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(ε;N ; ∅; 0;>)

⇒Decide
CDCL (P 1;N ; ∅; 1;>)

⇒Propagate
CDCL (P 1R¬P∨R;N ; ∅; 1;>)

⇒Propagate
CDCL (P 1R¬P∨R¬Q¬P∨¬R∨¬Q;N ; ∅; 1;>)

⇒Conflict
CDCL (P 1R¬P∨R¬Q¬P∨¬R∨¬Q;N ; ∅; 1;¬P ∨ ¬R ∨Q)

⇒Resolve
CDCL (P 1R¬P∨R;N ; ∅; 1;¬P ∨ ¬R)

⇒Resolve
CDCL (P 1;N ; ∅; 1;¬P )

⇒Backtrack
CDCL (¬P¬P ;N ; {¬P}; 0;>)

Note that although the conflict clause ¬P ∨ ¬R ∨ Q is subsumed by ¬P ∨ Q,
the eventually learned clause ¬P is not redundant.

Lemma 2.9.9 (CDCL Soundness). In a reasonable CDCL derivation, CDCL
can only terminate in two different types of final states: (M ;N ;U ; k;>) where
M |= N and (M ;N ;U ; k;⊥) where N is unsatisfiable.

Proof. If CDCL terminates with (M ;N ;U ; k;>) then all literals ofN are defined
in M and Conflict is not applicable, i.e., for all clauses C ∈ N it holds M |=
C, so M |= N . In addition if CDCL terminates with (M ;N ;U ; k;⊥) then by
Proposition 2.9.6.2 the clause set N is unsatisfiable.

What remains is to show that with a reasonable strategy CDCL can-
not get stuck, see Example 2.9.3. I prove that no stuck state can reached
by contradiction. Assume that CDCL terminates in a terminating state
(M1K

i+1M ′2K
k
1K2 . . .Kn;N ;U ; k;D ∨ L), where the Ki, i > 1, are propagated

literals. If comp(Kn) 6= L and n > 1 then Skip is applicable. If comp(Kn) = L
then either Resolve or Backtrack is applicable. Since neither Skip, Resolve, or
Backtrack are applicable, it holds n = 1 and the complement of Kk

1 does not oc-
cur in D∨L. But then M1K

i+1M ′2 |= ¬(D∨L) so the decision on Kk
1 contradicts

a reasonable strategy.

Proposition 2.9.10 (CDCL Soundness). The rules of the CDCL algorithm are
sound: (i) if CDCL terminates from (ε;N ; ∅; 0;>) in the state (M ;N ;U ; k;>),
then N is satisfiable, (ii) if CDCL terminates from (ε;N ; ∅; 0;>) in the state
(M ;N ;U ; k;⊥), then N is unsatisfiable.

Proof. (i) by Proposition 2.9.6.1 the sequence M is always consistent. Since
(M ;N ;U ; k;>) is a final state neither Decide nor Propagate can be applied and
hence all atoms of literals in N occur in M . Furthermore, the state is not a
result of an application of the Conflict rule nor is the Conflict rule applicable.
Therefore, there is no D ∈ (N ∪ U) with M |= ¬D and since all literals in N
are defined in M this means M |= N , so N is satisfiable.

(ii) the only rule that can produce (M ;N ;U ; k;⊥) is Conflict, where ⊥ ∈
(N ∪ U). By Proposition 2.9.6.2 all learned clauses are entailed by N , hence N
is unsatisfiable.

Proposition 2.9.11 (CDCL Strong Completeness). The CDCL rule set is com-
plete: for any valuation M with M |= N there is a reasonable sequence of rule
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applications generating (M ′;N ;U ; k;>) as a final state, where M and M ′ only
differ in the order of literals.

Proof. By induction on the length of M . Assume we have already reached a state
(M ′;N ;U ; k;>) where M ′ ⊂ M . If Propagate is applicable to (M ′;N ;U ; k;>)
extending it to (M ′LC∨L;N ;U ; k;>) then L ∈M . For otherwise, I pick a literal
L ∈M that is not defined in M ′ and apply Decide yielding (M ′Lk+1;N ;U ; k+
1;>). The rule Conflict is not applicable, because M |= N and M ′ ⊂M .

