|pi = liσ
and ti = s[riσ]pi . There are two cases to be considered:

1. Either p1 and p2 are in disjoint subtrees (p1 || p2) or

2. one is a prefix of the other (w.l.o.g., p1 ≤ p2).

Case 1: p1 || p2. Then s = s[l1σ]p1 [l2σ]p2 , and therefore t1 = s[r1σ]p1 [l2σ]p2

and t2 = s[l1σ]p1
[r2σ]p2

. Let t0 = s[r1σ]p1
[r2σ]p2

. Then clearly t1 →R t0 using
l2 → r2 and t2 →R t0 using l1 → r1.
Case 2: p1 ≤ p2.
Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x. In other words, the second
rewrite step takes place at or below a variable in the first rule. Suppose that x
occurs m times in l1 and n times in r1 (where m ≥ 1 and n ≥ 0). Then t1 →∗R t0
by applying l2 → r2 at all positions p1q

′q2, where q′ is a position of x in r1.
Conversely, t2 →∗R t0 by applying l2 → r2 at all positions p1qq2, where q is a
position of x in l1 different from q1, and by applying l1 → r1 at p1 with the
substitution σ′, where σ′ = σ[x 7→ (xσ)[r2σ]q2 ].
Case 2.2: p2 = p1p, where p is a non-variable position of l1. Then s|p2 = l2σ
and s|p2

= (s|p1
)|p = (l1σ)|p = (l1|p)σ, so σ is a unifier of l2 and l1|p.Let σ′ be

the mgu of l2 and l1|p, then σ = τ ◦ σ′ and 〈r1σ
′, (l1σ

′)[r2σ
′]p〉 is a critical pair.

By assumption, it is joinable, so r1σ
′ →∗R v ←∗R (l1σ

′)[r2σ
′]p. Consequently,

t1 = s[r1σ]p1 = s[r1σ
′τ ]p1 →∗R s[vτ ]p1 and t2 = s[r2σ]p2 = s[(l1σ)[r2σ]p]p1 =

s[(l1σ
′τ)[r2σ

′τ ]p]p1 = s[((l1σ
′)[r2σ

′]p)τ ]p1 →∗R s[vτ ]p1 .

Please note that critical pairs between a rule and (a renamed variant of)
itself must be considered, except if the overlap is at the root, i.e., p = ε, because
this critical pair always joins.

Corollary 4.2.3. A terminating TRS R is confluent if and only if all its critical
pairs are joinable.

Proof. By the Theorem 4.2.2 and because every locally confluent and terminat-
ing relation → is confluent, Newman’s Lemma, Lemma 1.6.6.

Corollary 4.2.4. For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule
there is at most one critical pair 〈u1, u2〉. Reduce every ui to some normal form
u′i. If u′1 = u′2 for every critical pair, then R is confluent, otherwise there is some
non-confluent situation u′1

∗
R← u1 ←R s→R u2 →∗R u′2.
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4.3 Termination

Termination problems: Given a finite TRS R and a term t, are all R-reductions
starting from t terminating? Given a finite TRS R, are all R-reductions termi-
nating?

Proposition 4.3.1. Both termination problems for TRSs are undecidable in
general.

Proof. Encode Turing machines (TM) using rewrite rules and reduce the (uni-
form) halting problems for TMs to the termination problems for TRSs.

Consequence: Decidable criteria for termination are not complete.
Two Different Scenarios

Depending on the application, the TRS whose termination has to be shown
can be

1. fixed and known in advance, or

2. evolving (e.g., generated by some saturation process).

Methods for case 2. are also usable for case 1.. Many methods for case 1. are
not usable for case 2..

