Chapter 1

Preliminaries

This chapter introduces all abstract concepts needed for the rest of this book.
Generic problem solving actually starts with a problem. In this book problems
will appear in the form of examples. In order to solve a problem in a generic
way, i.e., by generic algorithms, the first step is to formalize the problem using
a generic language. A generic language has a mathematically precise syntax
and semantics, because eventually it is analyzed by a program running on a
computer. Such a language is called a logic. The problem becomes a sentence,
i.e., a formula of the logic. In particular, semantics in this context always means
a notion of truth. The notion of truth is a very expressive instrument to actually
formalize what it means to eventually solve a particular problem. A solution
to the formula should result in a solution to the problem. Detecting that the
formula is true (false) corresponds to solving the problem.

Once the problem is described in a logic, the generic language, it needs
rules that reason about the truth of formulas and hence eventually solve the
problem. A logic plus its reasoning rules is called a calculus. The rules operate
on a symbolic representation of a problem state that includes in particular the
formula formalizing the problem. Typically, further information is added to the
state representation in order to keep track of the solution process. The rules
should enjoy a number of properties in order to be useful. They should be
sound, i.e., whenever they compute a solution the result is actually a solution
to the initial problem. And whenever they compute that there is no solution
this should hold as well. The rules should be complete, i.e., whenever there is a
solution to the problem they compute it. Finally, they should be terminating.
If they are applied to a starting problem state, they always stop after a finite
number of steps. Typically, because no more rule is applicable. Depending on the
complexity of the problem and the involved logic, not all the desired properties
soundness, completeness, termination, can be achieved, in general. But T will
turn to this later.

The rules of a calculus are typically designed to operate independently and
can therefore be executed in a non-deterministic way. The advantage of such
a presentation is that properties of the rules, e.g., like soundness, can also be

3

4 CHAPTER 1. PRELIMINARIES

shown independently for each rule. And if a property can be shown for the rule
set, it applies to all potential execution orderings of the rules. The disadvantage
of such a presentation is that a random application of the rules typically leads to
an inefficient algorithm. Therefore, a strategy is added to the calculus (rules) and
the strategy plus the rules build an automated reasoning algorithm or shortly an
algorithm. Depending on the type of property and the actual calculus, sometimes
we prove it, for the calculus or the respective algorithm.

An automated reasoning algorithm is still an abstract, mathematical con-
struct and there is typically a significant gap between such an algorithm and
an actual computer program implementing the algorithm. An implementation
often requires a dedicated control of the calculus plus the invention of specific
data structures and algorithms. The implementation of an algorithm is called a
system. Eventually the system is applied to real world problems, i.e., an appli-
cation.

Application
System + Problem

System
Algorithm + Implementation
Algorithm
Calculus + Strategy

Calculus
Logic + States 4+ Rules
Logic

Syntax + Semantics

Typically computer science algorithms are formulated in languages
that are close to actual programming languages such as C, C++,
or Java'. So, in particular, they rely on deterministic programming
languages with an operational semantics. I overload the notion of a classical
computer science algorithm and an automated reasoning algorithm. An auto-
mated reasoning algorithm is build on a rule set plus a strategy and typically
the strategy does not turn the rules into a deterministic algorithm. There is still
some room left that will eventually be decided for an application. The difference
in design reflects the difference in scope. A classical computer science algorithm
solves a very specific problem, e.g., it sorts a finite list of numbers. An algo-
rithm is meant to solve a whole class of problems, e.g., later on I will show that
ordered resolution can solve any polynomial time computable problem based on
a fragment of first-order logic.
As a start, Section 1.1 studies the overall above approach including all men-
tioned properties in full detail on a concrete problem: 4 x 4-Sudokus. Although
this is a rather trivial and actually finite problem and the suggested algorithm is

Lcopyright

1.1. SOLVING 4 x 4 SUDOKU 5

very naive, it serves nicely as a throughout example demonstrating all aspects.
Later on, I will develop far more complex logics that then can be used to solve
more interesting problems. In particular, real world problems.

The subsequent sections abstract from solving Sudokus and develop the un-
derlying concepts needed as a basic toolbox for the rest of this book. Basic
mathematical notions on numbers, sets, relations, and words are defined in Sec-
tion 1.2. In order to be able to talk about the complexity of algorithms Sec-
tion 1.3 in particular explains Big O notation and NP-hardness. Section 1.4 is
devoted to orderings, because they show up on the meta-level, e.g. as a means
to prove termination. They also serve as a basis for proving properties of rule
sets by induction, Section 1.5, and also on the logical reasoning level where they
will be actually an effective means for defining more efficient rule sets. Finally,
Section 1.6 introduces the most important concepts of rule based reasoning in
general by an introduction to basic concepts of (abstract) rewrite systems.

1.1 Solving 4 x 4 Sudoku

Consider solving a 4 x 4 Sudoku as it is depicted on the left in Figure 1.1. The
goal is to fill in natural numbers from 1 to 4 into the 4 x 4 square so that in each
column, row and 2 x 2 box sharing an outer corner with the original square each
number occurs exactly once. Conditions of this kind are called constraints as
they restrict filling the Sudoku with numbers in an arbitrary way. The Sudoku
(Solution) on the right (Figure 1.1) shows the, in this case, unique solution to
the Sudoku (Start) on the left.

2|1 211143

31412

31 412131

1 2 113|124
Start Solution

Figure 1.1: A 4 x 4 Sudoku and its Solution

Why is this solution unique? It is because the constraints of 4 x 4 Sudokus
have already forced all other values. To start, the only square for the missing
1 is the square above the 3. All other squares would violate a constraint. But
then the third column is almost filled so the top square of this column must be
a 4, and so on.