Proposition 2.9.12 (CDCL Termination). Assume the algorithm CDCL with
all rules except Restart and Forget is applied using a reasonable strategy. Then
it terminates in a state (M ;N ;U ; k;D) with D ∈ {>,⊥}.

Proof. By Lemma 2.9.9 if CDCL terminates using a reasonable strategy then
D ∈ {>,⊥}. I show termination by contradiction. By Proposition 2.9.6.8 an
infinite run includes infinitely many Backtrack applications. By Lemma 2.9.7
each learned clause does not occur in N ∪ U . But there are only finitely many
different condensed clauses with respect to the finite signature contained in N .
A contradiction.

The CDCL rule set does not terminate in general. This is due to the rules
Restart and Forget. If they are applied only finitely often then the algorithm
terminates. Then at some point of the derivation the final application of Restart
and Forget occurred. From this point onwards Proposition 2.9.12 applies, pro-
vided a reasonable strategy.

Example 2.9.13 (CDCL Termination I). Consider the clause set N = {P ∨
Q,¬P ∨ Q,¬Q}. The CDCL algorithm does not terminate due to the rule
Restart.

(ε;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬Q;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬QPQ∨P ;N ; ∅; 0;>)

⇒Restart
CDCL (ε;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬Q;N ; ∅; 0;>)

⇒Propagate
CDCL (¬Q¬QPQ∨P ;N ; ∅; 0;>)

⇒Restart
CDCL (ε;N ; ∅; 0;>)

⇒CDCL . . .

Example 2.9.14 (CDCL Termination II). Consider the clause set N = {¬P ∨
Q∨¬R,¬P ∨Q∨R}. The CDCL algorithm does not terminate due to the rule
Forget.
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(ε;N ; ∅; 0;>)

⇒Decide
CDCL (P 1;N ; ∅; 1;>)

⇒Decide
CDCL (P 1¬Q2;N ; ∅; 2;>)

⇒Propagate
CDCL (P 1¬Q2¬R¬P∨Q∨¬R;N ; ∅; 2;>)

⇒Conflict
CDCL (P 1¬Q2¬R¬P∨Q∨¬R;N ; ∅; 2;¬P ∨Q ∨R)

⇒Resolve
CDCL (P 1¬Q2;N ; ∅; 2;¬P ∨Q)

⇒Backtrack
CDCL (P 1;N ; {¬P ∨Q}; 1;>)

⇒Forget
CDCL (P 1;N ; ∅; 1;>)

⇒Decide
CDCL (P 1¬Q2;N ; ∅; 2;>)

⇒Propagate
CDCL (P 1¬Q2¬R¬P∨Q∨¬R;N ; ∅; 2;>)

⇒Conflict
CDCL (P 1¬Q2¬R¬P∨Q∨¬R;N ; ∅; 2;¬P ∨Q ∨R)

⇒CDCL . . .

As an alternative and positive proof of Proposition 2.9.12 the CDCL termi-
nation can be shown by assigning a well-founded measure µ and proving that
it decreases with each rule application except for the rules Restart and Forget.
Let n be the number of propositional variables in N . The range for the measure
µ is N× {0, 1} × N.

µ((M ;N ;U ; k;D)) =

{
(3n − 1− |U |, 1, n− |M |) , D = >
(3n − 1− |U |, 0, |M |) , else

The well-founded ordering is the lexicographic extension of < to triples.
What remains to be shown is that each rule application except Restart and
Forget decreases µ. This is done via a case analysis over the rules:

Propagate:

µ((M ;N ;U ; k;>)) = (3n − 1− |U |, 1, n− |M |)
> (3n − 1− |U |, 1, n− |MLC∨L|)
= µ((MLC∨L;N ;U ; k;>))

Decide:

µ((M ;N ;U ; k;>)) = (3n − 1− |U |, 1, n− |M |)
> (3n − 1− |U |, 1, n− |MLk+1|)
= µ((MLk+1;N ;U ; k;>))

Conflict:

µ((M ;N ;U ; k;>)) = (3n − 1− |U |, 1, n− |M |)
> (3n − 1− |U |, 0, |M |)
= µ((M ;N ;U ; k;D))

Skip:

µ((MLC∨L;N ;U ; k;D)) = (3n − 1− |U |, 0, |MLC∨L|)
> (3n − 1− |U |, 0, |M |)
= µ((M ;N ;U ; k;D))
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Resolve:

µ((MLC∨L;N ;U ; k;D ∨ ¬L)) = (3n − 1− |U |, 0, |MLC∨L|)
> (3n − 1− |U |, 0, |M |)
= µ((M ;N ;U ; k;D ∨ C))

Backtrack:

µ((M1K
i+1M2;N ;U ; k;D ∨ L)) = (3n − 1− |U |, 0, |M1K

i+1M2|)
> (3n − 1− |U ∪ {D ∨ L}|, 1, n− |M1L

D∨L|)
= µ((M1L

D∨L;N ;U ∪ {D ∨ L}; i;>))

Recall that the strict inequation for Backtrack only holds with respect to a
reasonable strategy, see Lemma 2.9.7.

Another proof of termination is possible by considering the number of learned
clauses.

Theorem 2.9.15 (CDCL Termination: Learned Clauses). A CDCL run from
(ε;N ; ∅; 0;>) without rule Restart terminates and learns at most 2n clauses,
where n is the number of propositional variables in N .

Proof. Clauses are only learned at Backtrack applications. Without Restart, the
number of Backtrack applications is limited to 2n. By Proposition 2.9.6.8 any
infinite CDCL run contains infinitely many Backtrack applications.

The CDCL calculus is also incremental in the following sense: assume a
CDCL run on a clause set N results in a trail M that constitutes a model for
N . If satisfiability of N together with a new clause C needs to be tested, then
either M |= C and a satisfying model is found, or M |= ¬C. In the latter case
there is a minimal subsequence M ′L ⊆M such that M ′L |= ¬C. Now if L is a
decision literal then M is replaced with M ′ comp(L)C and CDCL continues with
from N ∪ {C} this state. If L is a propagated literal, then Conflict is applicable
to N ∪ {C} and CDCL continues from this state.

Note that the example problem from Figure 2.6 depicting a closed tableau
where the optimal closed tableau is exponentially smaller, will be solved by
CDCL without the exponential overhead. If closedness does not depend on the
Kj , K

′
j literals, then even after deciding (propagating) these literals and later

on the Li, L
′
i literals, the conflict clauses as well as the learned clauses will not

contain any Kj , K
′
j literal. Therefore one run through a Li, L

′
i subtree yields

the empty clause via CDCL.

2.10 Implementing CDCL

Modern SAT solvers are based in five components: heuristics for decision vari-
able selection, conflict-driven clause learning (CDCL) including backjumping,
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restarting and learned clauses deletion policies. All these components are inter-
connected, so if one of them is deactivated, or the interplay is not correctly
adjusted then efficiency drops down.

In addition, for an efficient CDCL implementation the underlying data-
structure and algorithms play a crucial part. There is a significant gap between
the rule based CDCL calculus discussed in Section 2.9 and an actual implemen-
tation. In this section I explain some of the main techniques.

The most important data-structure of a CDCL implementation is the 2-
watched literal scheme, introduced in the next section. For choosing the next
decision variables a suitable heuristic is important. One of the standard heuris-
tics is called VSIDS (Variable State Independent Decaying Sum) end explained
in Section 2.10.2. Furthermore, the decision for choosing the most reasonable
clause to be learned after a discovered conflict is handled by the notion of UIPs
(Unique Implication Points). Actually, the CDCL calculus of Section 2.9 has
learning a UIP clause build in. Finally, a suitable Restart and Forget strategy,
the deletion policy, is essential for an efficient long term behavior of the calculus,
discussed in Section 2.10.4.

2.10.1 Lazy Data Structure: 2-Watched Literals (2WL)

For applying the rule Propagate, all literals in a clause except one need to be
false with respect to the current trail. For applying the rule Conflict all literals
need to be false with respect to the current trail. Thus as long as at least two
literals of a clause are undefined with respect to the current trail or at least one
literal is true with respect to the current trail the clause can be discarded by
the CDCL calculus rules.