First consider case 2., additional techniques for case 1. will be considered
later.
Reduction Orderings

Goal: Given a finite TRS R, show termination of R by looking at finitely
many rules l→ r ∈ R, rather than at infinitely many possible replacement steps
s→R s

′.
A binary relation A over T (Σ,X ) is called compatible with Σ-operations,

if s A s′ implies f(t1, . . . , s, . . . , tn) A f(t1, . . . , s
′, . . . , tn) for all f ∈ Ω and

s, s′, ti ∈ T (Σ,X ).

Lemma 4.3.2. The relation A is compatible with Σ-operations, if and only if
s A s′ implies t[s]p A t[s′]p for all s, s′, t ∈ T (Σ,X ) and p ∈ pos(t).

Note: compatible with Σ-operations = compatible with contexts.
A binary relation A over T (Σ,X ) is called stable under substitutions, if s A s′

implies sσ A s′σ for all s, s′ ∈ T (Σ,X ) and substitutions σ. A binary relation
A is called a rewrite relation, if it is compatible with Σ-operations and stable
under substitutions.

Example 4.3.3. If R is a TRS, then →R is a rewrite relation.

A strict partial ordering over T (Σ,X ) that is a rewrite relation is called
rewrite ordering. A well-founded rewrite ordering is called reduction ordering.

Theorem 4.3.4. A TRS R terminates if and only if there exists a reduction
ordering � so that l � r for every rule l→ r ∈ R.
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Proof. (⇒): s→R s
′ if and only if s = t[lσ]p, s

′ = t[rσ]p. If l � r, then lσ � rσ
and therefore t[lσ]p � t[rσ]p. This implies →R ⊆ �. Since � is a well-founded
ordering, →R is terminating.

(⇐): Define � =→+
R. If→R is terminating, then � is a reduction ordering.

The Interpretation Method
Proving termination by interpretation: Let A be a Σ-algebra; let � be a

well-founded strict partial ordering on its universe. Define the ordering �A over
T (Σ,X ) by s �A t iff A(β)(s) � A(β)(t) for all assignments β : X → UA. Is
�A a reduction ordering?

Lemma 4.3.5. �A is stable under substitutions.

Proof. Let s �A s′, that is, A(β)(s) � A(β)(s′) for all assignments β : X → UA.
Let σ be a substitution. It has to be shown that A(γ)(sσ) � A(γ)(s′σ) for all
assignments γ : X → UA. Choose β = γ ◦ σ, then by the substitution lemma,
A(γ)(sσ) = A(β)(s) � A(β)(s′) = A(γ)(s′σ). Therefore sσ �A s′σ.

A function f : UnA → UA is called monotone w.r.t. �), if a � a′ implies
f(b1, . . . , a, . . . , bn) � f(b1, . . . , a

′, . . . , bn) for all a, a′, bi ∈ UA.

Lemma 4.3.6. If the interpretation fA of every function symbol f is monotone
w.r.t. �, then �A is compatible with Σ-operations.

Proof. Let s � s′, that is, A(β)(s) � A(β)(s′) for all β : X → UA. Let β : X →
UA be an arbitrary assignment. Then

A(β)(f(t1, . . . , s, . . . , tn)) = fA(A(β)(t1), . . . ,A(β)(s), . . . ,A(β)(tn))
� fA(A(β)(t1), . . . ,A(β)(s′), . . . ,A(β)(tn))
= A(β)(f(t1, . . . , s

′, . . . , tn))

Therefore f(t1, . . . , s, . . . , tn) �A f(t1, . . . , s
′, . . . , tn).

Theorem 4.3.7. If the interpretation fA of every function symbol f is mono-
tone w.r.t. �, then �A is a reduction ordering.

Proof. By the previous two lemmas, �A is a rewrite relation. If there were
an infinite chain s1 �A s2 �A . . . , then it would correspond to an infinite
chain A(β)(s1) � A(β)(s2) � . . . (with β chosen arbitrarily). Thus �A is well-
founded. Irreflexivity and transitivity are proved similarly.

