
Chapter 4

Equational Logic

From now on First-order Logic is considered with equality. In this chapter, I
investigate properties of a set of unit equations. For a set of unit equations I
write E. Full first-order clauses with equality are studied in Chapter 5. I recall
certain definitions from Section 1.6 and Chapter 3.

The main reasoning problem considered in this chapter is given a set of unit
equations E and an additional equation s ≈ t, does E |= s ≈ t hold? As usual, all
variables are implicitely universally quantified. The idea is to turn the equations
E into a convergent term rewrite system (TRS) R such that the above problem
can be solved by checking identity of the respective normal forms: s ↓R= t ↓R.
Showing E |= s ≈ t is as difficult as proving validity of any first-order formula,
see Section 3.15.

For example consider the euqational ground clauses E = {g(a) ≈ b, a ≈ b}
over a signature consisting of the constants a, b and unary function g, all defined
over some unique sort. Then for all algebras A satifying E, all ground terms
over a, b, and g, are mapped to the same domain element. In particular, it
holds E |= g(b) ≈ b. Now the idea is to turn E into a convergent term rewrite
system R such that g(b) ↓R= b ↓R. To this end, the equations in E are oriented,
e.g., a first guess might be the TRS R0 = {g(a) → b, a → b}. For R0 we get
g(b) ↓R0

= g(b), b ↓R0
= b, so not the desired result. The TRS R0 is not confluent

an all ground terms, because g(a) →R0
b and g(a) →R0

g(b), but b and g(b)
are R0 normal forms. This problem can be repaired by adding the extra rule
g(b)→ b and this process is called completion and is studied in this chapter. Now
the extended rewrite system R1 = {g(a) → b, a → b, g(b) → b} is convergent
and g(b) ↓R1

= b ↓R1
= b. Termination can be shown by using a KBO (or LPO)

with precedence g � a � b. Then the left hand sides of the rules are strictly
larger than the right hand sides. Actually, R1 contains some redundancy, even
removing the first rewrite rule g(a) → b from R1 does not violate confluence.
Detecting redundant rules is also discussed in this chapter.

Definition 4.0.1 (Equivalence Relation, Congruence Relation). An equivalence
relation ∼ on a term set T (Σ,X) is a reflexive, transitive, symmetric binary

189

190 CHAPTER 4. EQUATIONAL LOGIC

relation on T (Σ,X) such that if s ∼ t then sort(s) = sort(t).
Two terms s and t are called equivalent, if s ∼ t.
An equivalence ∼ is called a congruence if s ∼ t implies u[s] ∼ u[t], for all

terms s, t, u ∈ T (Σ,X). Given a term t ∈ T (Σ,X), the set of all terms equivalent
to t is called the equivalence class of t by ∼, denoted by [t]∼ := {t′ ∈ T (Σ,X) |
t′ ∼ t}.

If the matter of discussion does not depend on a particular equivalence rela-
tion or it is unambiguously known from the context, [t] is used instead of [t]∼.
The above definition is equivalent to Definition 3.2.3.

The set of all equivalence classes in T (Σ,X) defined by the equivalence re-
lation is called a quotient by ∼, denoted by T (Σ,X)|∼ := {[t] | t ∈ T (Σ,X)}.
Let E be a set of equations then ∼E denotes the smallest congruence relation
“containing” E, that is, (l ≈ r) ∈ E implies l ∼E r. The equivalence class [t]∼E
of a term t by the equivalence (congruence) ∼E is usually denoted, for short,
by [t]E . Likewise, T (Σ,X)|E is used for the quotient T (Σ,X)|∼E of T (Σ,X) by
the equivalence (congruence) ∼E .

4.1 Term Rewrite System

I instantiate the abstract rewrite systems of Section 1.6 with first-order terms.
The main difference is that rewriting takes not only place at the top position of
a term, but also at inner positions.

Definition 4.1.1 (Rewrite Rule, Term Rewrite System). A rewrite rule is an
equation l ≈ r between two terms l and r so that l is not a variable and
vars(l) ⊇ vars(r). A term rewrite system R, or a TRS for short, is a set of
rewrite rules.