In the following, I will build a specific logic for 4 x 4 Sudokus, including
an algorithm in form of a set of rules and a strategy for solving the problem
and actually prove that the algorithm is sound, complete, and terminating. As
already said, an algorithm is sound if any solution the algorithm declares to
have found is actually a solution. It is complete if it finds a solution in case

6 CHAPTER 1. PRELIMINARIES

one exists. It is terminating if it does not run forever. Since Sudokus are finite
combinatorial puzzles, such an algorithm exists. The most simple algorithm is
to systematically guess all values for all undefined squares of the Sudoku and to
check whether the guessed values actually constitute a solution. However, this
amounts to checking 4'¢ different assignments of values to the squares. Such an
approach is even worse than the one I will introduce in the sequel.

I consider a Sudoku to be a two dimensional array f indexed from 1 to 4 in
each dimension, starting from the upper left corner. So f(1,1) is the value of the
square in the upper left corner and in case of our initial Sudoku. For the start
Sudoku in Figure 1.1 the value of this square is given to be 2 which I denote
by the equation f(1,1) ~ 2. So the logic for Sudokus are finite conjunctions
(conjunction denoted by A) of equations f(z,y) ~ z, where the variables z, y, 2
range over the domain 1, 2, 3, 4. The meaning of a conjunction is that all values
given by the equations should be simultaneously true in the Sudoku. The overall
left Sudoku (Start in Figure 1.1) is then given by the conjunction of equations

FAD ~2AF(1L,2) ~ 1A F(3,3) ~3A F(3,4) m LA F(4,1) ~ 1A f(4,3) ~ 2

If you are already familiar with classical logic, you know that the
formulas f(1,1) ~ 2A f(1,2) ~ 1 and f(1,2) ® 1A f(1,1) &~ 2 cannot

be distinguished semantically. They have always the same truth value,
because conjunction (A) is commutative, and, in addition, associative. However,
here, the above conjunction will become part of a problem state. The sudoku
logic rules syntactically manipulate problem states. A problem state containing
f(1,1) = 2 A f(1,2) =~ 1 will be different from one containing f(1,2) ~ 1 A
f(1,1) =~ 2, because the former implicitly means that there is no solution to the
sudoku with f(1,1) ~ 1, whereas the latter means that there is no solution to
the sudoku with f(1,1) ~ 1 in presence of f(1,2) ~ 1.

The goal of the algorithm is then to find the assignments for the empty
squares with respect to the above mentioned constraints on the number occur-
rences in columns, rows and boxes. The algorithm consists of four rules that
each take a state of the solution process and transform it into a different one,
closer to a solution. A state is described by a triple (N; D;r) where N con-
tains the equations of the starting Sudoku, for example, the above conjunction
of equations, D is a conjunction of additional equations computed by the al-
gorithm, and r € {T, L} describes whether the actual values for f in N and
D potentially constitute a solution. If » = T then no constraint violation has
been detected and if r = L a constraint violation has been detected but not
yet resolved. The initial problem state is represented by the triple (N;T;T)
where T also denotes an empty conjunction and hence truth. The problem state
(N;T; 1) denotes the fail state, i.e., there is no solution for a Sudoku starting
with the assignments contained in N.

A square f(x,y) where z,y € {1,2,3,4} is called defined by N A D if there is
an equation f(x,y) ~ z, z € {1,2,3,4} in N or D. Otherwise, f(z,y) is called
undefined. For an initial state (V; T; T) I assume that the same square is not

1.1. SOLVING 4 x 4 SUDOKU 7

defined several times in N. We say that N A D' is a solution to a Sudoku N, if
all squares are defined in N A D', no square is defined more than once in N A D'
and the assignments in N A D' do not violate any constraint. It is a solution to
a problem state (N; D; T) if all equations from D occur in D’. In the sequel we
always assume that for any start state (N; T; T) each square is defined at most
once in N and all variables z,y, z (possibly indexed, primed) range over values
1 to 4. Then the four rules of a first (naive) algorithm are

Deduce (N;D;T) = (N;DAf(z,y) = 1;T)
provided f(z,y) is undefined in N A D, for any z,y € {1,2,3,4}.

Conflict (N;D;T) = (N;D; 1)

provided for (i) f(z,y) = f(z,2) for f(z,y), f(x,z) defined in N A D for some
x,y,z and y # z, or,

(ii) f(y,z) = f(z,z) for f(y,x), f(z,z) defined in N A D for some z,y,z and
Y 7é Z, or,

(iil) f(z,y) = f(2',y") for f(x,y), f(z',y') defined in N A D and [z,2' € {1,2}
orz,7' € {3,4}] and [y,y" € {1,2} or y,y’ € {3,4}] and (z,y) # (z',y").

Backtrack (N;D'Af(x,y) ®2AD"; 1) = (N;D'Af(z,y) =2z+1;T)

provided z < 4 and D" = T or D" contains only equations of the form f(z',y') ~
4.

Fail (N;D; 1) = (N;T;1)
provided D # T and D contains only equations of the form f(z,y) ~ 4.

Rules are applied to a state by first matching the left hand side of the rule
(left side of =) to the state, checking the side conditions described below the
rule and if they are fulfilled then replacing the state by the right hand side of
the rule. There is no order among the rules, so they are applied “don’t care non-
deterministically”. A strategy will fix the ordering and turn into an algorithm.
Furthermore, even a single rule may not be deterministic. For example rule
Deduce does not specify concrete values for x,y so it can be applied to any
undefined square f(z,y).

Starting with the state corresponding to the initial Sudoku shown on the left
in Figure 1.1, a one step derivation by rule Deduce is (N;T;T) — (N; f(1,3) =
1; T). Actually the rule Deduce is the only applicable rule to (N;T;T). Con-
cerning the new state (N; f(1,3) ~ 1; T) two rules are applicable: Deduce and
Conflict. An application of Conflict, where side condition (i) is satisfied, yields
(N; f(1,3) = 1; 1) and after an application of Backtrack to this state the rule
computes (N; f(1,3) ~ 2;T). Applying Deduce to (N; f(1,3) ~ 1; T) results,
e.g., in (N; f(1,3) =~ 1.f(1,4) ~ 1; T). Figure 1.2 shows this sequence of rule
applications together with the corresponding Sudokus.

