
Chapter 6

Decidable Logics

This chapter is about decidable logics. There are many decidable fragments
of first-order logic, some of them are discussed in Chapter 3 and Chapter 5.
Here I discuss logics that are typically not representable in first-order logic,
e.g., linear integer arithmetic, Section 6.2, or logics where specialized decision
procedures exist, beyond the general procedures discussed in previous chapters,
e.g., equational reasoning on ground terms by congruence closure, Section 6.1,
that can also be solved by Knuth-Bendix completion, Chapter 4.

6.1 Congruence Closure

In general, satisfiability of first-order formulas with respect to equality is un-
decidable. Even the word problem for conjunctions of equations is undecidable.
However, I will show that satisfiability is decidable for ground first-order formu-
las.

It suffices to consider conjunctions of literals. Arbitrary ground formulas can
be converted into DNF, potentially at the price of an exponential blow up. A
formula in DNF is satisfiable if and only if one of its conjunctions is satisfiable.
So it is sufficient to consider a conjunction of ground literals, e.g., a conjunction
of ground equations.

Note that the problem can be written in several ways. An equational clause

∀~x (t1 ≈ s1 ∨ . . . ∨ tn ≈ sn ∨ l1 6≈ r1 ∨ . . . ∨ lk 6≈ rk)

is valid iff

∃~x (t1 6≈ s1 ∧ . . . ∧ tn 6≈ sn ∧ l1 ≈ r1 ∧ . . . ∧ lk ≈ rk)

is unsatisfiable iff the Skolemized (ground!) formula

(t1 6≈ s1 ∧ . . . ∧ tn 6≈ sn ∧ l1 ≈ r1 ∧ . . . ∧ lk ≈ rk){~x 7→ ~c}

is unsatisfiable iff the formula

223

224 CHAPTER 6. DECIDABLE LOGICS

(t1 ≈ s1 ∨ . . . ∨ tn ≈ sn ∨ l1 6≈ r1 ∨ . . . ∨ lk 6≈ rk){~x 7→ ~c}

is valid.

T

Please note validity of these transformations do depends on the shape
of the (starting) formula. Validity is no preserved in case of a quantifier
alternation or an existentially quantified formula, in general, or the

eventual formula must not be ground. There is no way to transform a first-order
(equational) formula into a ground formula preserving validity, in general.

The theory is also known as EUF (equality with uninterpreted function
symbols) and one of the standard theories considered in SMT (Satisfiability
Modulo Theories). The decision procedure discussed here is based on congruence
closure.

The goal of the procedure is to check (un-)satisfiability of a ground conjunc-
tion

s1 6≈ t1 ∧ . . . ∧ sk 6≈ tk ∧ l1 ≈ r1 ∧ . . . ∧ ln ≈ rn

The main idea is to transform the equations E = {l1 ≈ r1, . . . , ln ≈ rn} into
an equivalent convergent TRS R and check whether si↓R = ti↓R. If si↓R = ti↓R
for some i then because si↓R = ti↓R iff si ↔∗E ti iff E |= si ≈ ti (see Chapter 4)
the overall conjunction is unsatisfiable. If si↓R = ti↓R for no i, i.e., si↓R 6= ti↓R
for all i then IE is a model of both the equations li ≈ ri, and the inequations
sj 6≈ tj . Hence the overall conjunction is satisfiable.

Knuth-Bendix completion, Chapter 4, can be used to convert E into an
equivalent convergent TRS R. If done properly, Knuth-Bendix completion al-
ways terminates for ground inputs. However, for the ground case, the procedure
can be further optimized.

The first step is to introduce additional “names”, i.e, extra constants for all
non-constant subterms. This implements implicitly sharing among subterms.

Let E = l1 ≈ r1 ∧ . . . ∧ ln ≈ rn.

Flattening E[f(t1, . . . , tn)]p1,...,pk ⇒CCF E[c/p1, . . . , pk] ∧ f(t1, . . . , tn) ≈ c
provided all ti are constants, the pj are all positions in E of f(t1, . . . , tn), |pk| > 2
for some k, or, pk = m.2 and E|m.1 is not a constant for some m, and c is fresh

Here I consider E to be a conjunction of equations in order for the positions
to make sense. Note that after applying flattening to some term f(t1, . . . , tn) it
cannot be applied a second time, because the position p pointing to f(t1, . . . , tn)
in E[c/p1, . . . , pk] ∧ f(t1, . . . , tn) ≈ c has size 2, i.e., |p| = 2.