Definition 4.1.2 (Rewrite Relation). Let E be a set of (implicitly universally
quantified) equations, i.e., unit clauses containing exactly one positive equation.
The rewrite relation →E⊆ T (Σ,X)× T (Σ,X) is defined by

s→E t iff there exist (l ≈ r) ∈ E, p ∈ pos(s),
and matcher σ, so that s|p = lσ and t = s[rσ]p.

Note that in particular for any equation l ≈ r ∈ E it holds l →E r, so the
equation can also be written l→ r ∈ E.

Often s = t ↓R is written to denote that s is a normal form of t with
respect to the rewrite relation →R. Notions →0

R,→
+
R,→∗R,↔∗R, etc. are defined

accordingly, see Section 1.6. An instance of the left-hand side of an equation
is called a redex (reducible expression). Contracting a redex means replacing
it with the corresponding instance of the right-hand side of the rule. A term
rewrite system R is called convergent if the rewrite relation →R is confluent
and terminating. A set of equations E or a TRS R is terminating if the rewrite
relation →E or →R has this property. Furthermore, if E is terminating then it
is a TRS. A rewrite system is called right-reduced if for all rewrite rules l → r

4.1. TERM REWRITE SYSTEM 191

in R, the term r is irreducible by R. A rewrite system R is called left-reduced
if for all rewrite rules l → r in R, the term l is irreducible by R\{l → r}. A
rewrite system is called reduced if it is left- and right-reduced.

Lemma 4.1.3 (Left-Reduced TRS). Left-reduced terminating rewrite systems
are convergent. Convergent rewrite systems define unique normal forms.

Lemma 4.1.4 (TRS Termination). A rewrite system R terminates iff there
exists a reduction ordering � so that l � r, for each rule l→ r in R.

4.1.1 E-Algebras

Let E be a set of universally quantified equations. A model A of E is also called
an E-algebra. If E |= ∀~x(s ≈ t), i.e., ∀~x(s ≈ t) is valid in all E-algebras, this is
also denoted with s ≈E t. The goal is to use the rewrite relation →E to express
the semantic consequence relation syntactically: s ≈E t if and only if s ↔∗E t.
Let E be a set of (well-sorted) equations over T (Σ,X) where all variables are
implicitly universally quantified. The following inference system allows to derive
consequences of E:

Reflexivity E ⇒E E ∪ {t ≈ t}

Symmetry E] {t ≈ t′} ⇒E E ∪ {t ≈ t′} ∪ {t′ ≈ t}

Transitivity E] {t ≈ t′, t′ ≈ t′′} ⇒E E ∪ {t ≈ t′, t′ ≈ t′′} ∪ {t ≈ t′′}

Congruence E] {t1 ≈ t′1, . . . , tn ≈ t′n} ⇒E E ∪ {t1 ≈ t′1, . . . , tn ≈ t′n} ∪
{f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)}

for any function f : sort(t1)× . . .× sort(tn)→ S for some S

Instance E] {t ≈ t′} ⇒E E ∪ {t ≈ t′} ∪ {tσ ≈ t′σ}
for any well-sorted substitution σ

Lemma 4.1.5 (Equivalence of ↔∗E and ⇒∗E). The following properties are
equivalent:

1. s↔∗E t

2. E ⇒∗E s ≈ t is derivable.

where E ⇒∗E s ≈ t is an abbreviation for E ⇒∗E E′ and s ≈ t ∈ E′.

192 CHAPTER 4. EQUATIONAL LOGIC

Proof. (i)⇒(ii): s ↔E t implies E ⇒∗E s ≈ t by induction on the depth of the
position where the rewrite rule is applied; then s↔∗E t implies E ⇒∗E s ≈ t by
induction on the number of rewrite steps in s↔∗E t.

(ii)⇒(i): By induction on the size (number of symbols) of the derivation for
E ⇒∗E s ≈ t.