Polynomial Orderings
Polynomial orderings:

1. Instance of the interpretation method:

2. The carrier set UA is N or some subset of N.

3. To every function symbol f with arity n a polynomial Pf (X1, . . . , Xn) ∈
N[X1, . . . , Xn] with coefficients in N is associated and indeterminates
X1, . . . , Xn. Then define fA(a1, . . . , an) = Pf (a1, . . . , an) for ai ∈ UA.
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Requirement 1: If a1, . . . , an ∈ UA, then fA(a1, . . . , an) ∈ UA. (Otherwise,
A would not be a Σ-algebra.)

Requirement 2: fA must be monotone (w.r.t.�).
From now on:

1. UA = {n ∈ N | n ≥ 1}.

2. If arity(f) = 0, then Pf is a constant ≥ 1.

3. If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . , Xn), so that
every Xi occurs in some monomial with exponent at least 1 and non-zero
coefficient. ⇒ Requirements 1 and 2 are satisfied.

The mapping from function symbols to polynomials can be extended to
terms: A term t containing the variables x1, . . . , xn yields a polynomial Pt with
indeterminates X1, . . . , Xn (where Xi corresponds to β(xi)).

Example 4.3.8. Let Ω = {b/0, f/1, g/3}, Pb = 3, Pf (X1) = X2
1 , Pg(X1, X2, X3) =

X1 +X2X3 and t = g(f(b), f(x), y), then Pt(X,Y ) = 9 +X2Y .

If P,Q are polynomials in N[X1, . . . , Xn], P > Q is written if P (a1, . . . , an) >
Q(a1, . . . , an) for all a1, . . . , an ∈ UA. Clearly, l �A r iff Pl > Pr iff Pl−Pr > 0.
The question is whether Pl − Pr > 0 can be checked automatically?

Hilbert’s 10th Problem: Given a polynomial P ∈ Z[X1, . . . , Xn] with integer
coefficients, is P = 0 for some n-tuple of natural numbers?

Theorem 4.3.9. Hilbert’s 10th Problem is undecidable.

Proposition 4.3.10. Given a polynomial interpretation and two terms l, r, it
is undecidable whether Pl > Pr.

Proof. By reduction of Hilbert’s 10th Problem.

One easy case: If restricted to linear polynomials, deciding whether Pl−Pr >
0 is trivial:

∑
kiai + k > 0 for all a1, . . . , an ≥ 1 if and only if ki ≥ 0 for all

i ∈ {1, . . . , n} and
∑
ki + k > 0.

Another possible solution: Test whether Pl(a1, . . . , an) > Pr(a1, . . . , an) for
all a1, . . . , an ∈ {x ∈ R | x ≥ 1}. This is decidable (but hard). Since UA ⊆ {x ∈
R | x ≥ 1} this implies Pl > Pr.

Alternatively: Use fast overapproximations.
Simplification Orderings

The proper subterm ordering B is defined by s B t if and only if s|p = t for
some position p 6= ε of s.

A rewrite ordering � over T (Σ,X ) is called simplification ordering if it has
the subterm property: sB t implies s � t for all s, t ∈ T (Σ,X ).

Example 4.3.11. Let Remb be the rewrite system Remb = { f(x1, . . . , xn) →
xi | f ∈ Ω, 1 ≤ i ≤ n = f/n}. Define Bemb = →+

Remb
and D = →∗Remb

(“homeomorphic embedding relation”) and Bemb is a simplification ordering.



198 CHAPTER 4. EQUATIONAL LOGIC

Lemma 4.3.12. If � is a simplification ordering then s Bemb t implies s � t
and sD t implies s � t.

Proof. Since � is transitive and � is transitive and reflexive, it suffices to show
that s →Remb t implies s � t. By definition, s →Remb t if and only if s = s[lσ]
and t = s[rσ] for some rule l→ r ∈ Remb. Obviously, lB r for all rules in Remb,
hence l � r. Since � is a rewrite relation, s = s[lσ] � s[rσ] = t.

