Chapter 1

Preliminaries

This chapter introduces all abstract concepts needed for the rest of this book.
Generic problem solving actually starts with a problem. In this book problems
will appear in the form of examples. In order to solve a problem in a generic
way, i.e., by generic algorithms, the first step is to formalize the problem using
a generic language. A generic language has a mathematically precise syntax
and semantics, because eventually it is analyzed by a program running on a
computer. Such a language is called a logic. The problem becomes a sentence,
i.e., a formula of the logic. In particular, semantics in this context always means
a notion of truth. The notion of truth is a very expressive instrument to actually
formalize what it means to eventually solve a particular problem. A solution
to the formula should result in a solution to the problem. Detecting that the
formula is true (false) corresponds to solving the problem.

Once the problem is described in a logic, the generic language, it needs
rules that reason about the truth of formulas and hence eventually solve the
problem. A logic plus its reasoning rules is called a calculus. The rules operate
on a symbolic representation of a problem state that includes in particular the
formula formalizing the problem. Typically, further information is added to the
state representation in order to keep track of the solution process. The rules
should enjoy a number of properties in order to be useful. They should be
sound, i.e., whenever they compute a solution the result is actually a solution
to the initial problem. And whenever they compute that there is no solution
this should hold as well. The rules should be complete, i.e., whenever there is a
solution to the problem they compute it. Finally, they should be terminating.
If they are applied to a starting problem state, they always stop after a finite
number of steps. Typically, because no more rule is applicable. Depending on the
complexity of the problem and the involved logic, not all the desired properties
soundness, completeness, termination, can be achieved, in general. But T will
turn to this later.

The rules of a calculus are typically designed to operate independently and
can therefore be executed in a non-deterministic way. The advantage of such
a presentation is that properties of the rules, e.g., like soundness, can also be

3

4 CHAPTER 1. PRELIMINARIES

shown independently for each rule. And if a property can be shown for the rule
set, it applies to all potential execution orderings of the rules. The disadvantage
of such a presentation is that a random application of the rules typically leads to
an inefficient algorithm. Therefore, a strategy is added to the calculus (rules) and
the strategy plus the rules build an automated reasoning algorithm or shortly an
algorithm. Depending on the type of property and the actual calculus, sometimes
we prove it, for the calculus or the respective algorithm.

An automated reasoning algorithm is still an abstract, mathematical con-
struct and there is typically a significant gap between such an algorithm and
an actual computer program implementing the algorithm. An implementation
often requires a dedicated control of the calculus plus the invention of specific
data structures and algorithms. The implementation of an algorithm is called a
system. Eventually the system is applied to real world problems, i.e., an appli-
cation.

Application
System + Problem

System
Algorithm + Implementation
Algorithm
Calculus + Strategy

Calculus
Logic + States 4+ Rules
Logic

Syntax + Semantics

Typically computer science algorithms are formulated in languages
that are close to actual programming languages such as C, C++,
or Java'. So, in particular, they rely on deterministic programming
languages with an operational semantics. I overload the notion of a classical
computer science algorithm and an automated reasoning algorithm. An auto-
mated reasoning algorithm is build on a rule set plus a strategy and typically
the strategy does not turn the rules into a deterministic algorithm. There is still
some room left that will eventually be decided for an application. The difference
in design reflects the difference in scope. A classical computer science algorithm
solves a very specific problem, e.g., it sorts a finite list of numbers. An algo-
rithm is meant to solve a whole class of problems, e.g., later on I will show that
ordered resolution can solve any polynomial time computable problem based on
a fragment of first-order logic.
As a start, Section 1.1 studies the overall above approach including all men-
tioned properties in full detail on a concrete problem: 4 x 4-Sudokus. Although
this is a rather trivial and actually finite problem and the suggested algorithm is

Lcopyright

1.1. SOLVING 4 x 4 SUDOKU 5

very naive, it serves nicely as a throughout example demonstrating all aspects.
Later on, I will develop far more complex logics that then can be used to solve
more interesting problems. In particular, real world problems.

The subsequent sections abstract from solving Sudokus and develop the un-
derlying concepts needed as a basic toolbox for the rest of this book. Basic
mathematical notions on numbers, sets, relations, and words are defined in Sec-
tion 1.2. In order to be able to talk about the complexity of algorithms Sec-
tion 1.3 in particular explains Big O notation and NP-hardness. Section 1.4 is
devoted to orderings, because they show up on the meta-level, e.g. as a means
to prove termination. They also serve as a basis for proving properties of rule
sets by induction, Section 1.5, and also on the logical reasoning level where they
will be actually an effective means for defining more efficient rule sets. Finally,
Section 1.6 introduces the most important concepts of rule based reasoning in
general by an introduction to basic concepts of (abstract) rewrite systems.

1.1 Solving 4 x 4 Sudoku

Consider solving a 4 x 4 Sudoku as it is depicted on the left in Figure 1.1. The
goal is to fill in natural numbers from 1 to 4 into the 4 x 4 square so that in each
column, row and 2 x 2 box sharing an outer corner with the original square each
number occurs exactly once. Conditions of this kind are called constraints as
they restrict filling the Sudoku with numbers in an arbitrary way. The Sudoku
(Solution) on the right (Figure 1.1) shows the, in this case, unique solution to
the Sudoku (Start) on the left.

2|1 211143

31412

31 412131

1 2 113|124
Start Solution

Figure 1.1: A 4 x 4 Sudoku and its Solution

Why is this solution unique? It is because the constraints of 4 x 4 Sudokus
have already forced all other values. To start, the only square for the missing
1 is the square above the 3. All other squares would violate a constraint. But
then the third column is almost filled so the top square of this column must be
a 4, and so on.

In the following, I will build a specific logic for 4 x 4 Sudokus, including
an algorithm in form of a set of rules and a strategy for solving the problem
and actually prove that the algorithm is sound, complete, and terminating. As
already said, an algorithm is sound if any solution the algorithm declares to
have found is actually a solution. It is complete if it finds a solution in case

6 CHAPTER 1. PRELIMINARIES

one exists. It is terminating if it does not run forever. Since Sudokus are finite
combinatorial puzzles, such an algorithm exists. The most simple algorithm is
to systematically guess all values for all undefined squares of the Sudoku and to
check whether the guessed values actually constitute a solution. However, this
amounts to checking 4'¢ different assignments of values to the squares. Such an
approach is even worse than the one I will introduce in the sequel.