This is one reason why the rule set is inefficient. Deduce still fires in case of
an already existing constraint violation and Deduce does not consider already

8 CHAPTER 1. PRELIMINARIES

21 (N = f(1,1) 2A £(1,2) ~ 1A
3|1 f(3,3)~3A f(3,4) ~ 1A
1 2 fA D) =1Af(4,3)~2;,T;T)
|} Deduce f(1,3) =~
2111
N; f(1L3) = 1;T
—— (V5 £(1,3) % 15T)
1 2
U Conflict
2111
N;f(1,3)~1;L
—— (V5 £(1,3) % 15 1)
1 2
|} Backtrack f(1,3) =~ 2;
21112
N; f(1,3) =~ 2;T
- (V3 £(1,3) % 2T)
1 2

Figure 1.2: Effect of Applying the Inference Rules

existing equations when assigning a new value. It simply always assigns “1”.
Improving the algorithm along the second line is subject to Exercises 77, ?7.
Furthermore, note that if in a start state (IV; T; T) the initial assignments in N
already contain a constraint violation, then the rule conflict directly produces
the final fail state. An appropriate, very simple strategy turns the rule set into
an algorithm and prefers Conflict over Deduce.

The Algorithm 1, SimpleSudoku(S), consists of the four rules together with
a rule application strategy. The scope of loops and if-then-else statements is
indicated by indentation. A statement Rule(S) for some Rule means that the
application of the rule is tested and if applicable it is applied to the problem
state S. If such a statement occurs in a ifrule condition, it is applied as before
and returns true iff (if and only if) the rule was applicable. For example, the
statement at line 1

ifrule (Conflict(S)) then

return S;
is a shorthand for

if (the rule Conflict is applicable to state S) then

1.1. SOLVING 4 x 4 SUDOKU 9

Algorithm 1: SimpleSudoku(S)

Input : An initial state S = (N;T;T).

Output: A final state S = (N;D;T) or S = (N;T; 1)
1 ifrule (Conflict(S)) then

2 | return S

3 while (any rule applicable) do
4 ifrule (Conflict(S)) then
5 Backtrack(S);

6 Fail(S);

7 else

8 | Deduce(S);

9

10 end

11 return S,

apply rule Conflict to S;
return S;

where the application condition is separated from the rule application.

At line 1 the rule Conflict is tested and if applicable it will produce the
final state S = (IV; T; 1), so the algorithm returns S. The while-loop starting
at line 3 terminates if no rule is applicable anymore. For otherwise, the rule
Conflict is tested before Deduce in order to prevent useless Deduce steps. The
rules Backtrack and Fail are only applicable after an application of Conflict, so
they are guarded by an application of Conflict. Therefore, SimpleSudoku is a
fair algorithm in the sense that no rule application needed to compute a final
state will be prohibited.

If the rules are considered in the context of the SimpleSudoku algorithm, then
they can be simplified. For example, the condition for rule Fail that all equations
are of the form f(z,y) ~ 4 can be dropped, because in SimpleSudoku the rule
Fail is only tested and potentially applied after having tested Backtracking.

It is a design issue how much rule application control is actually put
into the side conditions of the rules and how much control into the
algorithm. It depends, of course, on the problem to be solved but also

on which level properties can be shown. For SimpleSudoku all properties can be
shown on the calculus, i.e., rule level. In general, showing termination of a rule
set often requires a particular strategy, i.e., algorithm.

In the sequel, I will prove that the four rules are sound, complete and ter-
minating. Sound means that whenever the rules compute some state (N; D; T)
and it has a solution, then this solution is also a solution for N. Complete means
that whenever there is a solution to the Sudoku, exhaustive application of the
four rules will compute a solution. Note that for completeness the computation
of any solution, not an a priori selected one, is sufficient. In case of the Sudoku

10 CHAPTER 1. PRELIMINARIES

rules even strong completeness holds: for any solution N A D of the Sudoku,
there is a sequence of rule applications so that (V; D; T) is a terminating state.
So any a priori selected solution can be generated. Termination at the rule level
means that independently of the actual sequence of rule applications to a start
state, there is no infinite sequence of rule applications possible. In the sequel,
I will consider a fourth property important for rule based systems: confluence.
A set of rules is confluent if whenever there are several rules applicable to a
given state, then the different generated states can be rejoined by further rule
applications. So confluence guarantees unique results on termination. Because
of the above informal fairness argument for the SimpleSudoku algorithm, all
these properties also hold not only for the rule set but also for the algorithm.

Proposition 1.1.1 (Soundness). The rules Deduce, Conflict, Backtrack and
Fail are sound. Starting from an initial state (N; T;T): (i) for any final state
(N;D;T), the equations in N A D are a solution, and, (ii) for any final state
(N;T; L) there is no solution to the initial problem.

Proof. First of all note that no rule manipulates N, the first component of a
state (IV; D;r). This justifies the way this proposition is stated. (i) So assume a
final state (N; D; T) so that no rule is applicable. In particular, this means that
for all z,y € {1,2,3,4} the square f(z,y) is defined in N A D as for otherwise
Deduce would be applicable, contradicting that (N;D;T) is a final state. So
all squares are defined by N A D. No square is defined more than once. What
remains to be shown is that those assignments actually constitute a solution to
the Sudoku. However, if some assignment in N A D results in a repetition of
a number in some column, row or 2 X 2 box of the Sudoku, then rule Conflict
is applicable, contradicting that (N; D; T) is a final state. In sum, (N;D;T) is
a solution to the Sudoku and hence the rules Deduce, Conflict, Backtrack and
Fail are sound.