This results in the well-known 2-watched literals idea where only two literals
of a clause are indexed. Indexing is needed in general, in order to efficiently access
relevant clauses. After a decision or propagation of some literal L all clauses
containing comp(L) need to be visited in order to check for rule Propagate and
Conflict. Simply traversing all clauses in N ∪ U is too inefficient. A complete
index assigns to every literal the sequences of clauses containing the literal. The
2-watched literal index reduces this to indexing only the first two literals of a
clause. The invariant for the 2-watched literals with respect to the current trail
is:

Invariant 2.10.1 (2-Watched Literal Indexing). If one of the watched literals
is false and the other watched literal is not true, then all other literals of the
clause are false.

There are two major advantages of indexing a clause by 2WL: (i) when a
literal of the clause that is not watched changes its truth value nothing needs to
be done (ii) applying rule Backtrack does not result in any update on the 2WL
data structure, because literals are only changed to status undefined.

For example, consider the clause set

N = {P ∨ ¬R, P ∨ ¬Q, R ∨Q ∨ P, ¬P ∨R ∨Q}
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resulting in the below 2WL index structure. Clauses are written as boxes
suggesting an array implementation and the leftmost two literals are the 2WL.
The entry point of the overall index is an array shown in the middle. It is indexed
by propositional variables and has two entries for each variable: to the right a
sequences of clauses where the positive literal of that variable is watched and
to the left a sequences of clauses where the negative literal of that variable is
watched. Every clause has 2-watched literals so it is linked twice in the 2WL
index structure. Literals are represented by natural numbers or integers.

P

Q

R

P ¬Q P ¬R¬P R Q

P ¬Q R Q P

P ¬R R Q P ¬P R Q

Note that the clause R ∨ Q ∨ P is not indexed at literal P and the clause
¬P ∨R ∨Q is not indexed at literal Q.

I

Although the above figure suggests two copies of each clause in the
2WL index structure, of course, there is only one shared clause. Unit
clauses are considered separately, outside the index structure, since

they can be immediately used for reduction. In practice, two literal clauses are
considered separately as well, because they employ more efficient update and
check procedures. For simplicity, the examples treat unit and two literal clauses
as any other clause. Clauses, sequences of clauses and the propositional variable
index structure are all implemented via arrays.

Now consider a CDCL run deciding ¬P :

(ε;N ; ∅; 0;>)
⇒Decide

CDCL (¬P 1;N ; ∅; 1;>)

The algorithm jumps through variable P to its clause sequence on the right,
because all clauses to the left of P are true. It finds the two literal clauses
P ∨ ¬R, P ∨ ¬Q that need not to be updated but result in the propagation of
¬R and ¬Q. Updating means reestablishing the above 2WL Invariant 2.10.1 if
it is violated. The algorithm propagates both ¬R and ¬Q and then runs the
update procedure for both literals.

⇒Propagate
CDCL (¬P 1¬RP∨¬R;N ; ∅; 1;>)

⇒Propagate
CDCL (¬P 1¬RP∨¬R¬QP∨¬Q;N ; ∅; 1;>)

The algorithm jumps through variable R to its clause sequence on the right.
The first clause it finds is R ∨Q ∨ P which is already false with respect to the
trail. So Conflict and Resolve and finally Backtrack is applied.
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⇒Conflict
CDCL (¬P 1¬RP∨¬R¬QP∨¬Q;N ; ∅; 1;R ∨Q ∨ P )

⇒Resolve
CDCL (¬P 1¬RP∨¬R;N ; ∅; 1;R ∨ P )

⇒Resolve
CDCL (¬P 1;N ; ∅; 1;P )

⇒Backtrack
CDCL (PP ;N ; {P}; 0;>)

The overall CDCL rule sequence does not result in any updates of the 2WL
index data structure. It is always the case that executing the rules Skip, Re-
solve, or Backtrack does not need any update on the 2WL indexing, because the
Invariant 2.10.1 is robust against removing literals from the trail. After back-
tracking and establishing P on the trail, the algorithm jumps through variable
P to its clause sequence on the left. This time the clause ¬P ∨ R ∨ Q violates
the 2WL invariant since Q and R are undefined but ¬P is false. The 2WL for
this clause are changed by exchanging the literals ¬P and Q and updating the
2WL index data structure.