For example, the system E = [g(a, h(h(b))) ≈ h(a)] is eventually replaced
by E = [h(b) ≈ c3 ∧ h(c3) ≈ c4 ∧ h(a) ≈ cd ∧ g(a, c4) ≈ c5].

As a result: only two kinds of equations left. Term equations: f(ci1 , . . . , cin) ≈
ci0 and constant equations: ci ≈ cj . This can be further explored in an imple-
mentation by specific data structures. In particular, a union-find data structure

6.1. CONGRUENCE CLOSURE 225

efficiently represents the equivalence classes encoded by the constant equations
(rules).

The congruence closure algorithm is presented as a set of abstract rewrite
rules operating on a pair of equations E and a set of rules R, (E;R), similar to
Knuth-Bendix completion, Section 4.4.

(E0;R0)⇒CC (E1;R1)⇒CC (E2;R2)⇒CC . . .
At the beginning, E = E0 is a set of constant equations and R = R0 is the

set of term equations oriented from left-to-right. At termination, E is empty and
R contains the result. By exhaustive application of Flattening any conjunction
of equations can be transformed into this form, preserving satisfiability. Recall
that the atom s

.
≈ t denotes either s ≈ t or t ≈ s.

Simplify (E] {c
.
≈ c′};R] {c→ c′′}) ⇒CC (E ∪ {c′′

.
≈ c′};R ∪ {c→ c′′})

Delete (E] {c ≈ c};R) ⇒CC (E;R)

Orient (E] {c
.
≈ c′};R) ⇒CC (E;R ∪ {c→ c′})

if c � c′

Deduce (E;R] {t→ c, t→ c′}) ⇒CC (E ∪ {c ≈ c′};R ∪ {t→ c})

Collapse (E;R] {t[c]p → c′, c→ c′′}) ⇒CC (E;R ∪ {t[c′′]p → c′, c→ c′′})
p 6= ε

For rule Deduce, t is either a term of the form f(c1, . . . , cn) or a constant ci.
For rule Collapse, t is always of the form f(c1, . . . , cn) For ground rewrite rules,
critical pair computation does not involve substitution. Therefore, every critical
pair computation can be replaced by a simplification, either using Deduce or
Collapse.

The inference rules are usually applied according to the following strategy:
Simplify, Delete and Orient are preferred over Deduce and Collapse. Then if Col-
lapse becomes applicable, it is exhaustively applied followed by an application
of Deduce.

Instead of fixing the ordering � in advance, it is preferable to define it on
the fly during the algorithm: if an equation c ≈ c′ between two constants is
oriented, a good heuristic is to make that constant symbol larger that occurs
less often in R, hence producing afterwards fewer Collapse steps.

The average runtime of the algorithm is O(m logm), where m is the number
of edges in the graph representation of the initial constant and term equations.

The inference rules are sound in the usual sense. The conclusions are entailed
by the premises, so every model of the premises is a model of the conclusions.

226 CHAPTER 6. DECIDABLE LOGICS

For the initial flattening rule , however, only a weaker result holds. The
models of the original equations have to be extended by interpretations for the
freshly introduced constants to obtain models of the flattened equations. The
result is a new algebra with the same universe as the old one, with the same
interpretations for old functions and predicate symbols, but with appropriately
chosen interpretations for the new constants.

Consequently, the relations ≈E and ≈R for the original E and the final R are
not the same. On the other hand, the model extension preserves the universe
and the interpretations for old symbols. Therefore, if s and t are terms over the
old symbols, we have s ≈E t iff s ≈R t. This is sufficient for our purposes: The
terms si and ti that we want to normalize using R do not contain new symbols.

6.1.1 History

Congruence closure algorithms have been published, among others, by Shostak
(1978). by Nelson and Oppen (1980), and by Downey, Sethi and Tarjan (1980).

Kapur (1997) showed that Shostak’s algorithm can be described as a com-
pletion procedure.

Bachmair and Tiwari (2000) did this also for the Nelson/Oppen and the
Downey/Sethi/Tarjan algorithm.

The algorithm presented here is the Downey/Sethi/Tarjan algorithm in the
presentation of Bachmair and Tiwari.

6.2 Linear Arithmetic

There are several ways of introducing linear arithmatic and in particular its
syntax. I start with a syntax that already contains −, ≤, <, ≥, 6≈ and Q. All
these functions and relations are indeed expressible by first-order forumulas over
0, 1, ≈, and >. For the semantics there are two approaches. Either providing
axioms, i.e., closed formulas, for the above symbols and then considering all
algebras satisfying the axioms, or fixing one particular algebra or a class of
algebras. For this chapter I start with a rich syntax and a semantics based on a
fixed algebra.

