Proof. If N is unsatisfiable, saturation via the tableau calculus generates a closed tableau. So there is an i such that $N \Rightarrow_{TAB}^{i} N'$ and N' is closed. Every closed branch is the result of finitely many tableau rule applications on finitely many clauses $\{C_1, \ldots, C_n\} \subseteq N$. Let M be the union of all these finite clause sets, so $M \subseteq N$. Tableau is sound, so M is a finite, unsatisfiable subset of N. \Box

3.7 Unification

Definition 3.7.1 (Unifier). Two terms s and t of the same sort are said to be *unifiable* if there exists a well-sorted substitution σ so that $s\sigma = t\sigma$, the substitution σ is then called a well-sorted *unifier* of s and t. The unifier σ is called *most general unifier*, written $\sigma = mgu(s, t)$, if any other well-sorted unifier τ of s and t it can be represented as $\tau = \sigma \tau'$, for some well-sorted substitution τ' .

Obviously, two terms of different sort cannot be made equal by well-sorted instantiation. Since well-sortedness is preserved by all rules of the unification calculus, we assume from now an that all equations, terms, and substitutions are well-sorted.

The first calculus is the naive standard unification calculus that is typically found in the (old) literature on automated reasoning [21]. A state of the naive standard unification calculus is a set of equations E or \bot , where \bot denotes that no unifier exists. The set E is also called a *unification problem*. The start state for checking whether two terms s, t, sort(s) = sort(t), (or two non-equational atoms A, B) are unifiable is the set $E = \{s = t\}$ ($E = \{A = B\}$). A variable xis solved in E if $E = \{x = t\} \uplus E', x \notin \text{vars}(t)$ and $x \notin \text{vars}(E)$.

A variable $x \in vars(E)$ is called *solved* in E if $E = E' \uplus \{x = t\}$ and $x \notin vars(t)$ and $x \notin vars(E')$.

Tautology $E \uplus \{t = t\} \Rightarrow_{SU} E$

Decomposition $E \uplus \{f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n)\} \Rightarrow_{SU} E \cup \{s_1 = t_1, \ldots, s_n = t_n\}$

 $\label{eq:clash} {\bf Clash} \qquad \qquad E \uplus \left\{ f(s_1,\ldots,s_n) = g(s_1,\ldots,s_m) \right\} \ \Rightarrow_{\rm SU} \ \bot$

if $f \neq g$

Substitution $E \uplus \{x = t\} \Rightarrow_{SU} E\{x \mapsto t\} \cup \{x = t\}$ if $x \in vars(E)$ and $x \notin vars(t)$

Occurs Check $E \uplus \{x = t\} \Rightarrow_{SU} \bot$

if $x \neq t$ and $x \in vars(t)$

Orient
$$E \uplus \{t = x\} \Rightarrow_{SU} E \cup \{x = t\}$$

if $t \notin \mathcal{X}$

Theorem 3.7.2 (Soundness, Completeness and Termination of \Rightarrow_{SU}). If s, t are two terms with sort(s) = sort(t) then

- 1. if $\{s = t\} \Rightarrow_{SU}^* E$ then any equation $(s' = t') \in E$ is well-sorted, i.e., sort(s') = sort(t').
- 2. \Rightarrow_{SU} terminates on $\{s = t\}$.
- 3. if $\{s = t\} \Rightarrow_{SU}^* E$ then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of $\{s = t\}$.
- 4. if $\{s = t\} \Rightarrow_{SU}^* \bot$ then s and t are not unifiable.
- 5. if $\{s = t\} \Rightarrow_{SU}^* \{x_1 = t_1, \dots, x_n = t_n\}$ and this is a normal form, then $\{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ is an mgu of s, t.

Proof. 1. by induction on the length of the derivation and a case analysis for the different rules.

