Proof. If N is unsatisfiable, saturation via the tableau calculus generates a closed tableau. So there is an i such that $N \Rightarrow_{\text{TAB}}^i N'$ and N' is closed. Every closed branch is the result of finitely many tableau rule applications on finitely many clauses $\{C_1, \ldots, C_n\} \subseteq N$. Let M be the union of all these finite clause sets, so $M \subseteq N$. Tableau is sound, so M is a finite, unsatisfiable subset of N. \square

3.7 Unification

Definition 3.7.1 (Unifier). Two terms s and t of the same sort are said to be unifiable if there exists a well-sorted substitution σ so that $s\sigma = t\sigma$, the substitution σ is then called a well-sorted *unifier* of s and t. The unifier σ is called most general unifier, written $\sigma = mgu(s, t)$, if any other well-sorted unifier τ of s and t it can be represented as $\tau = \sigma \tau'$, for some well-sorted substitution $\tau'.$

Obviously, two terms of different sort cannot be made equal by well-sorted instantiation. Since well-sortedness is preserved by all rules of the unification calculus, we assume from now an that all equations, terms, and substitutions are well-sorted.

The first calculus is the naive standard unification calculus that is typically found in the (old) literature on automated reasoning [21]. A state of the naive standard unification calculus is a set of equations E or \perp , where \perp denotes that no unifier exists. The set E is also called a *unification problem*. The start state for checking whether two terms s, t, sort(s) = sort(t), (or two non-equational atoms A, B) are unifiable is the set $E = \{s = t\}$ $(E = \{A = B\})$. A variable x is solved in E if $E = \{x = t\} \cup E', x \notin \text{vars}(t)$ and $x \notin \text{vars}(E)$.

A variable $x \in \text{vars}(E)$ is called solved in E if $E = E' \cup \{x = t\}$ and $x \notin \text{vars}(t)$ and $x \notin \text{vars}(E').$

Tautology $E \uplus \{t = t\} \Rightarrow_{\text{SU}} E$

Decomposition $E \uplus \{f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)\} \Rightarrow_{\text{SU}} E \cup \{s_1 =$ $t_1, \ldots, s_n = t_n$

Clash $E \uplus \{f(s_1, \ldots, s_n) = q(s_1, \ldots, s_m)\} \Rightarrow_{\text{SU}} \perp$

if $f \neq g$

Substitution $E \uplus \{x = t\} \Rightarrow_{\text{SU}} E\{x \mapsto t\} \cup \{x = t\}$ if $x \in vars(E)$ and $x \notin vars(t)$

Occurs Check $E \oplus \{x = t\} \Rightarrow_{\text{SU}} \perp$

if $x \neq t$ and $x \in vars(t)$

 Orient
if
$$
t \notin \mathcal{X}
$$
 $E \cup \{t = x\} \Rightarrow_{\text{SU}} E \cup \{x = t\}$

Theorem 3.7.2 (Soundness, Completeness and Termination of \Rightarrow_{SU}). If s, t are two terms with sort $(s) = \text{sort}(t)$ then

- 1. if $\{s = t\} \Rightarrow_{\text{SU}}^* E$ then any equation $(s' = t') \in E$ is well-sorted, i.e., $\text{sort}(s') = \text{sort}(t').$
- 2. \Rightarrow su terminates on $\{s = t\}.$
- 3. if $\{s = t\} \Rightarrow_{\text{SU}}^* E$ then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of $\{s = t\}.$
- 4. if $\{s=t\} \Rightarrow_{\text{SU}}^* \perp$ then s and t are not unifiable.
- 5. if $\{s = t\} \Rightarrow_{\text{SU}}^* \{x_1 = t_1, \ldots, x_n = t_n\}$ and this is a normal form, then ${x_1 \mapsto t_1, \ldots, x_n \mapsto t_n}$ is an mgu of s, t.

Proof. 1. by induction on the length of the derivation and a case analysis for the different rules.

2. for a state $E = \{s_1 = t_1, ..., s_n = t_n\}$ take the measure $\mu(E) := (n, M, k)$ where n is the number of unsolved variables, M the multiset of all term depths of the s_i , t_i and k the number of equations $t = x$ in E where t is not a variable. The state \perp is mapped to $(0, \emptyset, 0)$. Then the lexicographic combination of $>$ on the naturals and its multiset extension shows that any rule application decrements the measure.

3. by induction on the length of the derivation and a case analysis for the different rules. Clearly, for any state where Clash, or Occurs Check generate ⊥ the respective equation is not unifiable.

4. a direct consequence of 3.

5. if $E = \{x_1 = t_1, \ldots, x_n = t_n\}$ is a normal form, then for all $x_i = t_i$ we have $x_i \notin \text{vars}(t_i)$ and $x_i \notin \text{vars}(E \setminus \{x_i = t_i\}),$ so $\{x_1 = t_1, \ldots, x_n = t_n\}\{x_1 \mapsto$ $t_1, ..., x_n \mapsto t_n$ = $\{t_1 = t_1, ..., t_n = t_n\}$ and hence $\{x_1 \mapsto t_1, ..., x_n \mapsto t_n\}$ is an mgu of $\{x_1 = t_1, \ldots, x_n = t_n\}$. By 3. it is also an mgu of s, t.