P

Q

R

P ¬Q P ¬R P

P ¬Q R Q P Q R ¬P

P ¬R R Q P Q R ¬P

Finally, two applications of Decide on Q and R result in a model for N
without any further changes to the 2WL structure, because P is already true.

⇒Decide
CDCL (PPQ1;N ; {P}; 1;>)

⇒Decide
CDCL (PPQ1R2;N ; {P}; 2;>)

An alternative derivation to a model would be to first decide on ¬Q. Then
R is propagated by the clause Q ∨ R ∨ ¬P but before the clause 2WL index is
changed by flipping the second and third literal in the clause R ∨ Q ∨ P and
moving it to the index P in the right sequence.

In general, the update procedure considers the following cases, assuming a
literal L is set to true by Propagate or Decide. All clauses where L is watched
can be ignored, they are true anyway. So the algorithm traverses all clauses
where comp(L) is watched. If for some clause the other watched literal is true,
nothing needs to be done. If the other literal is false or undefined, then the
clause is searched for an undefined or true literal beyond the watched literals. If
it exists, the undefined/true literal and comp(L) are exchanged and the clause
is removed from the comp(L) sequence and moved to the sequence of the other
literal. If it does not exist, then if the second watched literal is undefined, the
clause propagates that literal. If the second watched literal is false as well, then
a conflict clause is found.

I

During the update procedure for the 2WL structure often several
literals are found propagating and their respective sequences need to
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be considered sequentially. Still it is very useful to update their truth
value already at the time they are detected.

One advantage of the 2WL data structure is that during the loop Propagate,
Decide, Conflict only clauses where an involved literal is watched need to be
considered. The other is that the rule Backtrack does not result in any update
for the literals whose truth value is turned to undefined.

Theorem 2.10.2 (2WL and Backtrack). Consider a reasonable CDCL run on a
2WL data structure satisfying the 2WL Invariant 2.10.1 before any application
of rule Decide and a Backtrack application:

(M1K
i+1M2;N ;U ; k;D ∨ L)⇒Backtrack (M1L

D∨L;N ;U ∪ {D ∨ L}; i;>).
Then the 2WL invariant is preserved except for potentially L.

Proof. First, note that D∨L is propagating L by construction, so the comp(L)
sequence needs to be updated. Now assume that there is a clause K1 ∨K2 ∨ C
with K1,K2 watched that violates the 2WL invariant and both Ki 6= comp(L).
This means without loss of generality that K1 is false in M1L and K2 is not
true and there are literals in C which are not false with respect to M1L. Note
that both Ki 6= L because for otherwise one of them is true. So the truth
value of both Ki is determined by M1. The above described update procedure
only exchanges false literals with true or undefined literals. The rule Backtrack,
except for L, only changes truth values of literals to undefined. Thus already
before Ki+1 was decided, the clause K1∨K2∨C did violate the 2WL invariant,
contradicting the assumption.

2.10.2 Dynamic Decision Heuristic: VSIDS

The actual literal selection by the rule Decide greatly influences the number
of transition steps until CDCL derives a finite state. For example, the proof of
Proposition 2.8.7 presents a nice decision heuristic for some satisfiable clause
set, provided the actual model is known in advance.

In general, the idea of the decision heuristic is to focus the search. Thinking of
a set of clauses as a graph, where the clauses are the nodes and edges are drawn
between complementary literals, the search should focus on a single connected
component of the graph. Inside this component the search should focus on a
small highly connected part that enables conflicts on the basis of a few decisions
or has a model. For a simple example, consider the clause set N = N1 ] N2 ]
{P ∨Q}]N3, where N1 does not share any propositional variable with N2, N3,
the atom P does not occur in N3 and the atom Q does not occur in N2. Then
an ideal decision heuristic will first focus on the atoms in N1 before considering
any atom from the rest of the clause set, or the other way round. Furthermore,
atoms in N3 should not be decided until all atoms in N2 have been decided,
or the other way round. Unfortunately, deriving the necessary graph properties
for this behavior is, in general, as hard as the SAT problem. The way out are
heuristics that can be efficiently computed and dynamically adapt towards the
above described behavior. The VSIDS (Variable State Independent Decaying
Sum) heuristic is such a heuristic [37, 25].



