
Chapter 5

First-Order Logic With
Equality

In this Chapter I combine the ideas of Superposition for first-order logic with-
out equality, Section 3.13, and Knuth-Bendix Completion, Section 4.4, to get a
calculus for equational clauses. In Section 3.1 I already argued that any literal
can be represented by an equation by “moving predicates to functions” and
introducing a new sort Bool with specific constant true that is minimal in any
considered ordering.

P (t1, . . . , tn) ⇒ fP (t1, . . . , tn) ≈ true
¬P (t1, . . . , tn) ⇒ fP (t1, . . . , tn) 6≈ true

The concentration on equational literals eases notation as I will show below. The
constant true is minimal in the ordering, so the left hand side of a transformed
literal is always strictly maximal. The freshly introduced functions fP only occur
at top level of a term, so a critical pair overlap between two such functions
corresponds exactly to a Superposition Left (resolution) or Factoring inference
of the superposition calculus for first-order logic without equality. Note that
a literal true 6≈ true can be simplified to ⊥ and a literal true ≈ true to >,
respectively. So from now on I only equational clauses, i.e., there are no predicate
symbols, Π = ∅.

Inference rules are to be read modulo symmetry of the equality symbol.
First, I explain the ideas and motivations behind the superposition calculus
with equality and its completeness proof for the ground case. At start I do
not consider selection, it will be eventually added in the obvious way when
considering clauses with variables.

The running example for this chapter is the theory of arrays TArray, see also
Section 7.3, which consists of the following three axioms:

∀xA, yI , zV . read(store(x, y, z), y) ≈ z
∀xA, yI , y′I , zV .(y 6≈ y′ → read(store(x, y, z), y′) ≈ read(x, y′))

∀xA, x′A.∃yI .(read(x, y) 6≈ read(x′, y) ∨ x ≈ x′).

213

214 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

The goal is to decide for an additional set of ground clauses N over the above
signature plus further constants of the three different sorts, whether TArray ∪
N is satisfiable. I will show that superposition can be turned into a decision
procedure for this problem, following [?]. The superposition calculus including
some array specific refinements, will always terminate on a clause set TArray∪N .
This results in an alternative decision procedure compared to the instantiation-
based procedures used in the SMT (Satisfiability Modulo Theories) context, see
Section 7.3.

5.1 Ground Superposition

The idea of the superposition calculus without equality was to restrict inferences
to maximal literals, Section 3.13. Knuth-Bendix completion considers critical
pairs between maximal sides of equations, Section 4.4. Superposition on equa-
tional clauses combines the two restrictions: inferences are between maximal
left hand sides of maximal literals in the respective clauses. Since all considered
orderings are total on ground terms, they maximality conditions can be stated
positively.

The ground inference rules corresponding to Knuth-Bendix critical pair com-
putation generalized to clauses. Superposition Left on first-order logic without
equality is generalized to equational clauses an inferences below top atom posi-
tions. Then the ordering construction of Definition 3.12.1 is lifted to equational
clauses. The multiset {s, t} is assigned to a positive literal s ≈ t, the multiset
{s, s, t, t} is assigned to a negative literal s 6≈ t. The literal ordering �L com-
pares these multisets using the multiset extension of �. The clause ordering
�C compares clauses by comparing their multisets of literals using the multiset
extension of �L. Eventually � is used for all three orderings depending on the
context.

Superposition Left (N] {D ∨ t ≈ t′, C ∨ s[t] 6≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[t] 6≈ s′} ∪ {D ∨ C ∨ s[t′] 6≈ s′})
where t ≈ t′ is strictly maximal and s 6≈ s′ are maximal in their respective
clauses, t � t′, s � s′

Superposition Right (N] {D ∨ t ≈ t′, C ∨ s[t] ≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[t] ≈ s′} ∪ {D ∨ C ∨ s[t′] ≈ s′})
where t ≈ t′ and s ≈ s′ are strictly maximal in their respective clauses, t � t′,
s � s′

The two rules are not yet sufficient to obtain completeness. There is no rule
corresponding to Factoring and there is no way to apply reflexivity of equality,
i.e., refute negative equations. The latter is solved by the below rule Equality
Resolution.