I consider a Sudoku to be a two dimensional array f indexed from 1 to 4 in
each dimension, starting from the upper left corner. So f(1,1) is the value of the
square in the upper left corner and in case of our initial Sudoku. For the start
Sudoku in Figure 1.1 the value of this square is given to be 2 which I denote
by the equation f(1,1) ~ 2. So the logic for Sudokus are finite conjunctions
(conjunction denoted by A) of equations f(z,y) ~ z, where the variables z, y, 2
range over the domain 1, 2, 3, 4. The meaning of a conjunction is that all values
given by the equations should be simultaneously true in the Sudoku. The overall
left Sudoku (Start in Figure 1.1) is then given by the conjunction of equations

FAD ~2AF(1L,2) ~ 1A F(3,3) ~3A F(3,4) m LA F(4,1) ~ 1A f(4,3) ~ 2

If you are already familiar with classical logic, you know that the
formulas f(1,1) ~ 2A f(1,2) ~ 1 and f(1,2) ® 1A f(1,1) &~ 2 cannot

be distinguished semantically. They have always the same truth value,
because conjunction (A) is commutative, and, in addition, associative. However,
here, the above conjunction will become part of a problem state. The sudoku
logic rules syntactically manipulate problem states. A problem state containing
f(1,1) = 2 A f(1,2) =~ 1 will be different from one containing f(1,2) ~ 1 A
f(1,1) =~ 2, because the former implicitly means that there is no solution to the
sudoku with f(1,1) ~ 1, whereas the latter means that there is no solution to
the sudoku with f(1,1) ~ 1 in presence of f(1,2) ~ 1.

The goal of the algorithm is then to find the assignments for the empty
squares with respect to the above mentioned constraints on the number occur-
rences in columns, rows and boxes. The algorithm consists of four rules that
each take a state of the solution process and transform it into a different one,
closer to a solution. A state is described by a triple (N; D;r) where N con-
tains the equations of the starting Sudoku, for example, the above conjunction
of equations, D is a conjunction of additional equations computed by the al-
gorithm, and r € {T, L} describes whether the actual values for f in N and
D potentially constitute a solution. If » = T then no constraint violation has
been detected and if r = L a constraint violation has been detected but not
yet resolved. The initial problem state is represented by the triple (N;T;T)
where T also denotes an empty conjunction and hence truth. The problem state
(N;T; 1) denotes the fail state, i.e., there is no solution for a Sudoku starting
with the assignments contained in N.

A square f(x,y) where z,y € {1,2,3,4} is called defined by N A D if there is
an equation f(x,y) ~ z, z € {1,2,3,4} in N or D. Otherwise, f(z,y) is called
undefined. For an initial state (V; T; T) I assume that the same square is not

1.1. SOLVING 4 x 4 SUDOKU 7

defined several times in N. We say that N A D' is a solution to a Sudoku N, if
all squares are defined in N A D', no square is defined more than once in N A D'
and the assignments in N A D' do not violate any constraint. It is a solution to
a problem state (N; D; T) if all equations from D occur in D’. In the sequel we
always assume that for any start state (N; T; T) each square is defined at most
once in N and all variables z,y, z (possibly indexed, primed) range over values
1 to 4. Then the four rules of a first (naive) algorithm are

Deduce (N;D;T) = (N;DAf(z,y) = 1;T)
provided f(z,y) is undefined in N A D, for any z,y € {1,2,3,4}.

Conflict (N;D;T) = (N;D; 1)

provided for (i) f(z,y) = f(z,2) for f(z,y), f(x,z) defined in N A D for some
x,y,z and y # z, or,

(ii) f(y,z) = f(z,z) for f(y,x), f(z,z) defined in N A D for some z,y,z and
Y 7é Z, or,

(iil) f(z,y) = f(2',y") for f(x,y), f(z',y') defined in N A D and [z,2' € {1,2}
orz,7' € {3,4}] and [y,y" € {1,2} or y,y’ € {3,4}] and (z,y) # (z',y").

Backtrack (N;D'Af(x,y) ®2AD"; 1) = (N;D'Af(z,y) =2z+1;T)

provided z < 4 and D" = T or D" contains only equations of the form f(z',y') ~
4.

Fail (N;D; 1) = (N;T;1)
provided D # T and D contains only equations of the form f(z,y) ~ 4.

Rules are applied to a state by first matching the left hand side of the rule
(left side of =) to the state, checking the side conditions described below the
rule and if they are fulfilled then replacing the state by the right hand side of
the rule. There is no order among the rules, so they are applied “don’t care non-
deterministically”. A strategy will fix the ordering and turn into an algorithm.
Furthermore, even a single rule may not be deterministic. For example rule
Deduce does not specify concrete values for x,y so it can be applied to any
undefined square f(z,y).

Starting with the state corresponding to the initial Sudoku shown on the left
in Figure 1.1, a one step derivation by rule Deduce is (N;T;T) — (N; f(1,3) =
1; T). Actually the rule Deduce is the only applicable rule to (N;T;T). Con-
cerning the new state (N; f(1,3) ~ 1; T) two rules are applicable: Deduce and
Conflict. An application of Conflict, where side condition (i) is satisfied, yields
(N; f(1,3) = 1; 1) and after an application of Backtrack to this state the rule
computes (N; f(1,3) ~ 2;T). Applying Deduce to (N; f(1,3) ~ 1; T) results,
e.g., in (N; f(1,3) =~ 1.f(1,4) ~ 1; T). Figure 1.2 shows this sequence of rule
applications together with the corresponding Sudokus.

This is one reason why the rule set is inefficient. Deduce still fires in case of
an already existing constraint violation and Deduce does not consider already

8 CHAPTER 1. PRELIMINARIES

21 (N = f(1,1) 2A £(1,2) ~ 1A
3|1 f(3,3)~3A f(3,4) ~ 1A
1 2 fA D) =1Af(4,3)~2;,T;T)
|} Deduce f(1,3) =~
2111
N; f(1L3) = 1;T
—— (V5 £(1,3) % 15T)
1 2
U Conflict
2111
N;f(1,3)~1;L
—— (V5 £(1,3) % 15 1)
1 2
|} Backtrack f(1,3) =~ 2;
21112
N; f(1,3) =~ 2;T
- (V3 £(1,3) % 2T)
1 2

Figure 1.2: Effect of Applying the Inference Rules

existing equations when assigning a new value. It simply always assigns “1”.
Improving the algorithm along the second line is subject to Exercises 77, ?7.
Furthermore, note that if in a start state (IV; T; T) the initial assignments in N
already contain a constraint violation, then the rule conflict directly produces
the final fail state. An appropriate, very simple strategy turns the rule set into
an algorithm and prefers Conflict over Deduce.

The Algorithm 1, SimpleSudoku(S), consists of the four rules together with
a rule application strategy. The scope of loops and if-then-else statements is
indicated by indentation. A statement Rule(S) for some Rule means that the
application of the rule is tested and if applicable it is applied to the problem
state S. If such a statement occurs in a ifrule condition, it is applied as before
and returns true iff (if and only if) the rule was applicable. For example, the
statement at line 1

ifrule (Conflict(S)) then

return S;
is a shorthand for

if (the rule Conflict is applicable to state S) then

1.1. SOLVING 4 x 4 SUDOKU 9

Algorithm 1: SimpleSudoku(.S)
Input : An initial state S = (N;T;T).
Output: A final state S = (N;D;T) or S = (N;T; 1)
ifrule (Conflict(S)) then
| return S
while (any rule applicable) do
ifrule (Conflict(S)) then
Backtrack(S);
Fail(S);
else
| Deduce(S);
end
return S,

© O N O kA W N

-
o

apply rule Conflict to S;
return S;

where the application condition is separated from the rule application.