2.10. IMPLEMENTING CDCL 81

The VSIDS heuristic initially assigns each propositional variable a number,
its initial score, e.g., its number of occurrences in the clause set, or all 0 or 1 or
some random value. This score is updated during a CDCL run. The rule Decide
always picks a variable with maximal score. In case the picked variable was not
decided before it heuristically chooses it positively or negatively, but then stores
the sign for later use. After a Backtrack or Restart application, if the variable
is selected again by Decide, the stored sign us used. This is called phase saving.
If the variable was already decided, the stored sign is selected. Now either the
CDCL run produces a model or a conflict and afterwards Skip and Resolve
become applicable. With each application of Resolve, the score of the resolved
literal is incremented by a bonus b > 0. Depending on the initial score, the bonus
b starts with some positive value, e.g., maximum of half the initial maximal score
and it is updated as well during search. When Backtrack is applied, the scores
of the remaining atoms of the learned clause are also incremented by b and b
itself is updated by multiplication with a fixed constant c > 1, e.g., c = 6

5 and
for this value of c the new value for b after Backtrack is d 6

5be. If the score is
implemented by doubles then the ceiling function application is not needed. In
addition, every kth application of Decide a random variable is chosen, where a
typical value for k is 200.

I

Of course, b grows exponentially in the number of Backtrack appli-
cations. Hence, the score function as well. So eventually there will be
an overflow of the respective unsigned data structures. The bonus b
only depends on the number of conflicts, c, and some initial value known at the
start of the CDCL procedure. Furthermore, the bit-length of the used unsigned
data structure is known as well. So the minimal number of Conflicts generat-
ing the overflow can be computed once in advance. A typical value for today’s
computer architectures and choices for c and some initial value is above 500. So
every 500 conflicts the implementation has to take care of an potential overflow
by rescaling b and the score function. This can be done by right-shifting the
scores of all variables and b itself. Computationally, this is a neglectable over-
head, so the VSIDS heuristic can be efficiently computed. The score function is
often implemented as a priority queue. The Sat solver MiniSat [20], implements
VSIDS via doubles. The default for the start score value is 0, the initial bonus
value is b = 2. The bonus increase is c = 100

95 . It does not precompute a bound
for rescaling, instead whenever an actual increase operation exceeds a value of
10100 all scores and b are scaled by 10−100.

The choice of a random variable every kth application of Decide is a back-
door for the case that the score function accidentally focuses on a too large
complicated component of the clause graph, while there exist very small bene-
ficial components. Think of the above example, where N1 contains only a few
clauses compared to the rest and is unsatisfiable, but the VSIDS heuristic starts
with atoms from N2, because they occur by far more frequently. So the random
choice part of the heuristic improves its robustness.
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2.10.3 Conflict Analysis, Learning, and 1-UIPs

The SAT literature [9] discusses the relationship between an appropriate analysis
of the conflict, the eventually learned clause and so called first unit implication
points (1-UIPs). This section clarifies these notions in relation to the CDCL
calculus of Section 2.9.

Example 2.10.3. Consider the clause set N = {P1∨P2∨¬Q1, P2∨¬Q2, Q1∨
Q2 ∨Q3, ¬Q3 ∨ P3 ∨ ¬Q5, ¬Q3 ∨ ¬Q4, Q4 ∨Q5} and a CDCL run resulting in
a first conflict:
(ε;N ; ∅; 0;>)

⇒∗CDCL (¬P 1
3¬P 2

1¬P 3
2¬Q

P2∨¬Q2

2 ¬QP1∨P2∨¬Q1

1 QQ1∨Q2∨Q3

3 ¬Q¬Q3∨¬Q4

4

¬Q¬Q3∨P3∨¬Q5

5 ;N ; ∅; 3;Q4 ∨Q5)

The information of the dependencies between decision literals and propa-
gated literals can now be represented by a directed, acyclic graph, called the
implication graph presented in Figure 2.14. The decision literals ¬P 1

3¬P 2
1¬P 3

2

are the sources of the implication graph, the eventual false clause Q4 ∨Q5 the
sink.