Equality Resolution (N]{C∨s 6≈ s}) ⇒SUPE (N∪{C∨s 6≈ s}∪{C})
where s 6≈ s is maximal in the clause

5.2. SUPERPOSITION 215

Similar to Factoring on ground clauses, Equality Resolution is also a sim-
plification on ground clauses, i.e., the parent clause becomes redundant with
respect to the result of the derivation step. Once Equality Resolution is lifted to
clauses with variables this is no longer the case, because the applied substitution
may instantiate further literals in C.

It turns out that a direct adaption of the Factoring rule from superposition
for first-order logic without equality is not sufficient for completeness. This be-
comes obvious in the context of the model construction. Basically, for the model
construction the same ideas as in the completeness proof for superposition with-
out equality apply, see Section 3.13. However, a Herbrand interpretation does
not work for equality: the equality symbol ≈ must be interpreted by equality
in the interpretation. The solution is to define a set E of ground equations and
take T (Σ, ∅)/E = T (Σ, ∅)/≈E as the universe. Then two ground terms s and
t are equal in the interpretation if and only if s ≈E t. If E is a terminating
and confluent rewrite system R, then two ground terms s and t are equal in the
interpretation, if and only if s ↓R t.

Now the problem with the standard factoring rule is that in the completeness
proof for the superposition calculus without equality, the following property
holds: if C = C ′ ∨ A with a strictly maximal atom A is false in the current
interpretation NC with respect to some clause set, see Definition 3.12.5, then
adding A to the current interpretation cannot make any literal in C ′ true. This
does not hold anymore in the presence of equality. Let b � c � d. Assume that
the current rewrite system (representing the current interpretation) contains
the rule c → d. Now consider the clause b ≈ c ∨ b ≈ d where b ≈ c is strictly
maximal. A further needed inference rule to deal with clauses of this kind, is the
below Equality Factoring rule, a generalization of the non-equational Factoring
rule.

Equality Factoring (N] {C ∨ s ≈ t′ ∨ s ≈ t}) ⇒SUPE (N ∪ {C ∨ s ≈
t′ ∨ s ≈ t} ∪ {C ∨ t 6≈ t′ ∨ s ≈ t′})
where s � t′, s � t and s ≈ t is maximal in the clause

5.2 Superposition

The lifting from the ground case to the first-order case with variables is then
identical to the case of superposition without equality: identity is replaced by
unifiability, the mgu is applied to the resulting clause, and � is replaced by
6�. In addition, as in Knuth-Bendix completion, overlaps at or below a variable
position are not considered. The consequence is that there are inferences between
ground instances Dσ and Cσ of clauses D and C which are not ground instances
of inferences between D and C. Such inferences have to be treated in a special
way in the completeness proof and will be shown to be obsolete.

Until now I mostly described the ideas behind the superposition calculus
and its completeness proof. Now, precise definitions and proofs will be given.

216 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

Inference rules are applied with respect to the commutativity of equality ≈.
Selection of negative literals is considered as well.

Superposition Right (N] {D ∨ t ≈ t′, C ∨ s[u] ≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[u] ≈ s′} ∪ {(D ∨ C ∨ s[t′] ≈ s′)σ})
where σ is the mgu of t, u, u is not a variable tσ 6� t′σ, sσ 6� s′σ, (t ≈ t′)σ
strictly maximal in (D ∨ t ≈ t′)σ, nothing selected and (s ≈ s′)σ maximal in
(C ∨ s ≈ s′)σ and nothing selected

Superposition Left (N] {D ∨ t ≈ t′, C ∨ s[u] 6≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[u] 6≈ s′} ∪ {(D ∨ C ∨ s[t′] 6≈ s′)σ})
where σ is the mgu of t, u, u is not a variable tσ 6� t′σ, sσ 6� s′σ, (t ≈ t′)σ
strictly maximal in (D ∨ t ≈ t′)σ, nothing selected and (s 6≈ s′)σ maximal in
(C ∨ s 6≈ s′)σ or selected