At line 1 the rule Conflict is tested and if applicable it will produce the
final state S = (N;T; 1), so the algorithm returns S. The while-loop starting
at line 3 terminates if no rule is applicable anymore. For otherwise, the rule
Conflict is tested before Deduce in order to prevent useless Deduce steps. The
rules Backtrack and Fail are only applicable after an application of Conflict, so
they are guarded by an application of Conflict. Therefore, SimpleSudoku is a
fair algorithm in the sense that no rule application needed to compute a final
state will be prohibited.

If the rules are considered in the context of the SimpleSudoku algorithm, then
they can be simplified. For example, the condition for rule Fail that all equations
are of the form f(z,y) ~ 4 can be dropped, because in SimpleSudoku the rule
Fail is only tested and potentially applied after having tested Backtracking.

It is a design issue how much rule application control is actually put
into the side conditions of the rules and how much control into the
algorithm. It depends, of course, on the problem to be solved but also

on which level properties can be shown. For SimpleSudoku all properties can be
shown on the calculus, i.e., rule level. In general, showing termination of a rule
set often requires a particular strategy, i.e., algorithm.

In the sequel, I will prove that the four rules are sound, complete and ter-
minating. Sound means that whenever the rules compute some state (N; D; T)
and it has a solution, then this solution is also a solution for N. Complete means
that whenever there is a solution to the Sudoku, exhaustive application of the
four rules will compute a solution. Note that for completeness the computation
of any solution, not an a priori selected one, is sufficient. In case of the Sudoku
rules even strong completeness holds: for any solution N A D of the Sudoku,

10 CHAPTER 1. PRELIMINARIES

there is a sequence of rule applications so that (V; D; T) is a terminating state.
So any a priori selected solution can be generated. Termination at the rule level
means that independently of the actual sequence of rule applications to a start
state, there is no infinite sequence of rule applications possible. In the sequel,
I will consider a fourth property important for rule based systems: confluence.
A set of rules is confluent if whenever there are several rules applicable to a
given state, then the different generated states can be rejoined by further rule
applications. So confluence guarantees unique results on termination. Because
of the above informal fairness argument for the SimpleSudoku algorithm, all
these properties also hold not only for the rule set but also for the algorithm.

Proposition 1.1.1 (Soundness). The rules Deduce, Conflict, Backtrack and
Fail are sound. Starting from an initial state (N; T; T): (i) for any final state
(N;D;T), the equations in N A D are a solution, and, (ii) for any final state
(N;T; L) there is no solution to the initial problem.

Proof. First of all note that no rule manipulates N, the first component of a
state (IV; D;r). This justifies the way this proposition is stated. (i) So assume a
final state (N; D; T) so that no rule is applicable. In particular, this means that
for all z,y € {1,2,3,4} the square f(z,y) is defined in N A D as for otherwise
Deduce would be applicable, contradicting that (N;D;T) is a final state. So
all squares are defined by N A D. No square is defined more than once. What
remains to be shown is that those assignments actually constitute a solution to
the Sudoku. However, if some assignment in N A D results in a repetition of
a number in some column, row or 2 X 2 box of the Sudoku, then rule Conflict
is applicable, contradicting that (N; D;T) is a final state. In sum, (N; D; T) is
a solution to the Sudoku and hence the rules Deduce, Conflict, Backtrack and
Fail are sound.

(ii) So assume that the initial problem (N;T;T) has a solution. I prove by
contradiction based on an inductive argument that in this case the rules cannot
generate a state (N; T; L). Solet (N; D; T) be an arbitrary state with D of max-
imal length still having a solution, but (N; T; 1) is reachable from (N;D;T).
This includes the initial state if D = T. An appropriate selection of rule ap-
plications correctly decides the next square. Since (IV; D; T) still has a solution
the only applicable rule is Deduce. It generates (N; DA f(x,y) ~ 1; T) for some
z,y € {1,2,3,4}. If (N;D A f(z,y) ~ 1;T) still has a solution the proof is
done since this violates D to be of maximal length. So (N; D A f(z,y) ~ 1;T)
does not have a solution anymore. But then eventually Conflict and Backtrack
are applicable to a state (N; D A f(z,y) ~® 1 A D'; L) where D’ only contains
equations of the form f(z',y') ~ 4 resulting in (N;D A f(z,y) ~ 2;T). Now
repeating the argument we will eventually reach a state (N; D A f(z,y) ~ k; T)
that has a solution, finally contradicting D to be of maximal length. O

For the first part of the soundness proof, Proposition 1.1.1, neither the rule
Backtrack nor Fail shows up. This is because an empty rule system is trivially
sound. The rules Backtrack or Fail are indispensable for the second part of the
proof and for showing completeness.

1.1. SOLVING 4 x 4 SUDOKU 11

The above proof contains a “handwaving argument”, the sentence
“But then eventually Conflict and Backtrack are applicable to a state

(N;D A f(z,y) = 1 AD'; L) where D' only contains equations of the form
f(2',y") = 4 resulting in (N; D A f(z,y) = 2;T).” needs a proof on its own. I
will not do the proof here, but for some of the rule sets for deciding satisfiability
of propositional logic, Chapter 2, I will do analogous proofs in full detail.

Proposition 1.1.2 (Strong Completeness). The rules Deduce, Conflict, Back-
track and Fail are strongly complete. For any solution N A D of the Sudoku
there is a sequence of rule applications so that (N;D; T) is a final state.

Proof. A particular strategy for the rule applications is needed to indeed gen-
erate (N; D; T) out of (N; T; T) for some specific solution N A D. Without loss
of generality I assume the assignments in D to be sorted so that assignments
to a number k € {1,2,3,4} precede any assignment to some number [> k. So
if, for example, N does not assign all four values 1, then the first assignment
in D is of the form f(z,y) =~ 1 for some z,y. Now I apply the following strat-
egy, subsequently adding all assignments from D to (N; T; T). The strategy has
achieved state (N; D’; T) and the next assignment from D to be established is
f(z,y) = k, meaning f(z,y) is not defined in N A D'. Then until | = k the
strategy does the following, starting from [= 1. It applies Deduce adding the
assignment, f(z,y) a2 [. If Conflict is applicable to this assignment, it is applied
and then Backtrack, generating the new assignment f(z,y) ~ 1+ 1 and so on.

I need to show that this strategy in fact eventually adds f(z,y) = k to
D'. As long as | < k any added assignment f(z,y) ~ [results in rule Conflict
applicable, because D is ordered and all four values for all [< k are already
established. The eventual assignment f(x,y) ~ k does not generate a conflict
because D is a solution. For the same reason, the rule Fail is never applicable.
Therefore, the strategy generates (N; D; T) out of (N;T;T). O

Note the subtle difference between the second part of proving Proposi-
tion 1.1.1 and the above strong completeness proof. The former shows that any
solution can be produced by the rules whereas the latter shows that a specific,
a priori selected solution can be generated.

Proposition 1.1.3 (Termination). The rules Deduce, Conflict, Backtrack and
Fail terminate on any input state (N; T;T).

