
7.2. CDCL(T) 253

INote that the Purify rule was applied in the above example in a
slightly different way where the variable x5 is shared for both occur-
rences of the term f(x1, 0). For an actual implementation, it is desirable to share
as many subterms as possible that way.

As a second example, consider the formula over LA and EUF

x− y ≈ 0 ∧ g(x) 6≈ g(y)

which is already purified and the respective NO derivation is

({x− y ≈ 0}, ∅, {g(x) 6≈ g(y)}, ∅,⊥)
⇒Solve

NO ({x− y ≈ 0}, {x ≈ y}, {g(x) 6≈ g(y)}, ∅,⊥)
⇒Fail

NO ({x− y ≈ 0}, {x ≈ y}, {g(x) 6≈ g(y)}, ∅, fail)

Restriction 7.1.1-2 is not needed for the Nelson-Oppen procedure to work.
For EUF variable identities are anyway computed by the congruence closure
algorithm when computing the equivalence classes by generating a terminating
and confluent R (see Section 6.1). However, for LA and, e.g., the simplex algo-
rithm (see Section 6.2.2), it only comes at additional cost to identify variable
identities.

Definition 7.1.4 (Arrangement). Given a (finite) set of variables X, an ar-
rangement A over X is a (finite) set of equalities and inequalities over X such
that for all x1, x2 ∈ X either x1 ≈ x2 ∈ A or x1 6≈ x2 ∈ A.

Proposition 7.1.5 (Nelson-Oppen modulo Arrangement). Let T1 and T2 be
two theories satisfying the restrictions of Definition 7.1.1 except for restriction 2
and φ a quantifier-free formula over Σ1 ∪ Σ2. Let N1 and N2 be the purified
clause sets out of φ. Then φ is satisfiable iff there is an arrangement A over
vars(φ) such that N1 ∪A is T1-satisfiable and N2 ∪A is T2-satisfiable.

Note that it is not sufficient to consider just equalities for some arrangement,
because in one theory these equalities might imply further equalities which are
then not transferred into the other theory.

7.2 CDCL(T)

Consider a SAT problem where the propositional variables actually stand for
ground atoms over some theory T , or a Nelson-Oppen combination of theories,
e.g., ground equations or ground atoms of LRA, i.e., LRA atoms where all vari-
ables are existentially quantified. The basic idea of all procedures in this section
is to apply CDCL, Section ??, in order to investigate the boolean structure
of the problem. If CDCL derives unsatisfiability, then the problem clearly is. If
CDCL derives satisfiability, then a ground decision procedure for T has to check
whether the actual CDCL assignment constitutes also a model in T .

254 CHAPTER 7. PROPOSITIONAL LOGIC MODULO THEORIES

For example, let T be the purely equational ground theory over free sym-
bols (EUF) where we consider Congruence Closure (Section 6.1) as a decision
procedure. Now consider a formula

f(a) ≈ b ∧ b ≈ c ∧ (f(a) 6≈ c ∨ a 6≈ c)

and its boolean abstraction (clauses)

P1 ∧ P2 ∧ (P3 ∨ P4).

A CDCL algorithm might find the propositional model M1 = P1P2P3. Obvi-
ously, the respective literals f(a) ≈ b, b ≈ c, f(a) 6≈ c are contradictory in EUF.
So M1 does not correspond to a T -model. The congruence closure algorithm
can easily justify this contradiction with respect to the literals P1, P2, P3, and
hence the CDCL algorithm can learn the clause ¬P1 ∨ ¬P2 ∨ ¬P3. Adding this
clause to the above clauses

P1 ∧ P2 ∧ (P3 ∨ P4) ∧ (¬P1 ∨ ¬P2 ∨ ¬P3)

the CDCL algorithm finds the next model M2 = P1P2¬P3P4 corresponding to
the literals f(a) ≈ b, b ≈ c, f(a) ≈ c, and a 6≈ c which are satisfiable in EUF.
So, an overall model is found.

Let N be a finite set of clauses over some theory T over signature ΣT such
that there exists a decision procedure for satisfiability of a conjunction of literals:
|=T L1∧. . .∧Ln. Let atr be a bijection from the atoms over ΣT into propositional
variables ΣPROP auch that atr−1(atr(A)) = A. Furthermore, atr distributes over
the propositional operators, e.g., atr(¬A) = ¬ atr(A).