2. for a state $E = \{s_1 = t_1, \ldots, s_n = t_n\}$ take the measure $\mu(E) := (n, M, k)$ where n is the number of unsolved variables, M the multiset of all term depths of the s_i, t_i and k the number of equations t = x in E where t is not a variable. The state \perp is mapped to $(0, \emptyset, 0)$. Then the lexicographic combination of > on the naturals and its multiset extension shows that any rule application decrements the measure.

3. by induction on the length of the derivation and a case analysis for the different rules. Clearly, for any state where Clash, or Occurs Check generate \perp the respective equation is not unifiable.

4. a direct consequence of 3.

5. if $E = \{x_1 = t_1, \ldots, x_n = t_n\}$ is a normal form, then for all $x_i = t_i$ we have $x_i \notin \operatorname{vars}(t_i)$ and $x_i \notin \operatorname{vars}(E \setminus \{x_i = t_i\})$, so $\{x_1 = t_1, \ldots, x_n = t_n\}\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\} = \{t_1 = t_1, \ldots, t_n = t_n\}$ and hence $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$ is an mgu of $\{x_1 = t_1, \ldots, x_n = t_n\}$. By 3. it is also an mgu of s, t. \Box

Example 3.7.3 (Size of Standard Unification Problems). Any normal form of the unification problem E given by

 $\{f(x_1, g(x_1, x_1), x_3, \dots, g(x_n, x_n)) = f(g(x_0, x_0), x_2, g(x_2, x_2), \dots, x_{n+1})\}$ with respect to \Rightarrow_{SU} is exponentially larger than *E*.

The second calculus, polynomial unification, prevents the problem of exponential growth by introducing an implicit representation for the mgu. For this calculus the size of a normal form is always polynomial in the size of the input unification problem.

Tautology $E \uplus \{t = t\} \Rightarrow_{PU} E$

144

Decomposition	$E \uplus \{f(s_1,\ldots,s_n) = f(t_1,\ldots,t_n)\} =$	$\Rightarrow_{\mathrm{PU}} E \uplus \{s_1 =$
$t_1,\ldots,s_n=t_n\}$		

$ \begin{aligned} \mathbf{Clash} \\ \text{if } f \neq g \end{aligned} $	$E \uplus \{f(t_1, \ldots, t_n) = g(s_1, \ldots, s_m)\} \Rightarrow_{\mathrm{PU}} \bot$	
Occurs Check if $x \neq t$ and $x \in vars(t)$	$E \uplus \{x = t\} \Rightarrow_{\mathrm{PU}} \perp$	
$\begin{array}{l} \mathbf{Orient} \\ \text{if } t \notin \mathcal{X} \end{array}$	$E \uplus \{t = x\} \Rightarrow_{\mathrm{PU}} E \uplus \{x = t\}$	
Substitution if $x \in vars(E)$ and $x \neq y$	$E \uplus \{x = y\} \Rightarrow_{\mathrm{PU}} E\{x \mapsto y\} \uplus \{x = y\}$	
Cycle if there are positions p_i w	$E \uplus \{x_1 = t_1, \dots, x_n = t_n\} \Rightarrow_{\text{PU}} \bot$ ith $t_i _{p_i} = x_{i+1}, t_n _{p_n} = x_1$ and some $p_i \neq \epsilon$	
Merge if $t, s \notin \mathcal{X}$ and $ t \leq s $	$E \uplus \{x = t, x = s\} \Rightarrow_{\mathrm{PU}} E \uplus \{x = t, t = s\}$	
Theorem 3.7.4 (Soundness, Completeness and Termination of \Rightarrow_{PU}). If s, t		

are two terms with $\operatorname{sort}(s) = \operatorname{sort}(t)$ then

- 1. if $\{s = t\} \Rightarrow_{PU}^* E$ then any equation $(s' = t') \in E$ is well-sorted, i.e., sort(s') = sort(t').
- 2. \Rightarrow_{PU} terminates on $\{s = t\}$.
- 3. if $\{s = t\} \Rightarrow_{PU}^{*} E$ then σ is a unifier (mgu) of E iff σ is a unifier (mgu) of $\{s = t\}$.
- 4. if $\{s = t\} \Rightarrow_{PU}^* \bot$ then s and t are not unifiable.