Goal: Show that every simplification ordering is well-founded (and therefore
a reduction ordering). Note: This works only for finite signatures! To fix this for
infinite signatures, the definition of simplification orderings and the definition
of embedding have to be modified.

Theorem 4.3.13 (“Kruskal’s Theorem”). Let Σ be a finite signature, let X be
a finite set of variables. Then for every infinite sequence t1, t2, t3, . . . there are
indexes j > i so that tj Demb ti. (Demb is called a well-partial-ordering (wpo).)

Proof. The proof can be found in the book of Baader and Nipkow [?] pages
113–115.

Theorem 4.3.14 (Dershowitz). If Σ is a finite signature, then every simplifica-
tion ordering � on T (Σ,X ) is well-founded (and therefore a reduction ordering).

Proof. Suppose that t1 � t2 � t3 � . . . is an infinite descending chain. First
assume that there is an x ∈ vars(ti+1) \ vars(ti). Let σ = {x 7→ ti}, then
ti+1σ D xσ = ti and therefore ti = tiσ � ti+1σ � ti, contradicting reflexivity.

Consequently, vars(ti) ⊇ vars(ti+1) and ti ∈ T (Σ,V) for all i, where V is
the finite set vars(t1). By Kruskal’s Theorem, there are i < j with ti Eemb tj .
Hence ti � tj , contradicting ti � tj .

There are reduction orderings that are not simplification orderings and ter-
minating TRSs that are not contained in any simplification ordering.

Example 4.3.15.

Let R = {f(f(x)) → f(g(f(x)))}. R terminates and →+
R is therefore a

reduction ordering. Assume that →R was contained in a simplification or-
dering �. Then f(f(x)) →R f(g(f(x))) implies f(f(x)) � f(g(f(x))), and
f(g(f(x)))Dembf(f(x)) implies f(g(f(x))) � f(f(x)), hence f(f(x)) � f(f(x)).

4.4 Knuth-Bendix Completion (KBC)

Given a set E of equations, the goal of Knuth-Bendix completion is to transform
E into an equivalent convergent set R of rewrite rules. If R is finite this yields a
decision procedure for E. For ensuring termination the calculus fixes a reduction
ordering � and constructs R in such a way that →R ⊆ �, i.e., l � r for every
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l→ r ∈ R. For ensuring confluence the calculus checks whether all critical pairs
are joinable.

The completion procedure itself is presented as a set of abstract rewrite
rules working on a pair of equations E and rules R: (E0;R0) ⇒KBC (E1;R1)
⇒KBC (E1;R2) ⇒KBC . . .. The initial state is (E0, ∅) where E = E0 contains
the input equations. If ⇒KBC successfully terminates then E is empty and R is
the convergent rewrite system for E0. For each step (E;R) ⇒KBC (E′;R′) the
equational theories of E ∪ R and E′ ∪ R′ agree: ≈E∪R = ≈E′∪R′ . By cp(R) I
denote the set of critical pairs between rules in R.

Orient (E ] {s
.
≈ t};R) ⇒KBC (E;R ∪ {s→ t})

if s � t

Delete (E ] {s ≈ s};R) ⇒KBC (E;R)

Deduce (E;R) ⇒KBC (E ∪ {s ≈ t};R)

if 〈s, t〉 ∈ cp(R)

Simplify-Eq (E ] {s
.
≈ t};R) ⇒KBC (E ∪ {u ≈ t};R)

if s→R u

R-Simplify-Rule (E;R ] {s→ t}) ⇒KBC (E;R ∪ {s→ u})
if t→R u

L-Simplify-Rule (E;R ] {s→ t}) ⇒KBC (E ∪ {u ≈ t};R)

if s→R u using a rule l→ r ∈ R so that s A l, see below.