(ii) So assume that the initial problem (N;T;T) has a solution. I prove by
contradiction based on an inductive argument that in this case the rules cannot
generate a state (NV; T; L). Solet (N; D; T) be an arbitrary state with D of max-
imal length still having a solution, but (N; T; 1) is reachable from (N;D;T).
This includes the initial state if D = T. An appropriate selection of rule ap-
plications correctly decides the next square. Since (IV; D; T) still has a solution
the only applicable rule is Deduce. It generates (N; DA f(z,y) ~ 1; T) for some
z,y € {1,2,3,4}. If (N;D A f(z,y) ~ 1;T) still has a solution the proof is
done since this violates D to be of maximal length. So (N; D A f(z,y) =~ 1;T)
does not have a solution anymore. But then eventually Conflict and Backtrack
are applicable to a state (N; D A f(z,y) = 1 A D'; L) where D’ only contains
equations of the form f(z',y’) ~ 4 resulting in (N;D A f(z,y) ~ 2;T). Now
repeating the argument we will eventually reach a state (N; D A f(z,y) ~ k; T)
that has a solution, finally contradicting D to be of maximal length. O

For the first part of the soundness proof, Proposition 1.1.1, neither the rule
Backtrack nor Fail shows up. This is because an empty rule system is trivially

1.1. SOLVING 4 x 4 SUDOKU 11

sound. The rules Backtrack or Fail are indispensable for the second part of the
proof and for showing completeness.

The above proof contains a “handwaving argument”, the sentence
“But then eventually Conflict and Backtrack are applicable to a state
(N;DA f(z,y) ~ 1A D'"; L) where D’ only contains equations of the

form f(z',y") = 4 resulting in (N;D A f(z,y) ~ 2;T).” needs a proof on its
own. I will not do the proof here, but for some of the rule sets for deciding
satisfiability of propositional logic, Chapter 2, I will do analogous proofs in full
detail.

Proposition 1.1.2 (Strong Completeness). The rules Deduce, Conflict, Back-
track and Fail are strongly complete. For any solution N A D of the Sudoku
there is a sequence of rule applications so that (N;D; T) is a final state.

Proof. A particular strategy for the rule applications is needed to indeed gen-
erate (N; D; T) out of (N; T; T) for some specific solution N A D. Without loss
of generality I assume the assignments in D to be sorted so that assignments
to a number k € {1,2,3,4} precede any assignment to some number [> k. So
if, for example, N does not assign all four values 1, then the first assignment
in D is of the form f(z,y) ~ 1 for some z,y. Now I apply the following strat-
egy, subsequently adding all assignments from D to (N; T; T). The strategy has
achieved state (N; D’; T) and the next assignment from D to be established is
f(z,y) = k, meaning f(z,y) is not defined in N A D'. Then until | = k the
strategy does the following, starting from [= 1. It applies Deduce adding the
assignment f(z,y) ~ [. If Conflict is applicable to this assignment, it is applied
and then Backtrack, generating the new assignment f(z,y) ~ 1+ 1 and so on.

I need to show that this strategy in fact eventually adds f(z,y) = k to
D'. As long as | < k any added assignment f(z,y) & [results in rule Conflict
applicable, because D is ordered and all four values for all [< k are already
established. The eventual assignment f(x,y) ~ k does not generate a conflict
because D is a solution. For the same reason, the rule Fail is never applicable.
Therefore, the strategy generates (N; D; T) out of (N;T;T). O

Note the subtle difference between the second part of proving Proposi-
tion 1.1.1 and the above strong completeness proof. The former shows that any
solution can be produced by the rules whereas the latter shows that a specific,
a priori selected solution can be generated.

Proposition 1.1.3 (Termination). The rules Deduce, Conflict, Backtrack and
Fail terminate on any input state (N; T;T).

Proof. Once the rule Fail is applicable, no other rule is applicable on the result
anymore. So there is no need to consider rule Fail for termination. The idea of
the proof is to assign a measure over the natural numbers to every state so that
each rule strictly decreases this measure and that the measure cannot get below
0. The measure is as follows.

12 CHAPTER 1. PRELIMINARIES

For any given state S = (NV; D;r) with r € {T,L1} with D = f(z1,y1) =~
ki Ao oA f(@n,yn) = kn I assign the measure p(S) by

:U‘(S) — 949 —p— Zkl . 949—3i

i=1

where p =0 if r = T and p = 1 otherwise.

The measure p(S) is well-defined and cannot become negative as n < 16,
p<1,and 1 < k; <4 for any D. In particular, the former holds because the
rule Deduce only adds values for undefined squares and the overall number of
squares is bound to 16. What remains to be shown is that each rule application
decreases p. I do this by a case analysis over the rules.

Deduce:
p((N;D;T)) =24 = 500 k- 2107%
> 949 _ Z:’L:l k; - 949-3i _ 1. 24973(n+1)
=pu((N;DA f(z,y) = 1;T))
Conflict:
p((N;D;T)) =24 = 370 | k- 24972
> 249 — 1= Z?:l kl . 249732
= pu((N;D; 1))
Backtrack:

p((N; D" A f(x,y1) = kg AD"; 1))
— 249 —1= (Zi;i k/'z . 249—31') _ kl . 249—3l _ Z?:lJrl kz . 249—31’
> 949 _ (Zi;i k; - 249—3i) _ (kz + 1) . 94931

= p(N; D' A f(zi,y) = ki +1;T)
where the strict inequation holds because 2493/ > Z?:H_l ki-219% 41, O

As already mentioned, there is another important property for don’t care
non-deterministic rule sets: confluence. It means that whenever several sequences
of rules are applicable to a given state, the respective results can be rejoined
by further rule applications to a common problem state. A weaker condition
is local confluence where only one step of different rule applications needs to
be rejoined. In Section 1.6, Lemma 1.6.6, the equivalence of confluence and
local confluence in case of a terminating rule system is shown. Assuming this
result, for the Sudoku rule system only one step of so called overlaps needs to
be considered. There are two potential kinds of overlaps for the Sudoku rule
system. First, an application of Deduce and Conflict to some state. Second, two
different applications of Deduce to a state. The below Proposition 1.1.4 shows
that the former case can in fact be rejoined and Example 1.1.5 shows that the
latter cannot. So in sum, the system is not locally confluent and hence not
confluent. This fact has already shown up in the soundness and completeness
proofs.