Equality Resolution (N] {C ∨ s 6≈ s′}) ⇒SUPE (N ∪ {C ∨ s 6≈
s′} ∪ {Cσ})
where σ is the mgu of s, s′, (s 6≈ s′)σ maximal in (C ∨ s 6≈ s′)σ or selected

Equality Factoring (N] {C ∨ s′ ≈ t′ ∨ s ≈ t}) ⇒SUPE (N ∪ {C ∨ s′ ≈
t′ ∨ s ≈ t} ∪ {(C ∨ t 6≈ t′ ∨ s ≈ t′)σ})
where σ is the mgu of s, s′, s′σ 6� t′σ, sσ 6� tσ, (s ≈ t)σ maximal in (C ∨ s′ ≈
t′ ∨ s ≈ t)σ and nothing selected

Proving soundness of the rules is not difficult, completeness, however, re-
quires a non-trivial proof.

Theorem 5.2.1 (Superposition Soundness). All inference rules of the su-
perposition calculus are sound, i.e., for every rule N] {C1, . . . , Cn} ⇒ N ∪
{C1, . . . , Cn} ∪ {D} it holds that {C1, . . . , Cn} |= D.

The notion of redundancy does not change, i.e., a clause is redundant if it is
implied by smaller clauses.

Definition 5.2.2 (Abstract Redundancy). A clause C is redundant with respect
to a clause set N if for all ground instances Cσ there are clauses {C1, . . . , Cn} ⊆
N with ground instances C1τ1, . . . , Cnτn such that Ciτi ≺ Cσ for all i and
C1τ1, . . . , Cnτn |= Cσ.

Given a set N of clauses red(N) is the set of clauses redundant with respect
to N .

Definition 5.2.3 (Saturation). A clause set N is saturated up to redundancy
if for every derivation N \ red(N)⇒SUPE N ∪ {C} it holds C ∈ (N ∪ red(N)).

For a set E of ground equations, T (Σ, ∅)/E is an E-interpretation (or E-
algebra) with universe {[t] | t ∈ T (Σ, ∅)}. Then for every ground equation s ≈ t,
T (Σ, ∅)/E |= s ≈ t holds if and only if s↔∗E t, see Theorem 4.1.11. In particular,

5.2. SUPERPOSITION 217

if E is a convergent set of rewrite rules R and s ≈ t is a ground equation, then
T (Σ, ∅)/R |= s ≈ t if and only if s ↓R t. An equation or clause is valid (or true)
in R if and only if it is true in T (Σ, ∅)/R.

Definition 5.2.4 (Partial Model Construction). Given a clause set N and an
ordering � a (partial) model NI can be constructed inductively over all ground
clause instances of N as follows:

NC :=
⋃D∈grd(Σ,N)
D≺C ED

ED :=



{s ≈ t} if D = D′ ∨ s ≈ t,
(i) s ≈ t is strictly maximal in D

(ii) s � t
(iii) D is false in ND

(iv) D′ is false in ND ∪ {s→ t}
(v) s is irreducible by ND

(vi) no negative literal is selected in D′

∅ otherwise

NI :=
⋃
C∈grd(Σ,N)NC

where ND, NI , ED are also considered as rewrite systems with respect to �. If
ED 6= ∅ then D is called productive.

Lemma 5.2.5 (Maximal Terms in Productive Clauses). If EC = {s → t} and
ED = {l→ r}, then s � l if and only if C � D.

Corollary 5.2.6 (Partial Models are Convergent Rewrite Systems). The
rewrite systems NC and NI are convergent.

Proof. Obviously, s � t for all rules s → t in NC and NI . Furthermore, it is
easy to check that there are no critical pairs between any two rules: Assume that
there are rules l → r in ED and s → t in EC so that l is a subterm of s. As �
is a reduction ordering that is total on ground terms, l ≺ s holds and therefore
D ≺ C and ED ⊆ NC . But then s would be reducible by NC , contradicting
condition Definition 5.2.4 (v).

Lemma 5.2.7 (Ordering Consequences in Productive Clauses). If D � C and
EC = {s→ t}, then s � r for every term r occurring in a negative literal in D
and s � l for every term l occurring in a positive literal in D.

Corollary 5.2.8 (Model Monotonicity True Clauses). If D is true in ND, then
D is true in NI and NC for all C � D.