Definition 6.2.1 (LA Syntax). The syntax of LA is

ΣLA = ({LA}, {0, 1,+,−} ∪Q, {≤, <, 6≈, >,≥})

where − is unitary and all other symbols have the usual arities.

Terms and formulas over ΣLA are built in the classical free first-order way,
see Section 3.1. All first-order notions, i.e., terms, atoms, equations, literals,
clauses, etc. carry over to LA formulas. The atoms and terms built over the LA
signature are written in their standard infix notation, i.e., I write 3 + 5 instead
of +(3, 5). Note that the signature does not contain multiplication. A term 3x
is just an abbreviation for a term x+ x+ x.

6.2. LINEAR ARITHMETIC 227

For the semantics I start with considering as the domain the rationals, Q. As
long as coefficients are from the integers, with respect to the satisfiability, valid-
ity of a formula the rationals cannot be distinguished from the reals. Restricting
the domain from the rationals to the integers, however, results in a difference
in satisfiability, validity of a formula, in general. In this case the signature is
restricted to integer constants as well.

Definition 6.2.2 (Linear Rational Arithmetic Standard Semantics). The ΣLA

algebra ALRA is defined by LAALRA = Q and all other signature symbols are
assigned the standard interpretations over the rationals.

Due to the expressive LA language there is no need for negative literals,
because (¬ <)ALRA = (≥)ALRA , (¬ >)ALRA = (≤)ALRA , and (¬ ≈)ALRA = (6≈
)ALRA .

Note the difference between the above standard semantics over ΣLA and the
free first-order semantics over ΣLA, Definition 3.2.1. The equation 3 + 4 ≈ 5
has a model in the free first-order semantics, hence it is satisfiable, whereas in
the standard model of linear rational arithmetic, Definition 6.2.2, the equation
3 + 4 ≈ 5 is false. In addition, with respect to the standard LRA semantics
the definitions of validity, satisfiability coincide with truth and the definition of
unsatisfiability coincides with falsehood. This is the result of a single algebra
semantics.

6.2.1 Fourier-Motzkin Quantifier Elimination

It is decidable whether a first-order formula over ΣLA is true or false in the
standard LRA semantics. This was first discovered in 1826 by J. Fourier and
re-discovered by T. Motzkin in 1936 and is called FM for short. Note that
validity of a ΣLA formula with respect to the standard semantics is undecidable,
Exercise ??.

Similar to Congruence Closure, Section 6.1, the starting point of the proce-
dure is a conjunction of atoms without atoms of the form 6≈. These will eventu-
ally be replaced by a disjunction, i.e., an atom t 6≈ s is replaced by t < s∨ t > s.

Every atom over the variables x, y1, . . . , yn can be converted into an equiva-
lent atom x ◦ t[~y] or 0 ◦ t[~y], where ◦ ∈ {<,>,≤,≥,≈, 6≈} and t[~y] has the form∑
i qi · yi + q0 where qi ∈ Q. In other words, a variable x can be either isolated

on one side of the atom or eliminated completely. This is the starting point of
the FM calculus deciding a conjunction of LA atoms without 6≈ modulo the
isolation of variables and the reduction of ground formulas to >, ⊥.

The calculus operates on a set of atoms N . The normal forms are conjunc-
tions of atoms s◦t where s, t do not contain any variables. These can be obviously
eventually reduced to > or ⊥. The FM calculus consists of two rules:

Substitute N] {x ≈ t} ⇒FM N{x 7→ t}
provided x does not occur in t

Eliminate N]
⋃
i{x ◦1i ti}]

⋃
j{x ◦2j sj} ⇒FM N ∪

⋃
i,j{ti ◦i.j sj}

228 CHAPTER 6. DECIDABLE LOGICS

provided x does not occur in N nor in the ti, sj , ◦1i ∈ {<,≤}, ◦2j ∈ {>,≥}, and

◦i,j = > if ◦1i = < or ◦2j = >, and ◦i,j = ≥ otherwise

If all variablies in N are implicitely existentially quantified, i.e., N stands
for ∃~x.N , then the above two rules constitute a sound and complete decision
procedure for conjunctions of LA atoms without 6≈.

Lemma 6.2.3 (FM Termination on a Conjunction of Atoms). FM terminates
on a conjunction of atoms.

Proof. Any rule applications strictly reduces the number of variables.