Lemma 7.2.1 (Correctness of atr). Let N be a set of clauses over some theory
T . If atr(N) |= ⊥ then N |=T ⊥.

A CDCL(T) problem state is a five-tuple (M ;N ;U ; k;C) where N is the
propositional abstraction of some clause set N ′, N = atr(N ′), M a sequence
of annotated propositional literals, U is a set of detived propositional clauses,
k ∈ N ∪ {−1}, and C is a propositional clause or > or ⊥. In particular, the
following states can be distinguished:

(ε;N ; ∅; 0;>) is the start state for some clause set N
(M ;N ;U ;−1;>) is a final state, where atr−1(M) |=T N ′, atr−1(M)

satisfiable
(M ;N ;U ; k;⊥) is a final state, where N ′ has no model
(M ;N ;U ; k;>) is a model search state if k 6= 0
(M ;N ;U ; k;D) is a backtracking state if D 6∈ {>,⊥}

Literals in L ∈ M are either annotated with a number, a level, i.e., they
have the form Lk meaning that L is the k − th guessed decision literal, or they
are annotated with a clause that forced the literal to become true. A literal L
is of level k with respect to a problem state (M ;N ;U ; j;C) if L or comp(L)

7.2. CDCL(T) 255

occurs in M and L itself or the first decision literal left from L (comp(L)) in M
is annotated with k. If there is no such decision literal then k = 0. A clause D
is of level k with respect to a problem state (M ;N ;U ; j;C) if k is the maximal
level of a literal in D. Recall C is a non-empty clause or > or ⊥. The rules are

Propagate(M ;N ;U ; k;>) ⇒CDCL (MLC∨L;N ;U ; k;>)

provided C ∨ L ∈ (N ∪ U), M |= ¬C, and L is undefined in M

Decide (M ;N ;U ; k;>) ⇒CDCL (MLk+1;N ;U ; k + 1;>)

provided L is undefined in M

Conflict (M ;N ;U ; k;>) ⇒CDCL (M ;N ;U ; k;D)

provided D ∈ (N ∪ U) and M |= ¬D

Skip (MLC∨L;N ;U ; k;D) ⇒CDCL (M ;N ;U ; k;D)

provided D 6∈ {>,⊥} and comp(L) does not occur in D

Resolve (MLC∨L;N ;U ; k;D ∨ comp(L)) ⇒CDCL (M ;N ;U ; k;D ∨ C)

provided D is of level k

Backtrack (M1K
i+1M2;N ;U ; k;D ∨ L) ⇒CDCL (M1L

D∨L;N ;U ∪ {D ∨
L}; i;>)

provided L is of level k and D is of level i.

Restart (M ;N ;U ; k;>) ⇒CDCL (ε;N ;U ; 0;>)

provided M 6|= N

Forget (M ;N ;U] {C}; k;>) ⇒CDCL (M ;N ;U ; k;>)

provided M 6|= N

Note that these rules are exactly the rules of CDCL from Section ??. The
only difference that any normal form (M ;N ;U ; k;>) was a final state in CDCL,
but not in CDCL(T) because k 6= −1. On the other hand, if CDCL derives
the empty clause, i.e., ⊥, then this is also a final state for CDCL(T), see
Lemma 7.2.1. The T rules are missing that in particular check whether the
propoistional model is in fact also a theory model.

T -Success (M ;N ;U ; k;>) ⇒CDCL(T) (M ;N ;U ;−1;>)

provided k 6= −1, M |= (N ∪ U) and atr−1(M) is T -satisfiable

T -Propagate (M ;N ;U ; k;>) ⇒CDCL(T) (MLC∨L;N ;U ; k;>)

provided , atr−1(M) is T -satisfiable, L is undefined in M but atom(L)
occurs in N ∪ U , and there are literals L1, . . . , Ln from M with
atr−1(L1), . . . , atr−1(Ln) |=T atr−1(L) and C = comp(L1) ∨ . . . ∨ comp(Ln)

256 CHAPTER 7. PROPOSITIONAL LOGIC MODULO THEORIES

T -Conflict (M ;N ;U ; k;>) ⇒CDCL(T) (ε;N ;U ∪ {comp(L1) ∨ . . . ∨
comp(Ln)}; 0;>)

provided there are literals L1, . . . , Ln from M with atr−1(L1), . . . , atr−1(Ln) |=T
⊥

Note that the clause L1∧ . . .∧Ln → L used to justify T -Propagate as well as
the T -Conflict clause ¬L1 ∨ . . . ∨ ¬Ln are tautologies in T . For rule T -Conflict
the literal Li of maximal level could be a decision literal, hence a restart is a
safe way that CDCL(T) does not get stuck.