Proof. Once the rule Fail is applicable, no other rule is applicable on the result
anymore. So there is no need to consider rule Fail for termination. The idea of
the proof is to assign a measure over the natural numbers to every state so that
each rule strictly decreases this measure and that the measure cannot get below
0. The measure is as follows.

For any given state S = (N;D;r) with r € {T, 1} with D = f(z1,y1) =~
ki Ao A f(xn,yn) = ky T assign the measure p(S) by

H(S) — 249 —p— Zkz . 24973i

i=1

12 CHAPTER 1. PRELIMINARIES

where p =0 if r = T and p = 1 otherwise.

The measure p(S) is well-defined and cannot become negative as n < 16,
p<1,and 1 < k; <4 for any D. In particular, the former holds because the
rule Deduce only adds values for undefined squares and the overall number of
squares is bound to 16. What remains to be shown is that each rule application
decreases p. I do this by a case analysis over the rules.

Deduce:
pNS D3 T)) = 29 = 0 2905
S 049 _ 2?21 k; - 249=3i _ 1. 49-3(n+1)
=p((N;DA f(z,y) = 1;T))
Conflict:
PN D3 T)) =29 = I Fy 2070
> 249 —1-= Z?:l kz) 249732’
= pu((N; D; 1))
Backtrack:

p((N; D' A f(z1,y1) flkl AD"; 1)) »
— 249 -1 _l(;i;l k/'z . 2%9732) _ kl . 24973l _ Z?:lJrl kz . 249732
> 249 _ (Zz;l kz . 249731) _ (kl + 1) . 249731
=pu(N; D' A f(zi,y) = ki +1;T)

where the strict inequation holds because 24°—3! > Z?:H_l ki-2197% 41, O

As already mentioned, there is another important property for don’t care
non-deterministic rule sets: confluence. It means that whenever several sequences
of rules are applicable to a given state, the respective results can be rejoined
by further rule applications to a common problem state. A weaker condition
is local confluence where only one step of different rule applications needs to
be rejoined. In Section 1.6, Lemma 1.6.6, the equivalence of confluence and
local confluence in case of a terminating rule system is shown. Assuming this
result, for the Sudoku rule system only one step of so called overlaps needs to
be considered. There are two potential kinds of overlaps for the Sudoku rule
system. First, an application of Deduce and Conflict to some state. Second, two
different applications of Deduce to a state. The below Proposition 1.1.4 shows
that the former case can in fact be rejoined and Example 1.1.5 shows that the
latter cannot. So in sum, the system is not locally confluent and hence not
confluent. This fact has already shown up in the soundness and completeness
proofs.

Proposition 1.1.4 (Deduce and Conflict are confluent). Given a state
(N;D;T) out of which two different states (N; D1;T) and (N;Ds; L) can be
generated by Deduce and Conflict, respectively, then the two states can be re-
joined to a state (N; D';) via further rule applications.

1.1. SOLVING 4 x 4 SUDOKU 13

Proof. Consider an application of Deduce and Conflict to a state (N;D;T)
resulting in (N;D A f(z,y) ~ 1;T) and (N;D; L), respectively. We will now
show that in fact we can rejoin the two states. Notice that since Conflict is
applicable to (N;D;T) it is also applicable to (N;D A f(z,y) ~ 1;T). So the
first sequence of rejoin steps is
(N;DAf(z,y) #15T) = (N;DA f(z,y) = 1;1)
= (N;DA f(z,y) = 2;7T)
=* (N;DA f(z,y) =~ 4; 1)
where we subsequently applied Conflict and Backtrack to reach the state (N; DA
f(z,y) ~ 4; 1) and =* abbreviates those finite number of rule applications.
Finally applying Backtrack (or Fail) to (N;D; L) and (N;D A f(z,y) ~ 4; 1)
results in the same state. |

Example 1.1.5 (Deduce is not confluent). Consider the Sudoku state (f(1,1) ~
1A f(2,2) # 1;T;T) and two applications of Deduce generating the respec-
tive successor states (f(1,1) = 1A f(2,2) = 1;f(3,3) = 1;T) and (f(1,1) =
1A f(2,2) =~ 1; f(3,4) ~ 1;T). Obviously, both states can be completed to a
solution, but don not have a common solution. Therefore, it will not be possible
to rejoin the two states, see Figure 1.3.

Start
Deduce: f(3,4) ~ 1 / \ Deduce: f(3,3) ~ 1
1 1

Figure 1.3: Divergence of Rule Deduce

Is it desirable that a rule set for Sudoku is confluent? It depends on
the purpose of the algorithm. In case of the above rules set for Sudoku,
strong completeness and confluence cannot both be achieved, because

any solution of the Sudoku results in its own, unique, final state.

14 CHAPTER 1. PRELIMINARIES

1.2 Basic Mathematical Prerequisites

The set of the natural numbers including 0 is denoted by N, N = {0, 1,2, ...},
the set of positive natural numbers without 0 by N*, N* = {1,2,...}, and the
set of integers by Z. Accordingly QQ denotes the rational numbers and R the real
numbers, respectively.

Given a set M, a multi-set S over M is a mapping S: M — N, where S
specifies the number of occurrences of elements m of the base set M within the
multiset S. I use the standard set notations €, C, C, U, N with the analogous
meaning for multisets, for example (S; U S2)(m) = S1(m) + Sa(m). T also write
multi-sets in a set like notation, e.g., the multi-set S = {1,2,2,4} denotes a
multi-set over the set {1,2,3,4} where S(1) = 1, S(2) = 2, S(3) = 0, and
S(4) = 1. A multi-set S over a set M is finite if {m € M | S(m) > 0} is finite.
For the purpose of this book I only consider finite multi-sets.

An n-ary relation R over some set M is a subset of M™: R C M™. For two
n-ary relations R, @ over some set M, their union (U) or intersection (N) is again
an n-ary relation, where RU Q := {(mq,...,my,) € M | (mq,...,m,) € R or
(mi,...,mp) € Q} and RN Q = {(m1,...,my) € M | (m1,...,my) € R
and (my,...,m,) € Q} . A relation @ is a subrelation of a relation R if
@ C R. The characteristic function of a relation R or sometimes called pred-
icate indicates membership. In addition of writing (m1,...,m,) € R I also
write R(my,...,my). So the predicate R(mq,...,my,) holds or is true if in fact
(m1,...,my) belongs to the relation R.

Given a nonempty alphabet ¥ the set ¥* of finite words over ¥ is defined
by the (i) empty word € € ¥*, (ii) for each letter a € ¥ also a € ¥* and, finally,
(iii) if u,v € T* so uv € £* where uv denotes the concatenation of u and v. The
length |u| of a word u € ¥* is defined by (i) |¢| :== 0, (ii) |a| :=1 for any a € T
and (iii) |uv| := |u| + |v| for any u,v € ¥*.