1.1. SOLVING 4 x 4 SUDOKU 13

Proposition 1.1.4 (Deduce and Conflict are confluent). Given a state
(N;D;T) out of which two different states (N;Dy; T) and (N;Dy; L) can be
generated by Deduce and Conflict, respectively, then the two states can be re-
joined to a state (IN; D';) via further rule applications.

Proof. Consider an application of Deduce and Conflict to a state (N;D;T)
resulting in (N;D A f(z,y) ~ 1;T) and (N;D; L), respectively. We will now
show that in fact we can rejoin the two states. Notice that since Conflict is
applicable to (N;D;T) it is also applicable to (N;D A f(z,y) ~ 1;T). So the
first sequence of rejoin steps is
(N;DAf(z,y) #15T) = (N;DA f(z,y) = 1;1)
= (N;DAf(z,y) = 2;T)
=* (N;DA f(z,y) =~ 4; 1)
where we subsequently applied Conflict and Backtrack to reach the state (N; DA
f(z,y) ~ 4; 1) and =* abbreviates those finite number of rule applications.
Finally applying Backtrack (or Fail) to (N;D; L) and (N;D A f(z,y) ~ 4; 1)
results in the same state. O

Example 1.1.5 (Deduce is not confluent). Consider the Sudoku state (f(1,1) ~
1A f(2,2) = 1;T;T) and two applications of Deduce generating the respec-
tive successor states (f(1,1) = 1A f(2,2) = 1;f(3,3) = 1;T) and (f(1,1) =
1A f(2,2) = 1; f(3,4) ~ 1;T). Obviously, both states can be completed to a
solution, but don not have a common solution. Therefore, it will not be possible
to rejoin the two states, see Figure 1.3.

Start
Deduce: f(3,4) ~ 1 / \ Deduce: f(3,3) ~ 1
1 1

Figure 1.3: Divergence of Rule Deduce

Is it desirable that a rule set for Sudoku is confluent? It depends on
the purpose of the algorithm. In case of the above rules set for Sudoku,
strong completeness and confluence cannot both be achieved, because

any solution of the Sudoku results in its own, unique, final state.

14 CHAPTER 1. PRELIMINARIES

1.2 Basic Mathematical Prerequisites

The set of the natural numbers including 0 is denoted by N, N = {0, 1,2, ...},
the set of positive natural numbers without 0 by N*, N* = {1,2,...}, and the
set of integers by Z. Accordingly QQ denotes the rational numbers and R the real
numbers, respectively.

Given a set M, a multi-set S over M is a mapping S: M — N, where S
specifies the number of occurrences of elements m of the base set M within the
multiset S. I use the standard set notations €, C, C, U, N with the analogous
meaning for multisets, for example (S; U S2)(m) = S1(m) + Sa(m). T also write
multi-sets in a set like notation, e.g., the multi-set S = {1,2,2,4} denotes a
multi-set over the set {1,2,3,4} where S(1) = 1, S(2) = 2, S(3) = 0, and
S(4) = 1. A multi-set S over a set M is finite if {m € M | S(m) > 0} is finite.
For the purpose of this book I only consider finite multi-sets.

An n-ary relation R over some set M is a subset of M™: R C M™. For two
n-ary relations R, @ over some set M, their union (U) or intersection (N) is again
an n-ary relation, where RU Q := {(mq,...,my,) € M | (mq,...,m,) € R or
(mi,...,mp) € Q} and RN Q = {(m1,...,my) € M | (m1,...,my) € R
and (my,...,m,) € Q} . A relation @ is a subrelation of a relation R if
@ C R. The characteristic function of a relation R or sometimes called pred-
icate indicates membership. In addition of writing (m1,...,m,) € R I also
write R(my,...,my). So the predicate R(mq,...,my,) holds or is true if in fact
(m1,...,my) belongs to the relation R.

Given a nonempty alphabet ¥ the set ¥* of finite words over ¥ is defined
by the (i) empty word € € ¥*, (ii) for each letter a € ¥ also a € ¥* and, finally,
(iii) if u,v € T* so uv € £* where uv denotes the concatenation of u and v. The
length |u| of a word u € ¥* is defined by (i) |¢| :== 0, (ii) |a| :=1 for any a € T
and (iii) |uv| := |u| + |v| for any u,v € ¥*.

1.3 Basic Computer Science Prerequisites

1.3.1 Data Structures

1.3.2 While Languages over Rules

When presenting pseudocode for algorithms in textbooks typically so called
while languages are used (e.g., see [15]). T assume familiarity with such lan-
guages and specialize it here to rules. So let Rule be a rule defined on some
state S. Then

Rule(5);

is a shorthand for

if Rule is applicable to S then apply it once to S;

1.3. BASIC COMPUTER SCIENCE PREREQUISITES 15

where in particular nothing happens if Rule is not applicable to S. There may
be several potential applications of Rule to S. In this case any of these is chosen.
The statement

whilerule(Rule(S)) do Body;
is a shorthand for

while (Rule is applicable to S) do
apply Rule once to S;
execute Body;

where the scope of the while loop is shown by indentation. The condition of
the whilerule statement may also be a disjunction of rule statements. In this
case the disjunction is executed in a non-deterministic, lazy way. We use || to
indicate the disjunction. Furthermore, a single rule statement may be followed
by a negation, indicated by !. In this case the rule is tested for application,
if it is applicable it is applied and the condition becomes false. If the rule is
not applicable the condition becomes true. Except for these extensions, boolean
combinations over rule statements are not part of the language. Finally, the
statement

ifrule(Rule(S)) then Body;
is a shorthand for

if (Rule is applicable to S) then
apply Rule once to S;
execute once Body;

In Section 1.1 I have already used the language for describing an algorithm
solving sudokus, Algorithm 1, SimpleSudoku(.S).