Proof. If a positive literal of D is true in ND, then this is obvious. Otherwise,
some negative literal s 6≈ t of D must be true in ND, hence s 6↓ND t. As the
rules in NI \ND have left-hand sides that are larger than s and t, they cannot
be used in a rewrite proof of s ↓ t, hence s 6↓NC t and s 6↓NI t.

218 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

Corollary 5.2.9 (Model Monotonicity False Clauses). If D = D′ ∨ s ≈ t is
productive, then D′ is false and D is true in NI and NC for all C � D.

Proof. Obviously, D is true in NI and NC for all C � D. Since all negative
literals of D′ are false in ND, it is clear that they are false in NI and NC .
For the positive literals s′ ≈ t′ of D′, condition Definition 5.2.4 (iv) ensures
that they are false in ND ∪ {s → t}. Since s′ � s and t′ � s and all rules in
NI \ND have left-hand sides that are larger than s, these rules cannot be used
in a rewrite proof of s′ ↓ t′, hence s′ 6↓NC t′ and s′ 6↓NI t′.

Lemma 5.2.10 (Lifting Single Clause Inferences). Let C be a clause and let
σ be a substitution such that Cσ is ground. Then every equality resolution or
equality factoring inference from Cσ is a ground instance of an inference from
C.

Lemma 5.2.11 (Lifting Two Clause Inferences). Let D = D′ ∨ u ≈ v and
C = C ′ ∨ [¬]s ≈ t be two clauses (without common variables) and let σ be
a substitution such that Dσ and Cσ are ground. If there is a superposition
inference between Dσ and Cσ where uσ and some subterm of sσ are overlapped
and uσ does not occur in sσ at or below a variable position of s then the
inference is a ground instance of a superposition inference from D and C.

For the below theorem and the rest of the chapter I assume that clauses are
variable disjoint and unifiers are idempotent.

Theorem 5.2.12 (Model Construction). Let N be a set of clauses that is
saturated up to redundancy and does not contain the empty clause. Then for
every ground clause Cσ ∈ grd(Σ, N) it holds that:

1. ECσ = ∅ if and only if Cσ is true in NCσ.

2. If Cσ is redundant with respect to grd(Σ, N) then it is true in NCσ.

3. Cσ is true in NI and in ND for every D ∈ grd(Σ, N) with D � Cσ.

Proof. The proof does not consider selection. The proof is by induction on the
clause ordering � and with the induction hypothesis that 1.–3. are already
satisfied for all clauses in grd(Σ, N) that are smaller than Cσ. Note that the
“if” part of 1. is obvious from the construction and that condition 3. follows
immediately from 1. and Corollaries 5.2.8 and 5.2.9. So it remains to show
condition 2. and the “only if” part of 1.

(Condition 2) Case Cσ is redundant with respect to grd(Σ, N): If Cσ is redun-
dant with respect to grd(Σ, N), then it follows from clauses in grd(Σ, N) that
are smaller than Cσ. By part 3. of the induction hypothesis, these clauses are
true in NCσ. Hence Cσ is true in NCσ.

(Condition 1) If ECσ = ∅ then Cσ is true in NCσ.

5.2. SUPERPOSITION 219

(Condition 1.1) Case xσ is reducible by NCσ: Suppose there is a variable x
occurring in C so that xσ is reducible by NCσ, say xσ →NCσ w. Let the sub-
stitution σ′ be defined by xσ′ = w and yσ′ = yσ for every variable y 6≈ x. The
clause Cσ′ is smaller than Cσ. By part 3. of the induction hypothesis, it is true
in NCσ. By congruence, every literal of Cσ is true in NCσ if and only if the
corresponding literal of Cσ′ is true in NCσ; hence Cσ is true in NCσ.

(Condition 1.2) Case Cσ contains a maximal negative literal: Suppose that Cσ
does not fall into Condition 2 and Condition 1.1 and that Cσ = C ′σ∨sσ 6≈ s′σ,
where sσ 6≈ s′σ is maximal in Cσ. If sσ ≈ s′σ is false in NCσ, then Cσ is clearly
true in NCσ and this part of the proof is done. So assume that sσ ≈ s′σ is true
in NCσ, that is, sσ ↓NCσ s′σ. without loss of generality, sσ � s′σ.