Corollary 4.1.6 (Convergence of E). If a set of equations E is convergent then
s ≈E t if and only if s↔∗ t if and only if s ↓E= t ↓E .

Corollary 4.1.7 (Decidability of ≈E). If a set of equations E is finite and
convergent then ≈E is decidable.

The above Lemma 4.1.5 shows equivalence of the syntactically defined re-
lations ↔∗E and ⇒∗E . What is missing, in analogy to Herbrand’s theorem for
first-order logic without equality Theorem 3.5.5, is a semantic characterization
of the relations by a particular algebra.

Definition 4.1.8 (Quotient Algebra). For sets of unit equations this is a
quotient algebra: Let X be a set of variables. For t ∈ T (Σ,X) let [t] =
{t′ ∈ T (Σ,X)) | E ⇒∗E t ≈ t′} be the congruence class of t. Define a
Σ-algebra IE , called the quotient algebra, technically T (Σ,X)/E, as follows:
SIE = {[t] | t ∈ TS(Σ,X)} for all sorts S and fIE ([t1], . . . , [tn]) = [f(t1, . . . , tn)]
for f : sort(t1)× . . .× sort(tn)→ T ∈ Ω for some sort T .

Lemma 4.1.9 (IE is an E-algebra). IE = T (Σ,X)/E is an E-algebra.

Proof. Firstly, all functions fIE are well-defined: if [ti] = [t′i], then
[f(t1, . . . , tn)] = [f(t′1, . . . , t

′
n)]. This follows directly from the Congruence rule

for ⇒∗.
Secondly, let ∀x1 . . . xn(s ≈ t) be an equation in E. Let β be an arbitrary

assignment. It has to be shown that IE(β)(∀~x(s ≈ t)) = 1, or equivalently, that
IE(γ)(s) = IE(γ)(t) for all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n] with [ti] ∈ sort(xi)

IE .
Let σ = {x1 7→ t1, . . . , xn 7→ tn}, with ti ∈ Tsort(xi)(Σ,X), then sσ ∈ IE(γ)(s)
and tσ ∈ IE(γ)(t). By the Instance rule, E ⇒∗ sσ ≈ tσ is derivable, hence
IE(γ)(s) = [sσ] = [tσ] = IE(γ)(t).

Lemma 4.1.10 (⇒E is complete). Let X be a countably infinite set of variables;
let s, t ∈ TS(Σ,X). If IE |= ∀~x(s ≈ t), then E ⇒∗E s ≈ t is derivable.

Proof. Assume that IE |= ∀~x(s ≈ t), i.e., IE(β)(∀~x(s ≈ t)) = 1. Consequently,
IE(γ)(s) = IE(γ)(t) for all γ = β[xi 7→ [ti] | 1 ≤ i ≤ n] with [ti] ∈ sort(xi)

IE .
Choose ti = xi, then [s] = IE(γ)(s) = IE(γ)(t) = [t], so E ⇒∗ s ≈ t is derivable
by definition of IE .

Theorem 4.1.11 (Birkhoff’s Theorem). Let X be a countably infinite set of
variables, let E be a set of (universally quantified) equations. Then the following
properties are equivalent for all s, t ∈ TS(Σ,X):

1. s↔∗E t.

4.2. CRITICAL PAIRS 193

2. E ⇒∗E s ≈ t is derivable.

3. s ≈E t, i.e., E |= ∀~x(s ≈ t).

4. IE |= ∀~x(s ≈ t).

Proof. (1.)⇔(2.): Lemma 4.1.5.
(2.)⇒(3.): By induction on the size of the derivation for E ⇒∗ s ≈ t.
(3.)⇒(4.): Obvious, since IE = T (Σ,X)/E is an E-algebra.
(4.)⇒(2.): Lemma 4.1.10.