1.3 Basic Computer Science Prerequisites

1.3.1 Data Structures

1.3.2 While Languages over Rules

When presenting pseudocode for algorithms in textbooks typically so called
while languages are used (e.g., see [15]). T assume familiarity with such lan-
guages and specialize it here to rules. So let Rule be a rule defined on some
state S. Then

Rule(5);

is a shorthand for

if Rule is applicable to S then apply it once to S;

1.3. BASIC COMPUTER SCIENCE PREREQUISITES 15

where in particular nothing happens if Rule is not applicable to S. There may
be several potential applications of Rule to S. In this case any of these is chosen.
The statement

whilerule(Rule(S)) do Body;
is a shorthand for

while (Rule is applicable to S) do
apply Rule once to S;
execute Body;

where the scope of the while loop is shown by indentation. The condition of
the whilerule statement may also be a disjunction of rule statements. In this
case the disjunction is executed in a non-deterministic, lazy way. We use || to
indicate the disjunction. Furthermore, a single rule statement may be followed
by a negation, indicated by !. In this case the rule is tested for application,
if it is applicable it is applied and the condition becomes false. If the rule is
not applicable the condition becomes true. Except for these extensions, boolean
combinations over rule statements are not part of the language. Finally, the
statement

ifrule(Rule(S)) then Body;
is a shorthand for

if (Rule is applicable to S) then
apply Rule once to S;
execute once Body;

In Section 1.1 I have already used the language for describing an algorithm
solving sudokus, Algorithm 1, SimpleSudoku(.S).

1.3.3 Complexity

This book is about algorithms solving problems presented in logic. Such an al-
gorithm is typically represented by a finite set of rules, manipulating a problem
state that contains the logical representation plus bookkeeping information. For
example, for solving 4 x 4-Sudokus, see Section 1.1, we represented the board
by a finite conjunction of equations. The problem state was given by the repre-
sentation of the board plus assignments for remaining empty squares, plus an
indication whether two conflicting assignments have been detected. The rules
then take a start problem state and eventually transform it into a solved form.
In order to compare the performance of this rule set with a different one or to
give an overall performance guarantee of the rule set, the classical way in com-
puter science is to consider the (worst case) running time until termination. A
consequence of the Sudoku termination proof, Lemma 1.1.3, is that at most 24°
rule applications are needed. Generalizing this result, for a given n x n-Sudoku,
the running time would by of “order” n™", because in the worst case we need to

16 CHAPTER 1. PRELIMINARIES

guess n different numbers for each square and there are n? squares of the board.
The so called big O notation covers the term “order” formally.

Definition 1.3.1 (Big O). Let f(n) and g(n) be functions from the naturals
into the nonnegative reals. Then

O(f(n)) ={g(n) | e >03ng € N" VYn >ng g(n) <c- f(n)}

Thus, the running time of the Sudoku algorithm for an n X n-Sudoku is
O(n”z), if the number of rule applications are taken to be the constant time
units. This sounds somewhat surprising because it means that the algorithm
will already fail for reasonably small n, if implemented in practice. For example,
for the well-established 9 x 9-Sudoku puzzles the algorithm will in the worst
case need about 93! ~ 21077 rule applications to figure out whether a given
Sudoku has a solution. This way, assuming a fast computer that can perform
1 Million rule applications per second it will take longer to solve a single Sudoku
than the currently estimated age of the universe. Nevertheless, human beings
typically solve a 9 x 9-Sudoku in some minutes. So what is wrong here? First of
all, as I already said, the algorithm presented in Section 1.1 is completely naive.
This algorithm will definitely not solve 9 x 9-Sudokus in reasonable time. It can
be turned into an algorithm that will work nicely in practice, see Exercise (77).
Nevertheless, problems such as Sudokus are difficult to solve, in general. Testing
whether a particular assignment is a solution can be done efficiently, in case of
Sudokus in time O(n?). For the purpose of this book, I say a problem can be
efficiently solved if there is an algorithm solving the problem and a polynomial
p(n) so that the execution time on inputs of size n is O(p(n)). Although it is
efficient for Sudokus to validate whether an assignment is a solution, there are
exponentially many possible assignments to check in order to figure out whether
there exists a solution. So if we are allowed to make guesses, then Sudokus can
be solved efficiently. This property describes the class of NP (Nondeterministic
Polynomial) problems in general that I will introduce now.

A decision problem is a subset L C ¥* for some fixed finite alphabet X.
The function chr(L,z) denotes the characteristic function for some decision
problem L and is defined by chr(L,u) =1 if u € L and chr(L,u) = 0 otherwise.
A decision problem is solvable in polynomial-time iff its characteristic function
can be computed in polynomial-time. The class P denotes all polynomial-time
decision problems.

Definition 1.3.2 (NP). A decision problem L is in NP iff there is a predicate
Q(z,y) and a polynomial p(n) so that for all u € ¥* we have (i) u € L iff there
is an v € ¥* with |v| < p(Ju|) and Q(u,v) holds, and (ii) the predicate @ is in
P.

A decision problem L is polynomial time reducible to a decision problem L'
if there is a function g € P so that for all u € ¥* we have u € L iff g(u) € L'.
For example, if L is reducible to L' and L' € P then L € P. A decision problem
is NP-hard if every problem in NP is polynomial time reducible to it. A decision

1.3. BASIC COMPUTER SCIENCE PREREQUISITES 17

problem is NP-complete if it is NP-hard and in NP. Actually, the first NP-
complete problem [7] has been propositional satisfiability (SAT). Chapter 2 is
completely devoted to solving SAT.

1.3.4 Word Grammars

When Godel presented his undecidability proof on the basis of arithmetic, many
people still believed that the construction is so artificial that such problems will
never arise in practice. This didn’t change with Turing’s invention of the Turing
machine and the undecidable halting problem of such a machine. However, then
Post presented his correspondence problem in 1946 [18] it became obvious that
undecidability is not an artificial concept.

Definition 1.3.3 (Finite Word). Given a nonempty alphabet ¥ the set ¥* of
finite words over ¥ is defined by

1. the empty word € € X*
2. for each letter a € X also a € ¥*
3. if u,v € ¥* so uv € ¥* where uv denotes the concatenation of u and v.

Definition 1.3.4 (Length of a Finite Word). The length |u| of a word u € £*
is defined by

1. |¢] :=0,
2. |a| :=1for any a € ¥ and
3. |uv| := |u| + |v| for any u,v € T*.

Definition 1.3.5 (Word Embedding). Given two words u, v, then u is embedded
in v written v C v if for v = a;...a, there are words vy,...,v, such that
V=00a101G2 ...A0npUp,.

Reformulating the above definition, a word u is embedded in v if u can
be obtained from v by erasing letters. For example, higman is embedded in
highmountain.

Definition 1.3.6 (PCP). Given two finite lists of words (ui,...,u,) and
(v1,...,vn) the Post Correspondence Problem (PCP) is to find a finite index
list (i1,...,4x), 1 <i; <, so that w;, ws, ... U5 = Vi, Vs, ... Vi

Take for example the two lists (a,b, bb) and (ab, ab,b) over alphabet ¥ =
{a,b}. Then the index list (1,3) is a solution to the PCP with common word
abb.

Theorem 1.3.7 (Post 1942). PCP is undecidable.