Lemma 6.2.4 (FM Soundness and Completeness on a Conjunction of Atoms).
N ⇒∗FM > iff ALRA |= ∃~x.N . N ⇒∗FM ⊥ iff ALRA 6|= ∃~x.N .

Proof. ⇒: Assume that ALRA(β) |= N for some β. Proof by case analysis on
the two rules. For rule Substitute obviously ALRA(β)(x) = ALRA(β)(t) hence
ALRA(β) |= N{x 7→ t}. For rule Eliminate obviously ALRA(β)(x)◦1iALRA(β)(ti)
and ALRA(β)(x) ◦2j ALRA(β)(sj). A case anlysis on ◦1i , ◦2j yields ALRA(β) |=
ti ◦i.j sj for all i, j.
⇐: Again by a case analysis on the rules. For rule Substitute if ALRA(β) |=

N{x 7→ t} then ALRA(β[x 7→ ALRA(β)(t)]) |= N] {x ≈ t}. For rule Elim-
inate if ALRA(β) |= N ∪

⋃
i,j{ti ◦i.j sj} then ALRA(β[x 7→ 1

2 (min(∪i{ti}) +

max(∪j{sj}))] |= N]
⋃
i{x ◦1i ti}]

⋃
j{x ◦2j sj}.

The FM calculus on conjunctions of atoms can be extended to arbitrary
closed LRA first-order formulas φ. I always assume that different quantifier oc-
currences in φ bind different variables. This can always be obtained by renaming
one variable. The first step is to eliminate >, ⊥ from φ and to transform φ in
negation normal form, see Section 3.9. The resulting formula only contains the
operators ∀, ∃, ∧, ∨, ¬, where all negation symbols occur in front of atoms.
Then the following rule can be used to remove the negation symbols as well:

ElimNeg χ[¬ s ◦1 t]p ⇒FM χ[s ◦2 t]p
where the pairs (◦1, ◦2) are given by pairs (<,≥), (≤, >), (≈, 6≈) and their sym-
metric variants

The above two FM rules on conjunctions cannot cope with atoms s 6≈ t, so
they are eliminated as well:

Elim 6≈ χ[s 6≈ t]p ⇒FM χ[s < t ∨ s > t]p

The next step is to compute a Prenex Normal Form, a formula
{∃,∀}x1 . . . {∃,∀}xn.φ where φ does not contain any quantifiers. This can be
done by simply applying the mini-scoping rules, see Section 3.9, in the opposite
direction:

6.2. LINEAR ARITHMETIC 229

Prenex1 χ[(∀x.ψ1) ◦ ψ2]p ⇒FM χ[∀x.(ψ1 ◦ ψ2)]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)

Prenex2 χ[(∃x.ψ1) ◦ ψ2]p ⇒FM χ[∃x.(ψ1 ◦ ψ2)]p

provided ◦ ∈ {∧,∨}, x 6∈ fvars(ψ2)

Prenex3 χ[(∀x.ψ1) ∧ (∀y.ψ2)]p ⇒FM χ[∀x.(ψ1 ∧ ψ2{y 7→ x})]p

Prenex4 χ[(∃x.ψ1) ∨ (∃y.ψ2)]p ⇒FM χ[∃x.(ψ1 ∨ ψ2{y 7→ x})]p

where Prenex3 and Prenex4 are preferred over Prenex1 and Prenex2. Finally,
for the resulting formula {∃,∀}x1 . . . {∃,∀}xn.φ in prenex normal form the FM
algorithm computes a DNF of φ by exhaustively applying the rule PushConj,
Section 2.5.2. The result is a formula {∃,∀}x1 . . . {∃,∀}xn.φ where φ is a DNF
of atoms without containing an atom of the form s 6≈ t. All the above formulas
transformations are equivalence preserving. Therefore, to each conjunct of φ
the above two FM rules decide the conjunct, if all variables are existentially
quantified. This is the final obstacle in order to obtain the FM decision procedure
for arbitrary formulas.