Universal Algebra
T (Σ,X)/E = T (Σ,X)/≈E = T (Σ,X)/↔∗E is called the free E-algebra with

generating set X/≈E = {[x] | x ∈ X}: Every mapping φ : X/≈E → B for some

E-algebra B can be extended to a homomorphism φ̂ : T (Σ,X)/E → B.
T (Σ, ∅)/E = T (Σ, ∅)/≈E = T (Σ, ∅)/↔∗E is called the initial E-algebra.
≈E = {(s, t) | E |= s ≈ t} is called the equational theory of E.
≈IE = {(s, t) | T (Σ, ∅)/E |= s ≈ t} is called the inductive theory of E.

Example 4.1.12. Let E = {∀x(x+ 0 ≈ x), ∀x∀y(x+ s(y) ≈ s(x+ y))}. Then
x+ y ≈IE y + x, but x+ y 6≈E y + x.

4.2 Critical Pairs

By Theorem 4.1.11 the semantics of E and ↔∗E conincide. In order to decide
↔∗E we need to turn →∗E in a confluent and terminating relation. If ↔∗E is
terminating then confluence is equivalent to local confluence, see Newman’s
Lemma, Lemma 1.6.6. Local confluence is the following problem for TRS: if
t1 E← t0 →E t2, does there exist a term s so that t1 →∗E s ∗E← t2? If the two
rewrite steps happen in different subtrees (disjoint redexes) then a repitition of
the respective other step yields the common term s. If the two rewrite steps
happen below each other (overlap at or below a variable position) again a rep-
etition of the respective other step yields the common term s. If the left-hand
sides of the two rules overlap at a non-variable position there is no ovious way
to generate s.

More technically two rewrite rules l1 → r1 and l2 → r2 overlap if there exist
some non-variable subterm l1|p such that l2 and l1|p have a common instance
(l1|p)σ1 = l2σ2. If the two rewrite rules do not have common variables, then
only a single substitution is necessary, the mgu σ of (l1|p) and l2.

Definition 4.2.1 (Critical Pair). Let li → ri (i = 1, 2) be two rewrite rules in a
TRS R whithout common variables, i.e., vars(l1)∩ vars(l2) = ∅. Let p ∈ pos(l1)
be a position so that l1|p is not a variable and σ is an mgu of l1|p and l2. Then
r1σ ← l1σ → (l1σ)[r2σ]p. 〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R. The
critical pair is joinable (or: converges), if r1σ ↓R (l1σ)[r2σ]p.

194 CHAPTER 4. EQUATIONAL LOGIC

Recall that vars(li) ⊇ vars(ri) for the two rewrite rules by Definition 4.1.1.

Theorem 4.2.2 (“Critical Pair Theorem”). A TRS R is locally confluent iff
all its critical pairs are joinable.

Proof. (⇒) Obvious, since joinability of a critical pair is a special case of local
confluence.

(⇐) Suppose s rewrites to t1 and t2 using rewrite rules li → ri ∈ R at positions
pi ∈ pos(s), where i = 1, 2. The two rules are variable disjoint, hence s|pi = liσ
and ti = s[riσ]pi . There are two cases to be considered:

1. Either p1 and p2 are in disjoint subtrees (p1 || p2) or

2. one is a prefix of the other (w.l.o.g., p1 ≤ p2).

Case 1: p1 || p2. Then s = s[l1σ]p1 [l2σ]p2 , and therefore t1 = s[r1σ]p1 [l2σ]p2

and t2 = s[l1σ]p1
[r2σ]p2

. Let t0 = s[r1σ]p1
[r2σ]p2

. Then clearly t1 →R t0 using
l2 → r2 and t2 →R t0 using l1 → r1.
Case 2: p1 ≤ p2.
Case 2.1: p2 = p1q1q2, where l1|q1 is some variable x. In other words, the second
rewrite step takes place at or below a variable in the first rule. Suppose that x
occurs m times in l1 and n times in r1 (where m ≥ 1 and n ≥ 0). Then t1 →∗R t0
by applying l2 → r2 at all positions p1q