Theorem 3.7.5 (Normal Forms generated by \Rightarrow_{PU}). Let $\{s = t\} \Rightarrow_{PU}^* \{x_1 = t_1, \ldots, x_n = t_n\}$ be a normal form. Then

- 1. $x_i \neq x_j$ for all $i \neq j$ and without loss of generality $x_i \notin vars(t_{i+k})$ for all $i, k, 1 \leq i < n, i+k \leq n$.
- 2. the substitution $\{x_1 \mapsto t_1\}\{x_2 \mapsto t_2\} \dots \{x_n \mapsto t_n\}$ is an mgu of s = t.

Proof. 1. If $x_i = x_j$ for some $i \neq j$ then Merge is applicable. If $x_i \in vars(t_i)$ for some *i* then Occurs Check is applicable. If the x_i cannot be ordered in the described way, then either Substitution or Cycle is applicable.

2. Since $x_i \notin \operatorname{vars}(t_{i+k})$ the composition yields the mgu.

Lemma 3.7.6 (Size of Unifiers). Let $\{s = t\}$ be a unification problem between two non-variable terms. Then

- 1. if s and t are linear then for any unifier σ and any term $r \in \operatorname{codom}(\sigma)$, |r| < |s| and |r| < |t| as well as $\operatorname{depth}(r) < \operatorname{depth}(s)$ and $\operatorname{depth}(r) < \operatorname{depth}(t)$,
- 2. if s is shallow and linear, then the mgu σ of s and t is also a matcher from s to t, i.e., $s\sigma = t$

Proof. Both parts follow directly from the structure of the terms s, t: if they are both linear then the substitution rule is never applied. If s is shallow and linear, it has the form $f(x_1, \ldots, x_n)$, all x_i different, then the unifier is $\sigma = \{x_i \mapsto t|_i \mid 1 \leq i \leq n\}$.

3.8 First-Order Free-Variable Tableau

An important disadvantage of standard first-order tableau is that the γ ground term instances need to be guessed. The main complexity in proving a formula to be valid lies in this guessing as for otherwise tableau terminates with a proof. Guessing useless ground terms may result in infinite branches. A natural idea is to guess ground terms that can eventually be used to close a branch. Of course, it is not known which ground term will close a branch. Therefore, it would be great to postpone the γ instantiations. This is the idea of free-variable first-order tableau. Instead of guessing a ground term for a γ formula, free-variable tableau introduces a fresh variable. Then a branch can be closed if two complementary literals have a common ground instance, i.e., their atoms are unifiable. The instantiation is delayed until a branch is closed for two literals via unification. As a consequence, for δ formulas no longer constants are introduced but shallow, so called *Skolem* terms in the formerly universally quantified variables that had the δ formula in their scope.

The new calculus needs to keep track of scopes of variables, so I move from a state as a set of pairs of a sequence and a set of constants, see standard firstorder tableau Section 3.6, to a set of sequences of pairs (M_i, X_i) where X_i is a set of variables.

Definition 3.8.1 (Direct Free-Variable Tableau Descendant). Given a γ - or δ -formula ϕ , Figure 3.2 shows its direct descendants.

The notion of closedness, Section 3.6, transfers exactly from standard to free-variable tableau. For α - and β -formulas the definition of an *open* formula remains unchanged as well. A γ - or δ -formula is called *open* in (M, X) if no direct descendant is contained in M. Note that instantiation of a tableau may remove direct descendants of γ - or δ -formulas by substituting terms for variables. Then a branch, pair (M, X), sequence M, is *open* if it is not closed and there is an open formula in M or there is pair of unifiable, complementary literals in M.