The rule T -Propagate is not needed for soundness nor for completeness. Just
for “efficiency”. But in contrast to CDCL, where boolean propagation can be
very efficiently computed, for some arbitrary theory T this might not be the case.
So there is a trade off between at any time checking M with respect to the theory
and thus avoiding T conflicts, called eager theory consideration, and computing
with respect to the boolean structure and taking into account eventual extra T
conflicts, called lazy theory consideration. Similarly, it is not obvious whether
the applicability of T -Conflict should be checked eagerly, because this might be
expensive.

So the minimal requirement for T is a decision procedure that checks for a
conjunction of literals whether it is satisfiable or not and in case it is not ideally
provides a minimal unsatisfiable subset.

Definition 7.2.2 (Reasonable CDCL(T) Strategy). A CDCL(T) strategy is
reasonable if the rules Conflict and Propagate are always preferred over all
other rules.

Theorem 7.2.3 (CDCL(T) Properties). Consider a clause set N = atr(N ′)
for a clause set N ′ over some theory T and a reasonable run of CDCL(T) with
start state (ε;N ; ∅; 0;>). Then

1. The clause comp(L1) ∨ . . . ∨ comp(Ln) learned by T -Conflict is not con-
tained in N ∪ U .

2. Any CDCL(T) run where the rules Restart and Forget are only applied
finitely often terminates.

3. If (ε;N ; ∅; 0;>)⇒∗CDCL(T) (M ;N ;U ; k; s) then N ′ |=T atr−1(U).

4. If (ε;N ; ∅; 0;>)⇒∗CDCL(T) (M ;N ;U ; k;⊥) then N ′ is unsatisfiable.

5. If N is satisfiable, then any CDCL(T) run where the rules Restart and
Forget are only applied finitely often eventually produces a success state
(M ;N ;U ;−1;>) with atr−1(M) |=T N ′.

Proof. 1. By contradiction. If the clause ¬L1 ∨ . . .∨¬Ln is already N ∪U then
after deciding/propagating n − 1 of its literals either Propagate or eventually
Conflict is applied to the clause by a reasonable strategy. This contradicts the
application of T -Conflict.

7.2. CDCL(T) 257

2. The proof of Lemma ?? carries over to CDCL(T), i.e., also clauses learned
by rule Backtrack are not contained in N ∪ U , even if T -Propagate is applied.
All learned clauses are restricted to atoms from N , so there are only finitely
many such clauses that can be learned by Backtrack or T -Conflict. Any run
restricted to the rules Decide, Propagate, Skip, Resolve, T -Propagate, and T -
Success terminates. Therefore, if Restart and Forget are only applied finitely
often, CDCL(T) eventually terminates.

3. From CDCL any clause learned by Backtrack is entailed by N . For any
clause C learned by T -Conflict, atr−1(C) is a tautology in T , and any clause
atr−1(L1 ∧ . . . ∧ Ln → L) used in T -Propagate is a T tautology as well, hence
it is also a T consequences of N ′.

4. For all learned clauses C by 3. it holds N ′ |=T atr−1(C), hence N ′ |=T
atr−1(⊥) and therefore N ′ is unsatisfiable.

5. Because of 2. and 4. it suffices to show that CDCL(T) can’t get stuck. The
CDCL rules terminate either in a state (M ;N ;U ; k;>), k 6= −1, where neither
Decide, Propagate nor Conflict is applicable, or in a state (M ;N ;U ; k;⊥), see
Lemma ??. The latter state implies unsatisfiability of N ′ and in the former
state either T -Success or T -Conflict is applicable. Note that T -Propagate can
be simulated by the rules Decide and Propagate.

Historic and Bibliographic Remarks