1.3.3 Complexity

This book is about algorithms solving problems presented in logic. Such an al-
gorithm is typically represented by a finite set of rules, manipulating a problem
state that contains the logical representation plus bookkeeping information. For
example, for solving 4 x 4-Sudokus, see Section 1.1, we represented the board
by a finite conjunction of equations. The problem state was given by the repre-
sentation of the board plus assignments for remaining empty squares, plus an
indication whether two conflicting assignments have been detected. The rules
then take a start problem state and eventually transform it into a solved form.
In order to compare the performance of this rule set with a different one or to
give an overall performance guarantee of the rule set, the classical way in com-
puter science is to consider the (worst case) running time until termination. A
consequence of the Sudoku termination proof, Lemma 1.1.3, is that at most 24°
rule applications are needed. Generalizing this result, for a given n x n-Sudoku,
the running time would by of “order” n™", because in the worst case we need to

16 CHAPTER 1. PRELIMINARIES

guess n different numbers for each square and there are n? squares of the board.
The so called big O notation covers the term “order” formally.

Definition 1.3.1 (Big O). Let f(n) and g(n) be functions from the naturals
into the nonnegative reals. Then

O(f(n)) ={g(n) | e >03ng € N" VYn >ng g(n) <c- f(n)}

Thus, the running time of the Sudoku algorithm for an n X n-Sudoku is
O(n”z), if the number of rule applications are taken to be the constant time
units. This sounds somewhat surprising because it means that the algorithm
will already fail for reasonably small n, if implemented in practice. For example,
for the well-established 9 x 9-Sudoku puzzles the algorithm will in the worst
case need about 93! ~ 21077 rule applications to figure out whether a given
Sudoku has a solution. This way, assuming a fast computer that can perform
1 Million rule applications per second it will take longer to solve a single Sudoku
than the currently estimated age of the universe. Nevertheless, human beings
typically solve a 9 x 9-Sudoku in some minutes. So what is wrong here? First of
all, as I already said, the algorithm presented in Section 1.1 is completely naive.
This algorithm will definitely not solve 9 x 9-Sudokus in reasonable time. It can
be turned into an algorithm that will work nicely in practice, see Exercise (77).
Nevertheless, problems such as Sudokus are difficult to solve, in general. Testing
whether a particular assignment is a solution can be done efficiently, in case of
Sudokus in time O(n?). For the purpose of this book, I say a problem can be
efficiently solved if there is an algorithm solving the problem and a polynomial
p(n) so that the execution time on inputs of size n is O(p(n)). Although it is
efficient for Sudokus to validate whether an assignment is a solution, there are
exponentially many possible assignments to check in order to figure out whether
there exists a solution. So if we are allowed to make guesses, then Sudokus can
be solved efficiently. This property describes the class of NP (Nondeterministic
Polynomial) problems in general that I will introduce now.

A decision problem is a subset L C ¥* for some fixed finite alphabet X.
The function chr(L,z) denotes the characteristic function for some decision
problem L and is defined by chr(L,u) =1 if u € L and chr(L,u) = 0 otherwise.
A decision problem is solvable in polynomial-time iff its characteristic function
can be computed in polynomial-time. The class P denotes all polynomial-time
decision problems.

Definition 1.3.2 (NP). A decision problem L is in NP iff there is a predicate
Q(z,y) and a polynomial p(n) so that for all u € ¥* we have (i) u € L iff there
is an v € ¥* with |v| < p(Ju|) and Q(u,v) holds, and (ii) the predicate @ is in
P.

A decision problem L is polynomial time reducible to a decision problem L'
if there is a function g € P so that for all u € ¥* we have u € L iff g(u) € L'.
For example, if L is reducible to L' and L' € P then L € P. A decision problem
is NP-hard if every problem in NP is polynomial time reducible to it. A decision

1.3. BASIC COMPUTER SCIENCE PREREQUISITES 17

problem is NP-complete if it is NP-hard and in NP. Actually, the first NP-
complete problem [7] has been propositional satisfiability (SAT). Chapter 2 is
completely devoted to solving SAT.

1.3.4 Word Grammars

When Godel presented his undecidability proof on the basis of arithmetic, many
people still believed that the construction is so artificial that such problems will
never arise in practice. This didn’t change with Turing’s invention of the Turing
machine and the undecidable halting problem of such a machine. However, then
Post presented his correspondence problem in 1946 [18] it became obvious that
undecidability is not an artificial concept.

Definition 1.3.3 (Finite Word). Given a nonempty alphabet ¥ the set ¥* of
finite words over ¥ is defined by

1. the empty word € € X*
2. for each letter a € X also a € ¥*
3. if u,v € ¥* so uv € ¥* where uv denotes the concatenation of u and v.

Definition 1.3.4 (Length of a Finite Word). The length |u| of a word u € £*
is defined by

1. |¢] :=0,
2. |a| :=1for any a € ¥ and
3. |uv| := |u| + |v| for any u,v € T*.

Definition 1.3.5 (Word Embedding). Given two words u, v, then u is embedded
in v written v C v if for v = a;...a, there are words vy,...,v, such that
V=00a101G2 ...A0npUp,.

Reformulating the above definition, a word u is embedded in v if u can
be obtained from v by erasing letters. For example, higman is embedded in
highmountain.

Definition 1.3.6 (PCP). Given two finite lists of words (ui,...,u,) and
(v1,...,vn) the Post Correspondence Problem (PCP) is to find a finite index
list (i1,...,4x), 1 <i; <, so that w;, ws, ... U5 = Vi, Vs, ... Vi

Take for example the two lists (a,b, bb) and (ab, ab,b) over alphabet ¥ =
{a,b}. Then the index list (1,3) is a solution to the PCP with common word
abb.