(Condition 1.2.1) Case sσ = s′σ: If sσ = s′σ, then there is an equality resolution
inference N] {C ′σ ∨ sσ 6≈ s′σ} ⇒ N ∪ {C ′σ}. As shown in the Lifting Lemma,
this is an instance of an equality resolution inference N] {C ′ ∨ s 6≈ s′} ⇒
N ∪ {C ′θ} where C = C ′ ∨ s 6≈ s′ is contained in N and σ = θ ◦ ρ. without loss
of generality, θ is idempotent, therefore C ′σ = C ′θρ = C ′θθρ = C ′θσ, so C ′σ is
a ground instance of C ′θ. Since Cσ is not redundant with respect to grd(Σ, N),
C is not redundant with respect to N . As N is saturated up to redundancy, the
conclusion C ′θ of the inference from C is contained in N ∪ red(N). Therefore,
C ′σ is either contained in grd(Σ, N) and smaller than Cσ, or it follows from
clauses in grd(Σ, N) that are smaller than itself (and therefore smaller than
Cσ). By the induction hypothesis, clauses in grd(Σ, N) that are smaller than
Cσ are true in NCσ, thus C ′σ and Cσ are true in NCσ.

(Condition 1.2.2) Case sσ � s′σ: If sσ ↓NCσ s′σ and sσ � s′σ, then sσ must
be reducible by some rule in some EDσ ⊆ NCσ. Let Dσ = D′σ ∨ tσ ≈ t′σ
with EDσ = {tσ → t′σ}. Since Dσ is productive, D′σ is false in NCσ. Besides,
by part 2. of the induction hypothesis, Dσ is not redundant with respect to
grd(Σ, N), so D is not redundant with respect to N . Note that tσ cannot occur
in sσ at or below a variable position of s, say xσ = w[tσ], since otherwise Cσ
would be subject to Case 1.1 above. Consequently, the left superposition infer-
ence N]{D′σ∨tσ ≈ t′σ,C ′σ∨sσ[tσ] 6≈ s′σ} ⇒ N∪{D′σ∨C ′σ∨sσ[t′σ] 6≈ s′σ} is
a ground instance of a left superposition inference from D and C. By saturation
up to redundancy, its conclusion is either contained in grd(Σ, N) and smaller
than Cσ, or it follows from clauses in grd(Σ, N) that are smaller than itself
(and therefore smaller than Cσ). By the induction hypothesis, these clauses are
true in NCθ, thus D′σ ∨ C ′σ ∨ sσ[t′σ] 6≈ s′σ is true in NCσ. Since D′σ and
sσ[t′σ] 6≈ s′σ are false in NCσ, both C ′σ and Cσ must be true.

(Condition 1.3) Case Cσ does not contain a maximal negative literal: Suppose
that Cσ does not fall into Cases 1.1 and 1.2. Then Cσ can be written as C ′σ ∨
sσ ≈ s′σ, where sσ ≈ s′σ is a maximal literal of Cσ. If ECσ = {sσ → s′σ} or
C ′σ is true in NCσ or sσ = s′σ, then there is nothing to show, so assume that
ECσ = ∅ and that C ′σ is false in NCθ. without loss of generality, sσ � s′σ.

220 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

(Condition 1.3.1) Case sσ ≈ s′σ is maximal in Cσ, but not strictly maximal: If
sσ ≈ s′σ is maximal in Cσ, but not strictly maximal, then Cσ can be written as
C ′′σ ∨ tσ ≈ t′σ ∨ sσ ≈ s′σ, where tσ = sσ and t′σ = s′σ. In this case, there is a
equality factoring inference N]{C ′′σ∨tσ ≈ t′σ∨sσ ≈ s′σ} ⇒ N∪{C ′′σ∨t′σ 6≈
s′σ ∨ tσ ≈ t′σ}. This inference is a ground instance of an inference from C. By
induction hypothesis, its conclusion is true in NCσ. Trivially, t′σ = s′σ implies
t′σ ↓NCσ s′σ, so t′σ 6≈ s′σ must be false and Cσ must be true in NCσ.