The CDCL calculus, Section 2.9, derives out of the above state in two steps
the learned clause P3 ∨ ¬Q3 and backtracks:

⇒Resolve
CDCL (¬P 1

3¬P 2
1¬P 3

2¬Q
P2∨¬Q2

2 ¬QP1∨P2∨¬Q1

1 QQ1∨Q2∨Q3

3 ¬Q¬Q3∨¬Q4

4 ;
N ; ∅; 3;¬Q3 ∨ P3 ∨Q4)

⇒Resolve
CDCL (¬P 1

3¬P 2
1¬P 3

2¬Q
P2∨¬Q2

2 ¬QP1∨P2∨¬Q1

1 QQ1∨Q2∨Q3

3 ;
N ; ∅; 3;¬Q3 ∨ P3)

⇒Backtrack
CDCL (¬P 1

3¬Q
Q3∨P3

3 ;N ; {Q3 ∨ P3}; 1;>)

Stopping the resolution process at clause Q3 ∨P3 is forced by the Backtrack
rule and hence my version of the CDCL calculus. But this is not the only choice
of generating a clause for backtracking. For example, further resolution steps
can be performed:

⇒Resolve
CDCL (¬P 1

3¬P 2
1¬P 3

2¬Q
P2∨¬Q2

2 ¬QP1∨P2∨¬Q1

1 QQ1∨Q2∨Q3

3 ;
N ; ∅; 3;¬Q3 ∨ P3)

⇒ (¬P 1
3¬P 2

1¬P 3
2¬Q

P2∨¬Q2

2 ¬QP1∨P2∨¬Q1

1 ;N ; ∅; 3;Q1 ∨Q2 ∨ P3)

⇒ (¬P 1
3¬P 2

1¬P 3
2¬Q

P2∨¬Q2

2 ;N ; ∅; 3;P1 ∨ P2 ∨Q2 ∨ P3)
⇒ (¬P 1

3¬P 2
1¬P 3

2 ;N ; ∅; 3;P1 ∨ P2 ∨ P3)
and then a backtrack step

⇒ (¬P 1
3¬P 2

1P
P1∨P2∨P3
2 ;N ; {P1 ∨ P2 ∨ P3}; 2;>)

The first state can be considered superior to the second state for two reasons.
Firstly, the learned clause Q3 ∨ P3 of the first state has less literals than the
learned clause P1 ∨ P2 ∨ P3 of the second state and hence the first state has a
higher probability to eventually yield a shorter terminating CDCL derivation.
Secondly, the backtrack level of the first state is smaller than the backtrack level
of the second state.

From the implication graph it can be seen that node Q3 dominates the
nodes ¬P1, ¬P2: every path from these nodes to the sink traverses Q3. This is
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a graph-based argument that replacing P1, P2 in P1 ∨ P2 ∨ P3 with Q3 results
in a consequence of the clause set. The node Q3 is called a unique implication
point (UIP) and the condition of the Backtrack rule ensures that the CDCL
calculus of Section 2.9 always learns a clause with respect to a first UIP (1-UIP)
searching from the sink towards the sources.

2.10.4 Restart and Forget

So far, I have not discussed much the CDCL rules Restart and Forget. In con-
trast, many properties of the CDCL calculus, Section 2.9, do not hold if these
rules are applied in an arbitrary way. Still, they are very important for the
efficiency of a SAT solver.