Lemma 1.3.8 (Higman’s Lemma 1952). For any infinite sequence of words
Uy, Us, ... over a finite alphabet there are two words wug, ugy; such that uy C

Uh1-

18 CHAPTER 1. PRELIMINARIES

Proof. By contradiction. Assume an infinite sequence w1, us,... such that for
any two words ug, ugy; they are not embedded, i.e., uy ug4;. Furthermore, I
assume that the sequence is minimal at any word with respect to length, i.e.,
considering any wuy, there is no infinite sequence with the above property that
shares the words up to ug—; and then continues with a word of smaller length
than uy. Next, the alphabet is finite, so there must be a letter, say a that oc-
curs infinitely often as the first letter of the words of the sequence. The words
starting with a form an infinite subsequence auy_ ,auy,,... where ug, = auj, .
This infinite subsequence itself has the non-embedding property, because it is
a subsequence of the originial sequence. Now consider the infinite sequence
Ui, U, - ooy Uy —1, Uy, Uy, , - - - Also this sequence has the non-embedding prop-
erty: if some u; C “;c,- then u; C au}cj contradicting that the starting sequence is
non-embedding. But then the constructed sequence contradicts the minimality
assumption with respect to length, finishing the proof. O

Definition 1.3.9 (Context-Free Grammar). A context-free grammar G =
(N, T, P,S) consists of:

1. a set of non-terminal symbols NV
2. a set of terminal symbols T

3. aset P of rules A = w where A€ N and w € (NUT)*

I

. a start symbol S where S € N
For rules A = w1, A = wy we write A = wy | ws.

Given a context free grammar G and two words u,v € (NUT)* I write u = v
if u =wu; Aus and v = u; wus and there is a rule A = w in G. The language
generated by G is L(G) = {w € T* | S =* w}, where =* is the reflexive and
transitive closure of =.

A context free grammar G is in Chomsky Normal Form [6] if all rules are if
the form A = By B> with B; € N or A = w with w € T*. It is said to be in
Greibach Normal Form [12] if all rules are of the form A = aw with a € T and
w e N*.

1.4 Orderings

An ordering R is a binary relation on some set M. Depending on particular
properties such as

(reflexivity) Vz € M R(z,z)
(irreflexivity) V2 € M —R(z,)
(antisymmetry) Vz,y € M (R(z,y) A R(y,z) = = = y)
(transitivity) Vz,y,z € M (R(z,y) A R(y,z) = R(z,z2))
(totality) Vz,y € M (R(z,y)V R(y,))

1.4. ORDERINGS 19

there are different types of orderings. The relation = is the identity relation
on M. The quantifier V reads “for all”, and the boolean connectives A, V, and —
read “and”, “or”, and “implies”, respectively. For example, the above formula
stating reflexivity Vo € M R(z,z) is a shorthand for “for all z € M the relation
R(z,x) holds”.

Actually, the definition of the above properties is informal in the sense
that I rely on the meaning of certain symbols such as € or —. While
the former is assumed to be known from school math, the latter is
“explained” above. So, strictly speaking this book is neither self contained,
nor overall formal. For the concrete logics developed in subsequent chapters, I
will formally define — but here, where it is used to state properties needed to
eventually define the notion of an ordering, it remains informal. Although it is
possible to develop the overall content of this book in a completely formal style,
such an approach is typically impossible to read and comprehend. Since this
book is about teaching a general framework to eventually generate automated
reasoning procedures this would not be the right way to go. In particular, being
informal starts already with the use of natural language. In order to support
this “mixed” style, examples and exercises deepen the understanding and rule
out potential misconceptions.

Now, based on the above defined properties of a relation, the usual notions
with respect to orderings are stated below.

Definition 1.4.1 (Orderings). A partial ordering > (or simply ordering) on
a set M, denoted (M,>), is a reflexive, antisymmetric, and transitive binary
relation on M. It is a total ordering if it also satisfies the totality property. A
strict ordering > is a transitive and irreflexive binary relation on M. A strict
ordering is well-founded, if there is no infinite descending chain mg > m; >
mo > ... where m; € M.

Given a strict partial order > on some set M, its respective partial order >
is constructed by taking the transitive closure of (= U =). If the partial order
>~ extension of some strict partial order > is total, then we call also > total. As
an alternative, a strict partial order > is total of it satisfies the strict totality
axiom Vz,y € M (x # y — (R(z,y) V R(y,z))). Given some ordering > the
respective ordering < is defined by a < b iff b > a.

Example 1.4.2. The well-known relation < on N, where k& < [if there is a j
so that K+ j =1 for k,I,j € N, is a total ordering on the naturals. Its strict
subrelation < is well-founded on the naturals. However, < is not well-founded
on Z.

Definition 1.4.3 (Minimal and Smallest Elements). Given a strict ordering
(M,>), an element m € M is called minimal, if there is no element m' € M so
that m = m’. An element m € M is called smallest, if m' = m for all m’ € M
different from m.

20 CHAPTER 1. PRELIMINARIES

Note the subtle difference between minimal and smallest. There may be
several minimal elements in a set M but only one smallest element. Furthermore,
in order for an element being smallest in M it needs to be comparable to all
other elements from M.

Example 1.4.4. In N the number 0 is smallest and minimal with respect to <.
For the set M = {q € Q| ¢ > 5} the ordering < on M is total, has the minimal
element 5 but is not well-founded.

If < is the ancestor relation on the members of a human family, then <
typically will have several minimal elements, the currently youngest children of
the family, but no smallest element, as long as there is a couple with more than
one child. Furthermore, < is not total, but well-founded.

Well-founded orderings can be combined to more complex well-founded or-
derings by lexicographic or multiset extensions.

Definition 1.4.5 (Lexicographic and Multi-Set Ordering Extensions). Let
(My, 1) and (Ms, >2) be two strict orderings. Their lezicographic combination
=1ex= (=1, >=2) on My x My is defined as (m1,ms) = (m},mb) iff my =1 m} or
my =m} and ma =2 m.

Let (M, =) be a strict ordering. The multi-set extension >, to multi-sets
over M is defined by Sy > Sz iff S; # Sy and Vm € M [S2(m) > Si(m) —
Im' € M (m' = m A Si(m') > Sa(m/))].

The definition of the lexicographic ordering extensions can be exapanded to
n-tuples in the obvious way. So it is also the basis for the standard lexicographic
ordering on words as used, e.g., in dictionaries. In this case the M; are alphabets,
say a-z, where a < b < ... < z. Then according to the above definition tiger <
tree.

Example 1.4.6 (Multi Set Ordering). Consider the multiset extension of (N, >
)- Then {2} >num {1,1, 1} because there is no element in {1,1,1} that is larger
than 2. As a border case, {2,1} >nu {2} because there is no element that has
more occurrences in {2} compared to {2,1}. The other way round, 1 has more
occurrences in {2,1} than in {2} and there is no larger element to compensate
for it, so {2} Pmu {2,1}.

Proposition 1.4.7 (Properties of Lexicographic and Multi-Set Ordering Ex-
tensions). Let (M, =), (My, 1), and (Maz, =2) be orderings. Then

1. =lex is an ordering on My x Ms.
. if (M, >1) and (M, >») are well-founded so is >jex.

. if (My, >1) and (M, >2) are total so is >jex.