′q2, where q′ is a position of x in r1.
Conversely, t2 →∗R t0 by applying l2 → r2 at all positions p1qq2, where q is a
position of x in l1 different from q1, and by applying l1 → r1 at p1 with the
substitution σ′, where σ′ = σ[x 7→ (xσ)[r2σ]q2].
Case 2.2: p2 = p1p, where p is a non-variable position of l1. Then s|p2 = l2σ
and s|p2

= (s|p1
)|p = (l1σ)|p = (l1|p)σ, so σ is a unifier of l2 and l1|p.Let σ′ be

the mgu of l2 and l1|p, then σ = τ ◦ σ′ and 〈r1σ
′, (l1σ

′)[r2σ
′]p〉 is a critical pair.

By assumption, it is joinable, so r1σ
′ →∗R v ←∗R (l1σ

′)[r2σ
′]p. Consequently,

t1 = s[r1σ]p1 = s[r1σ
′τ]p1 →∗R s[vτ]p1 and t2 = s[r2σ]p2 = s[(l1σ)[r2σ]p]p1 =

s[(l1σ
′τ)[r2σ

′τ]p]p1 = s[((l1σ
′)[r2σ

′]p)τ]p1 →∗R s[vτ]p1 .

Please note that critical pairs between a rule and (a renamed variant of)
itself must be considered, except if the overlap is at the root, i.e., p = ε, because
this critical pair always joins.

Corollary 4.2.3. A terminating TRS R is confluent if and only if all its critical
pairs are joinable.

Proof. By the Theorem 4.2.2 and because every locally confluent and terminat-
ing relation → is confluent, Newman’s Lemma, Lemma 1.6.6.

Corollary 4.2.4. For a finite terminating TRS, confluence is decidable.

Proof. For every pair of rules and every non-variable position in the first rule
there is at most one critical pair 〈u1, u2〉. Reduce every ui to some normal form
u′i. If u′1 = u′2 for every critical pair, then R is confluent, otherwise there is some
non-confluent situation u′1

∗
R← u1 ←R s→R u2 →∗R u′2.

4.4. KNUTH-BENDIX COMPLETION (KBC) 199

l→ r ∈ R. For ensuring confluence the calculus checks whether all critical pairs
are joinable.

The completion procedure itself is presented as a set of abstract rewrite
rules working on a pair of equations E and rules R: (E0;R0) ⇒KBC (E1;R1)
⇒KBC (E1;R2) ⇒KBC The initial state is (E0, ∅) where E = E0 contains
the input equations. If ⇒KBC successfully terminates then E is empty and R is
the convergent rewrite system for E0. For each step (E;R) ⇒KBC (E′;R′) the
equational theories of E ∪ R and E′ ∪ R′ agree: ≈E∪R = ≈E′∪R′ . By cp(R) I
denote the set of critical pairs between rules in R.

Orient (E] {s
.
≈ t};R) ⇒KBC (E;R ∪ {s→ t})

if s � t

Delete (E] {s ≈ s};R) ⇒KBC (E;R)

Deduce (E;R) ⇒KBC (E ∪ {s ≈ t};R)

if 〈s, t〉 ∈ cp(R)

Simplify-Eq (E] {s
.
≈ t};R) ⇒KBC (E ∪ {u ≈ t};R)

if s→R u

R-Simplify-Rule (E;R] {s→ t}) ⇒KBC (E;R ∪ {s→ u})
if t→R u

L-Simplify-Rule (E;R] {s→ t}) ⇒KBC (E ∪ {u ≈ t};R)

if s→R u using a rule l→ r ∈ R so that s A l, see below.

Trivial equations cannot be oriented and since they are not needed they can
be deleted by the Delete rule. The rule Deduce turns critical pairs between rules
in R into additional equations. Note that if 〈s, t〉 ∈ cp(R) then sR ←u →R t
and hence R |= s ≈ t. The simplification rules are not needed but serve as
reduction rules, removing redundancy from the state. Simplification of the left-
hand side may influence orientability and orientation of the result. Therefore, it
yields an equation. For technical reasons, the left-hand side of s → t may only
be simplified using a rule l→ r, if l→ r cannot be simplified using s→ t, that
is, if s A l, where the encompassment quasi-ordering A∼ is defined by s A∼ l if

s|p = lσ for some p and σ and A = A∼ \@∼ is the strict part of A∼.