The rule Forget removes clauses from the set of learned clauses U . The more
clauses are contained in N ∪ U the more time is needed for the algorithms for
propagation and conflict detection. The potential number of learned clauses is
exponential in the number of propositional variables of a problem. Furthermore,
as soon as the size of the computer memory that is actually needed to perform
propagation and conflict detection exceeds cache structures or even main mem-
ory of a computer, the SAT solver slows down to such an extend that it often
becomes practically useless. In addition, although Theorem 2.11.4 shows that
learned clauses are always non-redundant, this does not exclude that a learned
clause causes previously learned clauses or even input clauses to be redundant.
For example, looking at a sequence of learned clauses C1, C2, . . . of a “typical”
CDCL run, learned clause Ci subsumes its predecessor Ci−1 with a probability
of about 10%.

A reasonable CDCL run without Restart, where every learned clause is im-
mediately forgotten via Forget after Backtrack also results in a sound and com-
plete algorithm. It violates the invariant that the clauses propagating literals are
contained in N ∪U , but still all rules work as desired. The rule Backtrack never
deletes propagated literals left from the leftmost decision literal, so the CDCL
run terminates anyway. Typically, such a run degrades to a DPLL run refined
with dependency directed backtracking, called backjumping. Learned clauses are
not needed for completeness or termination, just for efficiency.

The typical way Forget is invoked in implementations is in combination with
an application of Restart. For each of the learned clauses an activity score is
computed, incorporating the activity score of its literals as used by the VSIDS
heuristics, see Section 2.10.2. The second established criteria is the number
of decision levels a learned clause depends on for propagation. Then learned
clauses are sorted with respect to the two criteria and clauses with a low score
are forgotten. It may be that a forgotten clause is the justification for some
propagated literal on the trail. A Restart clears this potential problem.

Explaining the usefulness of Restart is more difficult. experiments. Still,
Looking at a CDCL run without Restart, after a reasonable number of conflicts,
the n decision literals on the trail will not be the maximal n literals with respect
to the VSIDS heuristic. For example, assume the run starts by a first decision P 1

but the literal P is afterwards not involved in any conflict, i.e., it is not a literal
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resolved upon and not contained in any learned clause. Still the fact that P is
true may cause unneeded propagations. It may even result in a behavior where
the solver does not concentrate on “one part of the problem” but on two or
more, causing a worst case exponential number of unneeded propagations. The
rule Restart is a means to get rid of such “confusing” literals on the trail that
meanwhile have a low score with respect to the dynamically evolving VSIDS
heuristic.

I

MiniSat combines Restart and Forget as follows: there is always a
limit c for the number of learned clauses. If c clauses are learned,
then they are sorted with respect to an activity score. The c

2 clauses
with lowest score are thrown away, c is increased by a constant and a Restart
is performed. Recall that performing a restart is needed to clear the trail. The
VSIDS heuristic together with phase saving directs the search towards the same
state that was generated before the restart.

2.10.5 The Overall Algorithm and Further Heuristics &
Strategies

Algorithm 5 presents a CDCL solver including most aspects discussed in previ-
ous sections. It implements a reasonable strategy and includes the incorporation
of the VSIDS heuristic and restarts. It does not contain a heuristic for an initial
VSIDS score. Typical solutions are to start with a score of 0 for all variables or to
start with the number of variable occurrences in N . Similarly for an application
of the rule Decide. For a variable with maximal VSIDS score either the positive
or the negative literal can be decided. Again this can be implemented via a
heuristic on the number of literal occurrences in N . Important is phase saving :
once a literal has been decided, after removal from the trail due to Restart or
Backtrack, if it is decided again, it is decided with the same sign.

The restart heuristic typically considers also unit clauses. Once a unit clause
is learned a restart is performed immediately. Unit clauses always propagate, so
their literals are collected during a run at the start of the trail. This applies as
well to literals propagating solely because of unit clauses, i.e., at level 0.

2.11 Superposition and CDCL

At the time of this writing it is often believed that the superposition (resolution)
calculus is not a good choice on SAT problems in practice. Most of the successful
SAT solvers implemented in 2015 are based on CDCL. In this section I will
develop some relationships between superposition and CDCL. Actually, CDCL
can be considered as a superposition calculus with respect to a generalized model
operator.

The goal of the original model operator, Definition 2.7.6, is to create minimal
models with respect to positive literals, i.e., if NI |= N for some N , then there is
no M ′ ⊂ NI such that M ′ |= N . However, if the goal generating minimal models