2
3
4. >y is an ordering on multi-sets over M.
5. if (M,) is well-founded s0 is =myi-

6

. if (M, =) is total 80 is =pmu.

1.5. INDUCTION 21

The lexicographic ordering on words is not well-founded if words of
arbitrary length are considered. Starting from the standard ordering
on the alphabet, e.g., the following infinite descending sequence can be con-

structed: b > ab > aab >~ It becomes well-founded if it is lexicographically
combined with the length oordering, see Exercise 77?.

Lemma 1.4.8 (Konig’s Lemma). Every finitely branching tree with infinitely
many nodes contains an infinite path.

1.5 Induction

More or less all sets of objects in computer science or logic are defined induc-
tively. Typically, this is done in a bottom-up way, where starting with some
definite set, it is closed under a given set of operations.

Example 1.5.1 (Inductive Sets). In the following, some examples for induc-
tively defined sets are presented:

1. The set of all Sudoku problem states, see Section 1.1, consists of the set of
start states (IN; T; T) for consistent assignments N plus all states that can
be derived from the start states by the rules Deduce, Conflict, Backtrack,
and Fail. This is a finite set.

2. The set N of the natural numbers, consists of 0 plus all numbers that can
be computed from 0 by adding 1. This is an infinite set.

3. The set of all strings ¥* over a finite alphabet X. All letters of ¥ are
contained in ¥* and if u and v are words out of ¥* so is the word uv, see
Section 1.2. This is an infinite set.

All the previous examples have in common that there is an underlying well-
founded ordering on the sets induced by the construction. The minimal elements
for the Sudoku are the problem states (N; T; T), for the natural numbers it is
0 and for the set of strings it is the empty word. Now if we want to prove
a property of an inductive set it is sufficient to prove it (i) for the minimal
element(s) and (ii) assuming the property for an arbitrary set of elements, to
prove that it holds for all elements that can be constructed “in one step” out
those elements. This is the principle of Noetherian Induction.

Theorem 1.5.2 (Noetherian Induction). Let (M, >) be a well-founded order-
ing, and let @) be a predicate over elements of M. If for all m € M the implication

if @Q(m'), for all m' € M so that m > m’, (induction hypothesis)
then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all m € M.

22 CHAPTER 1. PRELIMINARIES

Proof. Let X = {m € M | Q(m) does not hold}. Suppose, X # 0. Since (M, >
) is well-founded, X has a minimal element m,. Hence for all m’' € M with
m' < my the property @Q(m') holds. On the other hand, the implication which
is presupposed for this theorem holds in particular also for m;, hence Q(m1)
must be true so that m; cannot be in X - a contradiction. O

Note that although the above implication sounds like a one step proof tech-
nique it is actually not. There are two cases. The first case concerns all elements
that are minimal with respect to < in M and for those the predicate @) needs
to hold without any further assumption. The second case is then the induction
step showing that by assuming () for all elements strictly smaller than some m,
we can prove it for m.

Now for context free grammars. *** Motivate Further *** Let G =
(N, T, P,S) be a context-free grammar (possibly infinite) and let ¢ be a property
of T* (the words over the alphabet T of terminal symbols of G).

q holds for all words w € L(G), whenever one can prove the following two
properties:

1. (base cases)
g(w") holds for each w' € T* so that X ::= w' is a rule in P.

2. (step cases)
If X = woXowy ... wy Xpwpi1 is in P with X; € N, w; € T*, n > 0,
then for all w} € L(G, X;), whenever ¢(w}) holds for 0 < i < n, then also
g(wowwy ... wpwhwyy1) holds.

Here L(G, X;) C T* denotes the language generated by the grammar G from
the nonterminal X;.

Let G = (N,T,P,S) be an unambiguous (why?) context-free grammar. A
function f is well-defined on L(G) (that is, unambiguously defined) whenever
these 2 properties are satisfied:

1. (base cases)
f is well-defined on the words w’ € T* for each rule X ::= w' in P.

2. (step cases)
IfX = woXow; ... w,X,wyy1 isarulein P then f(wowjw ... wpw, Wpt1)
is well-defined, assuming that each of the f(w}) is well-defined.

(3

1.6 Rewrite Systems

The final ingredient to actually start the journey through different logical sys-
tems is rewrite systems. Here I define the needed computer science background
for defining algorithms in the form of rule sets. In Section 1.1 the rewrite rules
Deduce, Conflict, Backtrack, and Fail defined an algorithm for solving 4 x 4
Sudokus. The rules operate on the set of Sudoku problem states, starting with
a set of initial states (N; T; T) and finishing either in a solution state (N; D; T)

1.6. REWRITE SYSTEMS 23

or a fail state (IV; T;L). The latter are called normal forms (see below) with
respect, to the above rules, because no more rule is applicable to solution state
(N;D;T) or a fail state (IV; T; L).

Definition 1.6.1 (Rewrite System). A rewrite system is a pair (M, —), where
M is a non-empty set and - C M x M is a binary relation on M. Figure 1.4
defines the needed notions for —.

=% = {(a,a)|ae M} identity

Sl = i i + 1-fold composition

=T = Ujso ' transitive closure

=% = U =" = 2T U0 reflexive transitive closure
== = U0 reflezive closure

-1 =« ={(be)|e—=b} inverse

& = U« symmetric closure

ot = («)F transitive symmetric closure
o = (o) refl. trans. symmetric closure

Figure 1.4: Notation on —

For a rewrite system (M, —) consider a sequence of elements a; that are
pairwise connected by the symmetric closure, i.e., a; ¢ as < a3z... & a,. We
say that a; is a peak in such a sequence, if actually a;—1 < a; = a;41.

Actually, in Definition 1.6.1 T overload the symbol — that has already
denoted logical implication, see Section 1.4, with a rewrite relation.
This overloading will remain throughout this book. The rule symbol

= is only used on the meta level in this book, e.g., to define the Sudoku algo-
rithm on problem states, Section 1.1. Nevertheless, this meta rule systems are
also rewrite systems in the above sense. The rewrite symbol — is used on the
formula level inside a problem state. This will become clear when I turn to more
complex logics starting from Chapter 2.

Definition 1.6.2 (Reducible). Let (M,—) be a rewrite system. An element
a € M is reducible, if there is a b € M so that a — b. An element a € M is in
normal form (irreducible), if it is not reducible. An element ¢ € M is a normal
form of b, if b —* ¢ and ¢ is in normal form, notated ¢ = b| (if the normal
form of b is unique). Two elements b and ¢ are joinable, if there is an a so that
b —* a *< ¢, notated b | c.

Definition 1.6.3 (Properties of —). A relation — is called

Church-Rosser if b* cimplies b | ¢

confluent if b "« a —* cimplies b | ¢

locally confluent if b < a — ¢ implies b | ¢

terminating if there is no infinite descending chain by — by ...
normalizing if every b € A has a normal form

convergent if it is confluent and terminating

24 CHAPTER 1. PRELIMINARIES

Lemma 1.6.4. If — is terminating, then it is normalizing.