(Condition 1.3.2) Case sσ ≈ s′σ is strictly maximal in Cσ and sσ is reducible:
Suppose that sσ ≈ s′σ is strictly maximal in Cσ and sσ is reducible by some
rule in EDσ ⊆ NCσ. Let Dσ = D′σ ∨ tσ ≈ t′σ and EDσ = {tσ → t′σ}.
Since Dσ is productive, Dσ is not redundant and D′σ is false in NCσ. Now
proceed in essentially the same way as in Case 1.2.2: If tσ occurred in sσ at or
below a variable position of s, say xσ = w[tσ], then Cσ would be subject to
Case 1.1 above. Otherwise, the right superposition inference N] {D′σ ∨ tσ ≈
t′σ,C ′σ∨sσ[tσ] ≈ s′σ} ⇒ N∪{D′σ∨C ′σ∨sσ[t′σ] ≈ s′σ} is a ground instance of
a right superposition inference from D and C. By saturation up to redundancy,
its conclusion is true in NCσ. Since D′σ and C ′σ are false in NCσ, sσ[t′σ] ≈ s′σ
must be true in NCσ. On the other hand, tσ ≈ t′σ is true in NCσ, so by
congruence, sσ[tσ] ≈ s′σ and Cσ are true in NCσ.

(Condition 1.3.3) Case sσ ≈ s′σ is strictly maximal in Cσ and sσ is irreducible:
Suppose that sσ ≈ s′σ is strictly maximal in Cσ and sσ is irreducible by NCσ.
Then there are three possibilities: Cσ can be true in NCσ, or C ′σ can be true in
NCσ ∪ {sσ → s′σ}, or ECσ = {sσ → s′σ}. In the first and the third case, there
is nothing to show. Therefore assume that Cσ is false in NCσ and C ′σ is true in
NCσ∪{sσ → s′σ}. Then C ′σ = C ′′σ∨tσ ≈ t′σ, where the literal tσ ≈ t′σ is true
in NCσ ∪ {sσ → s′σ} and false in NCσ. In other words, tσ ↓NCσ∪{sσ→s′σ} t′σ,
but not tσ ↓NCσ t′σ. Consequently, there is a rewrite proof of tσ →∗ u ∗← t′σ
by NCσ ∪ {sσ → s′σ} in which the rule sσ → s′σ is used at least once. without
loss of generality assume that tσ � t′σ. Since sσ ≈ s′σ � tσ ≈ t′σ and sσ � s′σ
it can be concluded that sσ � tσ � t′σ. But then there is only one possibility
how the rule sσ → s′σ can be used in the rewrite proof: sσ = tσ must hold
and the rewrite proof must have the form tσ → s′σ →∗ u ←∗ t′σ, where the
first step uses sσ → s′σ and all other steps use rules from NCσ. Consequently,
s′σ ≈ t′σ is true inNCσ. Now observe that there is an equality factoring inference
N] {C ′′σ ∨ tσ ≈ t′σ ∨ sσ ≈ s′σ} ⇒ N ∪ {C ′′σ ∨ t′σ 6≈ s′σ ∨ tσ ≈ t′σ} whose
conclusion is true in NCσ by saturation. Since the literal t′σ 6≈ s′σ must be false
in NCσ, the rest of the clause must be true in NCσ, and therefore Cσ must
be true in NCσ, contradicting the assumption. This concludes the proof of the
theorem.

Lemma 5.2.13 (Lifting Models). Let N be a set of clauses with variables and
let A be a term-generated Σ-algebra. Then A is a model of grd(Σ, N) if and
only if it is a model of N .

Proof. (⇒) Let A |= grd(Σ, N); let (∀~xC) ∈ N . Then A |= ∀~xC iff A(γ[xi 7→
ai])(C) = 1 for all γ and ai. Choose ground terms ti such that A(γ)(ti) = ai;

5.2. SUPERPOSITION 221

define σ such that xiσ = ti, thenA(γ[xi 7→ ai])(C) = A(γ◦σ)(C) = A(γ)(Cσ) =
1 since Cσ ∈ GΣ(N).