It is solved by considering the quantifiers iteratively in an innermost way.
For the formula {∃,∀}x1 . . . {∃,∀}xn.φ always the innermost quantifier {∃,∀}xn
is considered. If it is an existential quantifier, ∃xn, then the FM rules Sub-
stitute, Eliminate are applied to the variable xn for each conjunct Ci of
φ = C1∨ . . .∨Cn. The result is a formula {∃,∀}x1 . . . {∃,∀}xn−1.(C

′
1∨ . . .∨C ′n)

which is again in prenex DNF. Furthermore, by Lemma 6.2.4 it is equivalent to
{∃,∀}x1 . . . {∃,∀}xn.φ. If the innermost quantifier is a universal quantifier ∀xn,
then the formula is replaced by {∃,∀}x1 . . . {∃,∀}xn−1¬∃xn.¬φ and the above
steps for negation normal form and DNF are repeated for ¬φ resulting in an
equivalent formula {∃,∀}x1 . . . {∃,∀}xn−1¬∃xn.φ′ where φ′ is in DNF and does
not contain negation symbols nor atoms s 6≈ t. Then the FM rules Substitute,
Eliminate are applied to the variable xn for each conjunct Ci of φ′ = C1∨. . .∨Cn.
The result is an equivalent formula {∃,∀}x1 . . . {∃,∀}xn−1.¬(C ′1 ∨ . . . ∨ C ′n).
Finally, the above steps for negation normal form and DNF are repeated for
¬(C ′1 ∨ . . . ∨ C ′n) resulting in an equivalent formula {∃,∀}x1 . . . {∃,∀}xn−1.φ

′′

where φ′ is in DNF and does not contain negation symbols nor atoms s 6≈ t.
This completes for FM decision procedure for LRA formulas.

Every LRA formula can by reduced to > or ⊥ via the FM decision procedure.
Therefore LRA is called a complete theory, i.e., every closed formula over the
signature of LRA is either true or false.

LA formulas over the rationals and over the reals are indistinguishable by
first-order formulas over the signature of LRA. These properties do not hold for
extended signatures, e.g., then additional free symbols are introduced. Further-
more, FM is no decision procedures over the integers, even if the LA syntax is
restricted to integer constants.

230 CHAPTER 6. DECIDABLE LOGICS

The complexity of the FM calculus depends mostly on the quantifier alterna-
tions in {∃,∀}x1 . . . {∃,∀}xn.φ. In case an existential quantifier ∃ is eliminated,
the formula size grows worst-case quadratically, therefore O(n2) runtime. For
m quantifiers ∃ . . . ∃: a naive implementation needs worst-case O(n2m) runtime.
It is not known whether an optimized implementation with simply exponential
runtime is possible. If there are m quantifier alternations ∃∀∃∀ . . . ∃∀, a CNF to
DNF conversion is required after each step. Each conversion has a worst-case
exponential run time, see Section 2.5. Therefore, the overall procedure has a
worst-case non-elementary runtime.

I

There are meanwhile more efficient decision procedures for the theory
LRA known, e.g., see Section 6.2.3. There are problems occuring in
practice where the elimination of a variable via FM results in an only

linear increase in size. In such cases FM is still valuable. Many state-of-the-art
LRA procedures actually calculute the size of the formula after eliminating a
variable via FM and redundancy elimination and decide on this basis whether
FM is applied or not.

6.2.2 Simplex

The Simplex algorithm is the prime algorithm for solving optimization problems
over linear inequations [45]. For automated reasoning optimization at the level
of conjunctions of inequations is not in focus. Rather, solvability of a set of
linear inequations as a subproblem of some theory combination is the typical
application. In this context the simplex algorithm is useful as well, due to its
incremental nature. If an inequation A is added to a set N of inequations where
the simplex algorithm has already found a solution for N , the algorithm needs
not to start from scratch. Instead it continues with the solution found for N . In
practice, it turns out that then typically only few steps are needed to derive a
solution for N ∪ {A} if it exists.

The simplex algorithm introduced in this section is a simplified version of
the classical dual simplex used for solving optimization problems.

First, I show the case for non-strict inequations. Starting point is a set N
(conjunction) of (non-strict) inequations of the form (

∑
xj∈X ai,jxj) ◦i ci where

◦i ∈ {≥,≤} for all i. The variables occurring in N are assumed to be totally
ordered by some ordering ≺. The ordering ≺ will eventualy guarantee termina-
tion of the simplex algorithm, see Definition 6.2.5 and Theorem 6.2.6 below. I
assume the xj to be all different, without loss of generality xj ≺ xj+1, and I
assume that all coefficients are normalized by the gcd of the ai,j for all j: if the
gcd is different from 1 for one inequation, it is used for division of all coefficients
of the inequation.

The goal is to decide whether there exists an assignment β from the xj into Q
such that LRA(β) |=

∧
i[(
∑
xj∈X ai,jxj) ◦i ci], or equivalently, LRA(β) |= N . So

the xj are free variables, i.e., placeholders for concrete values, i.e., existentially
quantified.