Lemma 4.4.1. A is a well-founded strict partial ordering.

Lemma 4.4.2. If (E;R)⇒KBC (E′;R′), then ≈E∪R = ≈E′∪R′ .

Lemma 4.4.3. If (E;R)⇒KBC (E′;R′) and →R ⊆ �, then →R′ ⊆ �.

200 CHAPTER 4. EQUATIONAL LOGIC

Proposition 4.4.4 (Knuth-Bendix Completion Correctness). If the completion
procedure on a set of equations E is run, different things can happen:

1. A state where no more inference rules are applicable is reached and E is
not empty. ⇒ Failure (try again with another ordering?)

2. A state where E is empty is reached and all critical pairs between the
rules in the current R have been checked.

3. The procedure runs forever.

In order to treat these cases simultaneously some definitions are needed:

Definition 4.4.5 (Run). A (finite or infinite) sequence (E0;R0) ⇒KBC

(E1;R1) ⇒KBC (E2;R2) ⇒KBC . . . with R0 = ∅ is called a run of the
completion procedure with input E0 and �. For a run, E∞ =

⋃
i≥0Ei and

R∞ =
⋃
i≥0Ri.

Definition 4.4.6 (Persistent Equations). The sets of persistent equations of
rules of the run are E∗ =

⋃
i≥0

⋂
j≥iEj and R∗ =

⋃
i≥0

⋂
j≥iRj .

Note: If the run is finite and ends with En, Rn then E∗ = En and R∗ = Rn.

Definition 4.4.7 (Fair Run). A run is called fair if CP(R∗) ⊆ E∞ (i.e., if every
critical pair between persisting rules is computed at some step of the derivation).

Goal: Show: If a run is fair and E∗ is empty then R∗ is convergent and
equivalent to E0. In particular: If a run is fair and E∗ is empty then ≈E0

=
≈E∞∪R∞ =↔∗E∞∪R∞ = ↓R∗ .

From now on, (E0;R0)⇒KBC (E1;R1)⇒KBC (E2;R2)⇒KBC . . . is a fair
run and R0 and E∗ are empty.

A proof of s ≈ t in E∞ ∪ R∞ is a finite sequence (s0, . . . , sn) so that s =
s0, t = sn and for all i ∈ {1, . . . , n} it holds:

1. si−1 ↔E∞ si or

2. si−1 →R∞ si or

3. si−1 R∞
← si.

The pairs (si−1, si) are called proof steps. A proof is called a rewrite proof in
R∗ if there is a k ∈ {0, . . . , n} so that si−1 →R∗ si for 1 ≤ i ≤ k and si−1 R∗

← si
for k + 1 ≤ i ≤ n.

Idea (Bachmair, Derschowitz, Hsiang): Define a well-founded ordering on
proofs so that for every proof that is not a rewrite proof in R∗ there is an
equivalent smaller proof. Consequence: For every proof there is an equivalent
rewrite proof in R∗. A cost c(si−1, si) is associated with every proof step as
follows:

1. If si−1 ↔E∞ si then c(si−1, si) = ({si−1, si},−,−) where the first compo-
nent is a multiset of terms and − denotes an arbitrary (irrelevant) term.

4.4. KNUTH-BENDIX COMPLETION (KBC) 201

2. If si−1 →R∞ si using l→ r then c(si−1, si) = ({si−1}, l, si).

3. If si−1 R∞
← si using l→ r then c(si−1, si) = ({si}, l, si−1).

Proof steps are compared using the lexicographical combination of the multiset
extension of the reduction ordering �, the encompassment ordering A and the
reduction ordering �. The cost c(P) of a proof P is the multiset of the cost of
its proof steps. The proof ordering �C compares the cost of proofs using the
multiset extension of the proof step ordering.