Trivial equations cannot be oriented and since they are not needed they can
be deleted by the Delete rule. The rule Deduce turns critical pairs between rules
in R into additional equations. Note that if 〈s, t〉 ∈ cp(R) then sR ←u →R t
and hence R |= s ≈ t. The simplification rules are not needed but serve as
reduction rules, removing redundancy from the state. Simplification of the left-
hand side may influence orientability and orientation of the result. Therefore, it
yields an equation. For technical reasons, the left-hand side of s → t may only
be simplified using a rule l→ r, if l→ r cannot be simplified using s→ t, that
is, if s A l, where the encompassment quasi-ordering A∼ is defined by s A∼ l if

s|p = lσ for some p and σ and A = A∼ \@∼ is the strict part of A∼.

Lemma 4.4.1. A is a well-founded strict partial ordering.

Lemma 4.4.2. If (E;R)⇒KBC (E′;R′), then ≈E∪R = ≈E′∪R′ .

Lemma 4.4.3. If (E;R)⇒KBC (E′;R′) and →R ⊆ �, then →R′ ⊆ �.
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Proposition 4.4.4 (Knuth-Bendix Completion Correctness). If the completion
procedure on a set of equations E is run, different things can happen:

1. A state where no more inference rules are applicable is reached and E is
not empty. ⇒ Failure (try again with another ordering?)

2. A state where E is empty is reached and all critical pairs between the
rules in the current R have been checked.

3. The procedure runs forever.

In order to treat these cases simultaneously some definitions are needed:

Definition 4.4.5 (Run). A (finite or infinite) sequence (E0;R0) ⇒KBC

(E1;R1) ⇒KBC (E2;R2) ⇒KBC . . . with R0 = ∅ is called a run of the
completion procedure with input E0 and �. For a run, E∞ =

⋃
i≥0Ei and

R∞ =
⋃
i≥0Ri.

Definition 4.4.6 (Persistent Equations). The sets of persistent equations of
rules of the run are E∗ =

⋃
i≥0

⋂
j≥iEj and R∗ =

⋃
i≥0

⋂
j≥iRj .

Note: If the run is finite and ends with En, Rn then E∗ = En and R∗ = Rn.

Definition 4.4.7 (Fair Run). A run is called fair if CP(R∗) ⊆ E∞ (i.e., if every
critical pair between persisting rules is computed at some step of the derivation).

Goal: Show: If a run is fair and E∗ is empty then R∗ is convergent and
equivalent to E0. In particular: If a run is fair and E∗ is empty then ≈E0

=
≈E∞∪R∞ =↔∗E∞∪R∞ = ↓R∗ .

From now on, (E0;R0)⇒KBC (E1;R1)⇒KBC (E2;R2)⇒KBC . . . is a fair
run and R0 and E∗ are empty.

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn) so that s =
s0, t = sn and for all i ∈ {1, . . . , n} it holds:

1. si−1 ↔E∞ si or

2. si−1 →R∞ si or

3. si−1 R∞
← si.

The pairs (si−1, si) are called proof steps. A proof is called a rewrite proof in
R∗ if there is a k ∈ {0, . . . , n} so that si−1 →R∗ si for 1 ≤ i ≤ k and si−1 R∗

← si
for k + 1 ≤ i ≤ n.

Idea (Bachmair, Derschowitz, Hsiang): Define a well-founded ordering on
proofs so that for every proof that is not a rewrite proof in R∗ there is an
equivalent smaller proof. Consequence: For every proof there is an equivalent
rewrite proof in R∗. A cost c(si−1, si) is associated with every proof step as
follows:

1. If si−1 ↔E∞ si then c(si−1, si) = ({si−1, si},−,−) where the first compo-
nent is a multiset of terms and − denotes an arbitrary (irrelevant) term.
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2. If si−1 →R∞ si using l→ r then c(si−1, si) = ({si−1}, l, si).