Theorem 1.3.7 (Post 1942). PCP is undecidable.

Lemma 1.3.8 (Higman’s Lemma 1952). For any infinite sequence of words
Uy, Us, ... over a finite alphabet there are two words wug, ugy; such that uy C

Uh1-

18 CHAPTER 1. PRELIMINARIES

Proof. By contradiction. Assume an infinite sequence w1, us,... such that for
any two words ug, ugy; they are not embedded, i.e., uy ug4;. Furthermore, I
assume that the sequence is minimal at any word with respect to length, i.e.,
considering any wuy, there is no infinite sequence with the above property that
shares the words up to ug—; and then continues with a word of smaller length
than uy. Next, the alphabet is finite, so there must be a letter, say a that oc-
curs infinitely often as the first letter of the words of the sequence. The words
starting with a form an infinite subsequence auy_ ,auy,,... where ug, = auj, .
This infinite subsequence itself has the non-embedding property, because it is
a subsequence of the originial sequence. Now consider the infinite sequence
Ui, U, - ooy Uy —1, Uy, Uy, , - - - Also this sequence has the non-embedding prop-
erty: if some u; C “;c,- then u; C au}cj contradicting that the starting sequence is
non-embedding. But then the constructed sequence contradicts the minimality
assumption with respect to length, finishing the proof. O

Definition 1.3.9 (Context-Free Grammar). A context-free grammar G =
(N, T, P,S) consists of:

1. a set of non-terminal symbols NV
2. a set of terminal symbols T

3. aset P of rules A = w where A€ N and w € (NUT)*

I

. a start symbol S where S € N
For rules A = w1, A = wy we write A = wy | ws.

Given a context free grammar G and two words u,v € (NUT)* I write u = v
if u =wu; Aus and v = u; wus and there is a rule A = w in G. The language
generated by G is L(G) = {w € T* | S =* w}, where =* is the reflexive and
transitive closure of =.

A context free grammar G is in Chomsky Normal Form [6] if all rules are if
the form A = By B> with B; € N or A = w with w € T*. It is said to be in
Greibach Normal Form [12] if all rules are of the form A = aw with a € T and
w e N*.

1.4 Orderings

An ordering R is a binary relation on some set M. Depending on particular
properties such as

(reflexivity) Vz € M R(z,z)
(irreflexivity) V2 € M —R(z,)
(antisymmetry) Vz,y € M (R(z,y) A R(y,z) = = = y)
(transitivity) Vz,y,z € M (R(z,y) A R(y,z) = R(z,z2))
(totality) Vz,y € M (R(z,y)V R(y,))

1.4. ORDERINGS 19

there are different types of orderings. The relation = is the identity relation
on M. The quantifier V reads “for all”, and the boolean connectives A, V, and —
read “and”, “or”, and “implies”, respectively. For example, the above formula
stating reflexivity Vo € M R(z,z) is a shorthand for “for all z € M the relation
R(z,x) holds”.

Actually, the definition of the above properties is informal in the sense
that I rely on the meaning of certain symbols such as € or —. While
the former is assumed to be known from school math, the latter is
“explained” above. So, strictly speaking this book is neither self contained,
nor overall formal. For the concrete logics developed in subsequent chapters, I
will formally define — but here, where it is used to state properties needed to
eventually define the notion of an ordering, it remains informal. Although it is
possible to develop the overall content of this book in a completely formal style,
such an approach is typically impossible to read and comprehend. Since this
book is about teaching a general framework to eventually generate automated
reasoning procedures this would not be the right way to go. In particular, being
informal starts already with the use of natural language. In order to support
this “mixed” style, examples and exercises deepen the understanding and rule
out potential misconceptions.

Now, based on the above defined properties of a relation, the usual notions
with respect to orderings are stated below.

Definition 1.4.1 (Orderings). A partial ordering > (or simply ordering) on
a set M, denoted (M,>), is a reflexive, antisymmetric, and transitive binary
relation on M. It is a total ordering if it also satisfies the totality property. A
strict ordering > is a transitive and irreflexive binary relation on M. A strict
ordering is well-founded, if there is no infinite descending chain mg > m; >
mo > ... where m; € M.

Given a strict partial order > on some set M, its respective partial order >
is constructed by taking the transitive closure of (= U =). If the partial order
>~ extension of some strict partial order > is total, then we call also > total. As
an alternative, a strict partial order > is total of it satisfies the strict totality
axiom Vz,y € M (x # y — (R(z,y) V R(y,z))). Given some ordering > the
respective ordering < is defined by a < b iff b > a.

Example 1.4.2. The well-known relation < on N, where k& < [if there is a j
so that K+ j =1 for k,I,j € N, is a total ordering on the naturals. Its strict
subrelation < is well-founded on the naturals. However, < is not well-founded
on Z.

Definition 1.4.3 (Minimal and Smallest Elements). Given a strict ordering
(M,>), an element m € M is called minimal, if there is no element m' € M so
that m = m’. An element m € M is called smallest, if m' = m for all m’ € M
different from m.

20 CHAPTER 1. PRELIMINARIES

Note the subtle difference between minimal and smallest. There may be
several minimal elements in a set M but only one smallest element. Furthermore,
in order for an element being smallest in M it needs to be comparable to all
other elements from M.

Example 1.4.4. In N the number 0 is smallest and minimal with respect to <.
For the set M = {q € Q| ¢ > 5} the ordering < on M is total, has the minimal
element 5 but is not well-founded.

If < is the ancestor relation on the members of a human family, then <
typically will have several minimal elements, the currently youngest children of
the family, but no smallest element, as long as there is a couple with more than
one child. Furthermore, < is not total, but well-founded.

Well-founded orderings can be combined to more complex well-founded or-
derings by lexicographic or multiset extensions.