Lemma 4.4.8. �C is well-founded ordering.

Lemma 4.4.9. Let P be a proof in E∞ ∪R∞. If P is not a rewrite proof in R∗
then there exists an equivalent proof P ′ in E∞ ∪R∞ so that P �C P ′.

Proof. If P is not a rewrite proof in R∗ then it contains

1. a proof step that is in E∞ or

2. a proof step that is in R∞\R∗ or

3. a subproof si−1 R∗
← si → si+1 (peak).

It is shown that in all three cases the proof step or subproof can be replaced by
a smaller subproof:
Case 1.: A proof step using an equation s

.
≈ t is in E∞. This equation must be

deleted during the run.

If s
.
≈ t is deleted using Orient :

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ si . . .

If s
.
≈ t is deleted using Delete:

. . . si−1 ↔E∞ si−1 . . . =⇒ . . . si−1 . . .

If s
.
≈ t is deleted using Simplify-Eq :

. . . si−1 ↔E∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .

Case 2.: A proof step using a rule s→ t is in R∞\R∗. This rule must be deleted
during the run.

If s→ t is deleted using R-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ R∞← si . . .

If s→ t is deleted using L-Simplify-Rule:

. . . si−1 →R∞ si . . . =⇒ . . . si−1 →R∞ s′ ↔E∞ si . . .

Case 3.: A subproof has the form si−1 R∗
← si →R∗ si+1.

202 CHAPTER 4. EQUATIONAL LOGIC

If there is no overlap or a non-critical overlap:

. . . si−1 R∗
← si →R∗ si+1 . . . =⇒ . . . si−1 →∗R∗ s

′ ∗
R∗
← si+1 . . .

If there is a critical pair that has been added using Deduce:

. . . si−1 R∗
← si →R∗ si+1 . . . =⇒ . . . si−1 ↔E∞ si+1 . . .

In all cases, checking that the replacement subproof is smaller than the
replaced subproof is routine.

Theorem 4.4.10 (KBC Soundness). Let (E0;R0) ⇒KBC (E1;R1) ⇒KBC

(E2;R2)⇒KBC . . . be a fair run and let R0 and E∗ be empty. Then

1. every proof in E∞ ∪R∞ is equivalent to a rewrite proof in R∗,

2. R∗ is equivalent to E0 and

3. R∗ is convergent.

Proof. 1. By well-founded induction on �C using the previous lemma.

2. Clearly, ≈E∞∪R∞ = ≈E0
. Since R∗ ⊆ R∞ this yields ≈R∗ ⊆ ≈E∞∪R∞ .

On the other hand, by 1. it holds that ≈E∞∪R∞ ⊆ ≈R∗ .

3. Since →R∗ ⊆ �, R∗ is terminating. By 1. it holds that R∗ is confluent.

Now using the proof of Theorem 3.15.2 termination of⇒KBC is undecidable.

Corollary 4.4.11 (KBC Termination). Termination of ⇒KBC is undecidable
for some given finite set of equations E.

Proof. Using exactly the construction of Theorem 3.15.2 it remains to be shown
that all computed critical pairs can be oriented. Critical pairs correspond-
ing to the search for a PCP solution result in equations fR(u(x), v(y)) ≈
fR(u′(x), v′(y)) or fR(u′(x), v′(x)) ≈ c. By chosing an appropriate ordering,
all these equations can be oriented. Thus ⇒KBC does not produce any unori-
entable equations. The rest follows from Theorem 3.15.2.

4.4.1 Unfailing Completion

Classical completion: Try to transform a set E of equations into an equivalent
convergent TRS. Fail, if an equation can neither be oriented nor deleted.

Unfailing completion (from Bachmair, Derschowitz and Plaisted [4]): If an
equation cannot be oriented, orientable instances can still be used for rewriting.
Note: If � is total on ground terms, then every ground instance of an equation
is trivial or can be oriented. The goal is to derive a ground convergent set of
equations.

	Pages from script.pdf
	Pages from script-2.pdf