3. If si−1 R∞
← si using l→ r then c(si−1, si) = ({si}, l, si−1).

Proof steps are compared using the lexicographical combination of the multiset
extension of the reduction ordering �, the encompassment ordering A and the
reduction ordering �. The cost c(P ) of a proof P is the multiset of the cost of
its proof steps. The proof ordering �C compares the cost of proofs using the
multiset extension of the proof step ordering.

Lemma 4.4.8. �C is well-founded ordering.

Lemma 4.4.9. Let P be a proof in E∞ ∪R∞. If P is not a rewrite proof in R∗
then there exists an equivalent proof P ′ in E∞ ∪R∞ so that P �C P ′.

Proof. If P is not a rewrite proof in R∗ then it contains

1. a proof step that is in E∞ or

2. a proof step that is in R∞\R∗ or

3. a subproof si−1 R∗
← si → si+1 (peak).

It is shown that in all three cases the proof step or subproof can be replaced by
a smaller subproof:
Case 1.: A proof step using an equation s

.
≈ t is in E∞. This equation must be

deleted during the run.

If s
.
≈ t is deleted using Orient :

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ si . . .

If s
.
≈ t is deleted using Delete:

. . . si−1 ↔E∞ si−1 . . . =⇒ . . . si−1 . . .

If s
.
≈ t is deleted using Simplify-Eq :

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .

Case 2.: A proof step using a rule s→ t is in R∞\R∗. This rule must be deleted
during the run.

If s→ t is deleted using R-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ R∞← si . . .

If s→ t is deleted using L-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .

Case 3.: A subproof has the form si−1 R∗
← si →R∗ si+1.
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If there is no overlap or a non-critical overlap:

. . . si−1 R∗
← si →R∗ si+1 . . . =⇒ . . . si−1 →∗R∗ s

′ ∗
R∗
← si+1 . . .

If there is a critical pair that has been added using Deduce:

. . . si−1 R∗
← si →R∗ si+1 . . . =⇒ . . . si−1 ↔E∞ si+1 . . .

In all cases, checking that the replacement subproof is smaller than the
replaced subproof is routine.

Theorem 4.4.10 (KBC Soundness). Let (E0;R0) ⇒KBC (E1;R1) ⇒KBC

(E2;R2)⇒KBC . . . be a fair run and let R0 and E∗ be empty. Then

1. every proof in E∞ ∪R∞ is equivalent to a rewrite proof in R∗,

2. R∗ is equivalent to E0 and

3. R∗ is convergent.

Proof. 1. By well-founded induction on �C using the previous lemma.

2. Clearly, ≈E∞∪R∞ = ≈E0
. Since R∗ ⊆ R∞ this yields ≈R∗ ⊆ ≈E∞∪R∞ .

On the other hand, by 1. it holds that ≈E∞∪R∞ ⊆ ≈R∗ .

3. Since →R∗ ⊆ �, R∗ is terminating. By 1. it holds that R∗ is confluent.

Now using the proof of Theorem 3.15.2 termination of⇒KBC is undecidable.

Corollary 4.4.11 (KBC Termination). Termination of ⇒KBC is undecidable
for some given finite set of equations E.

Proof. Using exactly the construction of Theorem 3.15.2 it remains to be shown
that all computed critical pairs can be oriented. Critical pairs correspond-
ing to the search for a PCP solution result in equations fR(u(x), v(y)) ≈
fR(u′(x), v′(y)) or fR(u′(x), v′(x)) ≈ c. By chosing an appropriate ordering,
all these equations can be oriented. Thus ⇒KBC does not produce any unori-
entable equations. The rest follows from Theorem 3.15.2.

4.4.1 Unfailing Completion

Classical completion: Try to transform a set E of equations into an equivalent
convergent TRS. Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (from Bachmair, Derschowitz and Plaisted [?]): If an
equation cannot be oriented, orientable instances can still be used for rewriting.
Note: If � is total on ground terms, then every ground instance of an equation
is trivial or can be oriented. The goal is to derive a ground convergent set of
equations.




