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Proof. If N is unsatisfiable, saturation via the tableau calculus generates a
closed tableau. So there is an i such that N =%,z N’ and N’ is closed. Every
closed branch is the result of finitely many tableau rule applications on finitely
many clauses {C1,...,Cp,} C N. Let M be the union of all these finite clause
sets, so M C N. Tableau is sound, so M is a finite, unsatisfiable subset of N. [J

3.7 Unification

Definition 3.7.1 (Unifier). Two terms s and ¢ of the same sort are said to
be unifiable if there exists a well-sorted substitution ¢ so that so = to, the
substitution ¢ is then called a well-sorted unifier of s and t. The unifier o is
called most general unifier, written o = mgu(s, t), if any other well-sorted unifier
7 of s and ¢ it can be represented as 7 = o7’, for some well-sorted substitution
7.

Obviously, two terms of different sort cannot be made equal by well-sorted
instantiation. Since well-sortedness is preserved by all rules of the unification
calculus, we assume from now an that all equations, terms, and substitutions
are well-sorted.

The first calculus is the naive standard unification calculus that is typically
found in the (old) literature on automated reasoning [21]. A state of the naive
standard unification calculus is a set of equations E or 1, where L denotes that
no unifier exists. The set F is also called a unification problem. The start state
for checking whether two terms s, ¢, sort(s) = sort(t), (or two non-equational
atoms A, B) are unifiable is the set E = {s =t} (F = {A = B}). A variable x
is solved in E'if E = {x =t} W E « ¢ vars(t) and = & vars(E).

A variable x € vars(E) is called solved in F if E = E'W {& = t} and
x & vars(t) and x & vars(E').

Tautology Ew{t=t} =suv FE

Decomposition EW{f(s1,..-,8n) = f(t1,...,tn)} =su EFU{s1 =
tla"'asn:tn}

Clash EW{f(s1,...y8n) =9(81,---,8m)} =su L
iff#g
Substitution Ew{r =t} =guv E{r—t}U{z =1}

if € vars(E) and x & vars(t)

Occurs Check Ew{x=t} =guv L
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if v #t and x € vars(t)

Orient Ew{t=z} =gsu EU{z =t}
iftegXx

Theorem 3.7.2 (Soundness, Completeness and Termination of =gy). If s,t
are two terms with sort(s) = sort(¢) then

1. if {s =t} =&, E then any equation (s’ = t') € E is well-sorted, i.e.,
sort(s’) = sort(t').

2. =gy terminates on {s =t}.

3. if {s =t} ={, F then o is a unifier (mgu) of E iff ¢ is a unifier (mgu) of
{s =t}.

4. if {s =t} =&, L then s and t are not unifiable.

5. if {s = ¢t} =&y {#1 = t1,...,2, = t,} and this is a normal form, then
{1 t1,..., 2y — t,} is an mgu of s, t.

Proof. 1. by induction on the length of the derivation and a case analysis for
the different rules.

2. for a state E = {s1 = t1,...,8, = t,} take the measure u(E) := (n, M, k)
where n is the number of unsolved variables, M the multiset of all term depths of
the s;, t; and k the number of equations ¢ = x in F where ¢ is not a variable. The
state L is mapped to (0,0, 0). Then the lexicographic combination of > on the
naturals and its multiset extension shows that any rule application decrements
the measure.

3. by induction on the length of the derivation and a case analysis for the
different rules. Clearly, for any state where Clash, or Occurs Check generate |
the respective equation is not unifiable.

4. a direct consequence of 3.

5.if E={xy =t,...,2, = t,} is a normal form, then for all z; = t; we have
x; & vars(t;) and x; & vars(E \ {x; = t;}), so {x1 = t1,...,2y = tp,H{z1 —
tyeeoyZp >ty = {t1 =t1,...,tn = tn} and hence {z1 — t1,..., 2, > tp} is
an mgu of {x1 =t1,...,2, =t,}. By 3. it is also an mgu of s, ¢. O

Example 3.7.3 (Size of Standard Unification Problems). Any normal form of
the unification problem E given by

{f($17g(x17$1)7$37 e ag(l"rh xn)) = f(g(m()a J,‘()), $2,9($2, 1‘2), e a-rn-i-l)}
with respect to =gy is exponentially larger than E.

The second calculus, polynomial unification, prevents the problem of expo-
nential growth by introducing an implicit representation for the mgu. For this
calculus the size of a normal form is always polynomial in the size of the input
unification problem.