Example 3.7.3 (Size of Standard Unification Problems). Any normal form of the unification problem E given by

 ${f(x_1, g(x_1, x_1), x_3, \ldots, g(x_n, x_n)) = f(g(x_0, x_0), x_2, g(x_2, x_2), \ldots, x_{n+1})}$ with respect to \Rightarrow_{SU} is exponentially larger than E.

The second calculus, polynomial unification, prevents the problem of exponential growth by introducing an implicit representation for the mgu. For this calculus the size of a normal form is always polynomial in the size of the input unification problem.

Tautology $E \uplus \{t = t\} \Rightarrow_{\text{PU}} E$

- 1. if $\{s = t\} \Rightarrow_{\text{PU}}^* E$ then any equation $(s' = t') \in E$ is well-sorted, i.e., $\text{sort}(s') = \text{sort}(t').$
- 2. \Rightarrow PU terminates on $\{s = t\}.$
- 3. if $\{s = t\} \Rightarrow_{\text{PU}}^* E$ then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of $\{s = t\}.$
- 4. if $\{s=t\} \Rightarrow_{\text{PU}}^* \bot$ then s and t are not unifiable.

Theorem 3.7.5 (Normal Forms generated by \Rightarrow PU). Let $\{s = t\} \Rightarrow_{\text{PU}}^* \{x_1 =$ $t_1, \ldots, x_n = t_n$ be a normal form. Then

- 1. $x_i \neq x_j$ for all $i \neq j$ and without loss of generality $x_i \notin \text{vars}(t_{i+k})$ for all $i, k, 1 \leq i < n, i + k \leq n.$
- 2. the substitution $\{x_1 \mapsto t_1\} \{x_2 \mapsto t_2\} \dots \{x_n \mapsto t_n\}$ is an mgu of $s = t$.

Proof. 1. If $x_i = x_j$ for some $i \neq j$ then Merge is applicable. If $x_i \in \text{vars}(t_i)$ for some i then Occurs Check is applicable. If the x_i cannot be ordered in the described way, then either Substitution or Cycle is applicable.

2. Since $x_i \notin \text{vars}(t_{i+k})$ the composition yields the mgu. \Box **Lemma 3.7.6** (Size of Unifiers). Let $\{s = t\}$ be a unification problem between two non-variable terms. Then

- 1. if s and t are linear then for any unifier σ and any term $r \in \text{codom}(\sigma)$, $|r| < |s|$ and $|r| < |t|$ as well as depth $(r) <$ depth (s) and depth $(r) <$ $depth(t),$
- 2. if s is shallow and linear, then the mgu σ of s and t is also a matcher from s to t, i.e., $s\sigma = t$

Proof. Both parts follow directly from the structure of the terms s, t : if they are both linear then the substitution rule is never applied. If s is shallow and linear, it has the form $f(x_1, \ldots, x_n)$, all x_i different, then the unifier is $\sigma = \{x_i \mapsto t|_i \mid$ $1 \leq i \leq n$. \Box

3.8 First-Order Free-Variable Tableau

An important disadvantage of standard first-order tableau is that the γ ground term instances need to be guessed. The main complexity in proving a formula to be valid lies in this guessing as for otherwise tableau terminates with a proof. Guessing useless ground terms may result in infinite branches. A natural idea is to guess ground terms that can eventually be used to close a branch. Of course, it is not known which ground term will close a branch. Therefore, it would be great to postpone the γ instantiations. This is the idea of free-variable first-order tableau. Instead of guessing a ground term for a γ formula, free-variable tableau introduces a fresh variable. Then a branch can be closed if two complementary literals have a common ground instance, i.e., their atoms are unifiable. The instantiation is delayed until a branch is closed for two literals via unification. As a consequence, for δ formulas no longer constants are introduced but shallow, so called Skolem terms in the formerly universally quantified variables that had the δ formula in their scope.

The new calculus needs to keep track of scopes of variables, so I move from a state as a set of pairs of a sequence and a set of constants, see standard firstorder tableau Section 3.6, to a set of sequences of pairs (M_i, X_i) where X_i is a set of variables.

Definition 3.8.1 (Direct Free-Variable Tableau Descendant). Given a γ - or δ-formula φ, Figure 3.2 shows its direct descendants.

The notion of closedness, Section 3.6, transfers exactly from standard to free-variable tableau. For α - and β -formulas the definition of an *open* formula remains unchanged as well. A γ - or δ-formula is called *open* in (M, X) if no direct descendant is contained in M. Note that instantiation of a tableau may remove direct descendants of γ - or δ -formulas by substituting terms for variables. Then a branch, pair (M, X) , sequence M, is *open* if it is not closed and there is an open formula in M or there is pair of unifiable, complementary literals in M.