(⇐) Let A be a model of N ; let C ∈ N and Cσ ∈ GΣ(N). Then A(γ)(Cσ) =
A(γ ◦ σ)(C) = 1 since A |= N .

Theorem 5.2.14 (Refutational Completeness: Static View). Let N be a set of
clauses that is saturated up to redundancy. Then N has a model if and only if
N does not contain the empty clause.

Proof. If ⊥ ∈ N , then obviously N does not have a model. If ⊥ 6∈ N , then the
interpretation NI (that is, T (Σ, ∅)/NI) is a model of all ground instances in
grd(Σ, N) according to Theorem 5.2.12.3. As T (Σ, ∅)/NI is term generated, it
is a model of N .

So far, only inference rules that add new clauses to the current set of clauses
have been considered, corresponding to the Deduce rule of Knuth-Bendix Com-
pletion. In other words, derivations of the form N0 ⇒ N1 ⇒ N2 ⇒ . . . , where
each Ni+1 is obtained from Ni by performing an inference from clauses in Ni.
Under which circumstances can a clause during the derivation be deleted (or
simplified)? Can additional clauses beyond the inferences be added?

Definition 5.2.15 (Superposition Run). A run of the superposition calculus
is a derivation N0 ⇒SR N1 ⇒SR N2 ⇒SR . . . , so that

1. Ni |= Ni+1, and

2. all clauses in Ni \Ni+1 are redundant with respect to Ni+1.

For a run, N∞ =
⋃
i≥0Ni and N∗ =

⋃
i≥0

⋂
j≥iNj . The set N∗ of all persistent

clauses is called the limit of the run.

In other words, during a run a new clause may be added if it follows from
the old ones, and a clause may be deleted, if it is redundant with respect to the
remaining ones.

Lemma 5.2.16 (Redundancy is Monotone). If N ⊆ N ′, then red(N) ⊆
red(N ′).

Lemma 5.2.17 (Redundant Clauses Do not Contribute). If N ′ ⊆ red(N), then
red(N) ⊆ red(N \N ′).

Proof. Follows from the compactness of first-order logic and the well-
foundedness of the multiset extension of the clause ordering.

Lemma 5.2.18 (Redundancy is Monotone in Runs). Let N0 ⇒ N1 ⇒SR

N2 ⇒SR . . . be a run. Then red(Ni) ⊆ red(N∞) and red(Ni) ⊆ red(N∗) for
every i.

Corollary 5.2.19 (Redundancy is Monotone Modulo Persistent Clauses). Ni ⊆
N∗ ∪ red(N∗) for every i.

222 CHAPTER 5. FIRST-ORDER LOGIC WITH EQUALITY

Proof. If C ∈ Ni \N∗, then there is a k ≥ i so that C ∈ Nk \Nk+1, so C must
be redundant with respect to Nk+1. Consequently, C is redundant with respect
to N∗.

Definition 5.2.20 (Fair Run). A run is called fair, if (N∗ \ red(N∗)) ⇒SUPE

(N∗ \ red(N∗)) ∪ {C} then C ∈ (Ni ∪ red(Ni)) for some i.

Lemma 5.2.21 (Saturation of Fair Runs). If a run is fair, then its limit is
saturated up to redundancy.

Proof. If the run is fair, then the conclusion of every inference from non-
redundant clauses in N∗ is contained in some Ni ∪ red(Ni), and therefore con-
tained in N∗ ∪ red(N∗). Hence N∗ is saturated up to redundancy.

Theorem 5.2.22 (Refutational Completeness: Dynamic View). Let N0 ⇒SR

N1 ⇒SR N2 ⇒SR . . . be a fair run, let N∗ be its limit. Then N0 has a model if
and only if ⊥ 6∈ N∗.

Proof. (⇐) By fairness, N∗ is saturated up to redundancy. If ⊥ 6∈ N∗, then
it has a term-generated model. Since every clause in N0 is contained in N∗ or
redundant with respect to N∗, this model is also a model of grd(Σ, N0) and
therefore a model of N0.

(⇒) Obvious, since N0 |= N∗.

Historic and Bibliographic Remarks