Tautology Ew{t=t} =py E
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Decomposition EwW{f(s1,.--.,8n) = f(t1,...,tn)} =prv EW{s1 =
tl,...,Sn:tn}

Clash E@{f(tl,,tn):g(81,78m)} =PU 1
if f#g

Occurs Check Ev{z=t} =py L

if x £t and = € vars(t)

Orient Ew{t=z} =py EW{z =t}

ittgx

Substitution Ew{r =y} =pu E{z —»y}lu{z =y}

if x € vars(F) and x # y

Cycle Ey{zi=t1,...,an=ta} =pu L

if there are positions p; with ¢;|,, = ®i+1,tn|p, = x1 and some p; # €
Merge Ev{z=t,x=s} =py EW{r=tt=s}
ift,s ¢ X and [t| < |s]

Theorem 3.7.4 (Soundness, Completeness and Termination of =py). If s,¢
are two terms with sort(s) = sort(t) then

1. if {s = t} =}y E then any equation (s’ = t') € E is well-sorted, i.e.,
sort(s’) = sort(t').

2. =py terminates on {s = t}.

3. if {s =t} =%y E then o is a unifier (mgu) of E iff o is a unifier (mgu) of
{s=t}.

4. if {s =t} =%y L then s and ¢ are not unifiable.

Theorem 3.7.5 (Normal Forms generated by =py). Let {s =t} =5y {z1 =
t1,...,&, = t,} be a normal form. Then

1. m; # z; for all § # j and without loss of generality x; ¢ vars(t;4+) for all
Lk,1<i<n,i+k<n.

2. the substitution {x1 — t1}{ze — ta} ... {xn — t,} is an mgu of s = ¢.

Proof. 1. If z; = x; for some ¢ # j then Merge is applicable. If x; € vars(t;)
for some i then Occurs Check is applicable. If the x; cannot be ordered in the
described way, then either Substitution or Cycle is applicable.

2. Since x; ¢ vars(t;4x) the composition yields the mgu. O
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Lemma 3.7.6 (Size of Unifiers). Let {s =t} be a unification problem between
two non-variable terms. Then

1. if s and ¢ are linear then for any unifier ¢ and any term r € codom(o),
[r| < |s|] and |r| < |t| as well as depth(r) < depth(s) and depth(r) <
depth(t),

2. if s is shallow and linear, then the mgu o of s and t is also a matcher from
stot, ie., so=t

Proof. Both parts follow directly from the structure of the terms s, ¢: if they are
both linear then the substitution rule is never applied. If s is shallow and linear,
it has the form f(z1,...,z,), all ; different, then the unifier is o = {x; — t|; |
1<i<n}. O

3.8 First-Order Free-Variable Tableau

An important disadvantage of standard first-order tableau is that the « ground
term instances need to be guessed. The main complexity in proving a formula
to be valid lies in this guessing as for otherwise tableau terminates with a proof.
Guessing useless ground terms may result in infinite branches. A natural idea is
to guess ground terms that can eventually be used to close a branch. Of course,
it is not known which ground term will close a branch. Therefore, it would be
great to postpone the v instantiations. This is the idea of free-variable first-order
tableau. Instead of guessing a ground term for a  formula, free-variable tableau
introduces a fresh variable. Then a branch can be closed if two complementary
literals have a common ground instance, i.e., their atoms are unifiable. The
instantiation is delayed until a branch is closed for two literals via unification.
As a consequence, for § formulas no longer constants are introduced but shallow,
so called Skolem terms in the formerly universally quantified variables that had
the ¢ formula in their scope.

The new calculus needs to keep track of scopes of variables, so I move from
a state as a set of pairs of a sequence and a set of constants, see standard first-
order tableau Section 3.6, to a set of sequences of pairs (M;, X;) where X, is a
set of variables.

Definition 3.8.1 (Direct Free-Variable Tableau Descendant). Given a 7- or
d-formula ¢, Figure 3.2 shows its direct descendants.

The notion of closedness, Section 3.6, transfers exactly from standard to
free-variable tableau. For a- and p-formulas the definition of an open formula
remains unchanged as well. A - or -formula is called open in (M, X)) if no direct
descendant is contained in M. Note that instantiation of a tableau may remove
direct descendants of - or d-formulas by substituting terms for variables. Then
a branch, pair (M, X), sequence M, is open if it is not closed and there is an
open formula in M or there is pair of unifiable, complementary literals in M.