The reverse implication of Lemma 1.6.4 does not hold. Assuming this
is a frequent mistake. Consider M = {a,b, ¢} and the relation a — b,
b — a, and b — c. Then (M, —) is obviously not terminating, because
we can cycle between a and b. However, (M, —) is normalizing. The normal form
is ¢ for all elements of M. Similarly, there are rewrite systems that are locally

confluent, but not confluent, see Figure ??. *** to be done *** In the context
of termination the property holds, see Lemma 1.6.6.

Theorem 1.6.5. The following properties are equivalent for any rewrite system
(S, —):

(i) — has the Church-Rosser property.

(if) — is confluent.

Proof. (i) = (ii): trivial.
(ii) = (i): by induction on the number of peaks in the derivation b <* ¢. O

Lemma 1.6.6 (Newman’s Lemma [?]: Confluence versus Local Confluence).
Let (M, —) be a terminating rewrite system. Then the following properties are
equivalent:

(i) — is confluent

(if) — is locally confluent

Proof. (i) = (ii): trivial.

(ii) = (i): Since — is terminating, it is a well-founded ordering (see Ex-
ercise ?77?). This justifies a proof by Noetherian induction where the property
Q(a) is “a is confluent”. Applying Noetherian induction, confluence holds for
all a’ € M with a =% a' and needs to be shown for a. Consider the confluence
property for a: b *<— a —* ¢. If b = a or ¢ = a the proof is done. For otherwise,
the situation can be expanded to b *« b’ + a — ¢ —* ¢. By local confluence
there is an o' with b’ —=* o’ *< ¢’. Now d/, b, ¢ are strictly smaller than a, they
are confluent and hence can be rewritten so a single a”, finishing the proof. O

Lemma 1.6.7. If — is confluent, then every element has at most one normal
form.

Proof. Suppose that some element a € A has normal forms b and ¢, then b *«
a —* c¢. If — is confluent, then b —* d *+ ¢ for some d € A. Since b and ¢ are
normal forms, both derivations must be empty, hence b —=° d % ¢, so b, ¢, and
d must be identical. O

Corollary 1.6.8. If — is normalizing and confluent, then every element b has
a unique normal form.

Proposition 1.6.9. If — is normalizing and confluent, then b <+* ¢ if and only
if b} = cl.

Proof. Either using Theorem 1.6.5 or directly by induction on the length of the
derivation of b <* c. O

1.6. REWRITE SYSTEMS

Historic and Bibliographic Remarks

For context free languages see [2].

25

26

CHAPTER 1. PRELIMINARIES

Chapter 2

Propositional Logic

2.1 Syntax

Consider a finite, non-empty signature X of propositional variables, the “alpha-
bet” of propositional logic. In addition to the alphabet “propositional connec-
tives” are further building blocks composing the sentences (formulas) of the
language and auxiliary symbols such as parentheses enable disambiguation.

Definition 2.1.1 (Propositional Formula). The set PROP(X) of propositional
formulas over a signature ¥ is inductively defined by:

PROP(X) Comment

L connective | denotes “false”
T connective T denotes “true”
P for any propositional variable P € ¥
(—9) connective = denotes “negation”
(¢ ANp) connective A denotes “conjunction”
(¢ V1) connective V denotes “disjunction”

(¢ — 1) connective — denotes “implication”
(¢ <> 1) connective <> denotes “equivalence”

where ¢,9 € PROP(X).

The above definition is an abbreviation for setting PROP(X) to be the
language of a context free grammar PROP(X) = L((N,T, P, S)) (see Defini-
tion 1.3.9) where N = {¢, v}, T =S U{(,)}U{L, T,~,A,V,—,«} with rules
S=L|Tl@AY)|(6VY)| (4) and S = P for every P € 3.

As a notational convention we assume that — binds strongest and we omit
outermost parenthesis. So =P V @ is actually a shorthand for ((=P) V @). For
all other logical connectives we will explicitly put parenthesis when needed.
From the semantics we will see that A and V are associative and commutative.
Therefore instead of (P A Q) A R) we simply write P A Q A R.

27

28 CHAPTER 2. PROPOSITIONAL LOGIC

Definition 2.1.2 (Atom, Literal). A propositional formula P is called an atom.
It is also called a (positive) literal and its negation —P is called a (negative)
literal. If L is a literal, then —=L = P if L = —=P and -L = —P if L = P. Literals
are denoted by letters L, K. The literals P and —P are called complementary.

Automated reasoning is very much formula manipulation. In order to pre-
cisely represent the manipulation of a formula, we introduce positions.

Definition 2.1.3 (Position). A position is a word over N. The set of positions
of a formula ¢ is inductively defined by

pos(¢) = {e}ifpe{T,L}orpeX
pos(=p) = {e}U{lp|p € pos(¢)}
pos(¢ o 1) {e}U{lp|p € pos(¢)} U{2p|p € pos(¥))}

where o € {A,V, =, <}

The prefix order < on positions is defined by p < g if there is some p’ such
that pp’ = ¢. Note that the prefix order is partial, e.g., the positions 12 and 21
are not comparable, they are “parallel”, see below. By < we denote the strict
part of <, i.e., p < ¢ if p < ¢ but not ¢ < p. By || we denote incomparable
positions, i.e., p || ¢ if neither p < ¢, nor ¢ < p. Then we say that p is above ¢ if
p < q, pis strictly above q if p < q, and p and ¢ are parallel if p || q.

The size of a formula ¢ is given by the cardinality of pos(@): |¢| := | pos(d)].
The subformula of ¢ at position p € pos(¢) is recursively defined by ¢|. := ¢,
—|¢|1p = ¢|pa and (¢1 o ¢2)|ip = ¢,|p where 7 € {1,2}, o € {/\,V,—),(—)}.
Finally, the replacement of a subformula at position p € pos(¢) by a formula
¢ is recursively defined by @[] := ¢ and (¢1 o ¢2)[¥]1p = (d1[¢]p © ¢2),
(¢1 0 ¢2)[¢]2P = (10 ¢2[¢]P)7 where o € {/\,V,—),(—)}.

Example 2.1.4. The set of positions for the formula ¢ = (PA Q) = (P V Q)
is pos(¢) = {¢,1,11,12,2,21,22}. The subformula at position 22 is @, ¢|22 = @
and replacing this formula by P + @Q results in ¢[P ¢ Q2 = (PAQ) —
(PV (P Q).

A further prerequisite for efficient formula manipulation is notion of the
polarity of a subformula of ¢ at position p. The polarity considers the number
of “negations” starting from ¢ at € down to p. It is 1 for an even number along the
path, —1 for an odd number and 0 if there is at least one equivalence connective
along the path.

Definition 2.1.5 (Polarity). The polarity of a subformula of ¢ at position
p € pos(¢) is inductively defined by

pol(¢p,e) = 1
pol(=¢,1p) := —pol(e,p)
pol(¢1 0 ¢2,ip) = pol(¢;,p) if o € {A,V}
pol(¢1 — ¢2,1p) = —pol(¢1,p)
pol(¢1 — ¢2,2p) = pol(¢2,p)
pol(¢1 < ¢a,ip) = 0