Definition 1.4.5 (Lexicographic and Multi-Set Ordering Extensions). Let
(My, 1) and (Ms, >2) be two strict orderings. Their lezicographic combination
=1ex= (=1, >=2) on My x My is defined as (m1,ms) = (m},mb) iff my =1 m} or
my =m} and ma =2 m.

Let (M, =) be a strict ordering. The multi-set extension >, to multi-sets
over M is defined by Sy > Sz iff S; # Sy and Vm € M [S2(m) > Si(m) —
Im' € M (m' = m A Si(m') > Sa(m/))].

The definition of the lexicographic ordering extensions can be exapanded to
n-tuples in the obvious way. So it is also the basis for the standard lexicographic
ordering on words as used, e.g., in dictionaries. In this case the M; are alphabets,
say a-z, where a < b < ... < z. Then according to the above definition tiger <
tree.

Example 1.4.6 (Multi Set Ordering). Consider the multiset extension of (N, >
)- Then {2} >num {1,1, 1} because there is no element in {1,1,1} that is larger
than 2. As a border case, {2,1} >nu {2} because there is no element that has
more occurrences in {2} compared to {2,1}. The other way round, 1 has more
occurrences in {2,1} than in {2} and there is no larger element to compensate
for it, so {2} Pmu {2,1}.

Proposition 1.4.7 (Properties of Lexicographic and Multi-Set Ordering Ex-
tensions). Let (M, =), (My, 1), and (Maz, =2) be orderings. Then

1. =lex is an ordering on My x Ms.
. if (M, >1) and (M, >») are well-founded so is >jex.

. if (My, >1) and (M, >2) are total so is >jex.

2
3
4. >y is an ordering on multi-sets over M.
5. if (M,) is well-founded s0 is =myi-

6

. if (M, =) is total 80 is =pmu.

1.5. INDUCTION 21

The lexicographic ordering on words is not well-founded if words of
arbitrary length are considered. Starting from the standard ordering
on the alphabet, e.g., the following infinite descending sequence can be con-

structed: b > ab > aab >~ It becomes well-founded if it is lexicographically
combined with the length oordering, see Exercise 77?.

Lemma 1.4.8 (Konig’s Lemma). Every finitely branching tree with infinitely
many nodes contains an infinite path.

1.5 Induction

More or less all sets of objects in computer science or logic are defined induc-
tively. Typically, this is done in a bottom-up way, where starting with some
definite set, it is closed under a given set of operations.

Example 1.5.1 (Inductive Sets). In the following, some examples for induc-
tively defined sets are presented:

1. The set of all Sudoku problem states, see Section 1.1, consists of the set of
start states (IN; T; T) for consistent assignments N plus all states that can
be derived from the start states by the rules Deduce, Conflict, Backtrack,
and Fail. This is a finite set.

2. The set N of the natural numbers, consists of 0 plus all numbers that can
be computed from 0 by adding 1. This is an infinite set.

3. The set of all strings ¥* over a finite alphabet X. All letters of ¥ are
contained in ¥* and if u and v are words out of ¥* so is the word uv, see
Section 1.2. This is an infinite set.

All the previous examples have in common that there is an underlying well-
founded ordering on the sets induced by the construction. The minimal elements
for the Sudoku are the problem states (N; T; T), for the natural numbers it is
0 and for the set of strings it is the empty word. Now if we want to prove
a property of an inductive set it is sufficient to prove it (i) for the minimal
element(s) and (ii) assuming the property for an arbitrary set of elements, to
prove that it holds for all elements that can be constructed “in one step” out
those elements. This is the principle of Noetherian Induction.

Theorem 1.5.2 (Noetherian Induction). Let (M, >) be a well-founded order-
ing, and let @) be a predicate over elements of M. If for all m € M the implication

if @Q(m'), for all m' € M so that m > m’, (induction hypothesis)
then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all m € M.

22 CHAPTER 1. PRELIMINARIES

Proof. Let X = {m € M | Q(m) does not hold}. Suppose, X # 0. Since (M, >
) is well-founded, X has a minimal element m,. Hence for all m’' € M with
m' < my the property @Q(m') holds. On the other hand, the implication which
is presupposed for this theorem holds in particular also for m;, hence Q(m1)
must be true so that m; cannot be in X - a contradiction. O

Note that although the above implication sounds like a one step proof tech-
nique it is actually not. There are two cases. The first case concerns all elements
that are minimal with respect to < in M and for those the predicate @) needs
to hold without any further assumption. The second case is then the induction
step showing that by assuming () for all elements strictly smaller than some m,
we can prove it for m.

Now for context free grammars. *** Motivate Further *** Let G =
(N, T, P,S) be a context-free grammar (possibly infinite) and let ¢ be a property
of T* (the words over the alphabet T of terminal symbols of G).

q holds for all words w € L(G), whenever one can prove the following two
properties:

1. (base cases)
g(w") holds for each w' € T* so that X ::= w' is a rule in P.

2. (step cases)
If X = woXowy ... wy Xpwpi1 is in P with X; € N, w; € T*, n > 0,
then for all w} € L(G, X;), whenever ¢(w}) holds for 0 < i < n, then also
g(wowwy ... wpwhwyy1) holds.

Here L(G, X;) C T* denotes the language generated by the grammar G from
the nonterminal X;.

Let G = (N,T,P,S) be an unambiguous (why?) context-free grammar. A
function f is well-defined on L(G) (that is, unambiguously defined) whenever
these 2 properties are satisfied:

1. (base cases)
f is well-defined on the words w’ € T* for each rule X ::= w' in P.

2. (step cases)
IfX = woXow; ... w,X,wyy1 isarulein P then f(wowjw ... wpw, Wpt1)
is well-defined, assuming that each of the f(w}) is well-defined.

(3

1.6 Rewrite Systems

The final ingredient to actually start the journey through different logical sys-
tems is rewrite systems. Here I define the needed computer science background
for defining algorithms in the form of rule sets. In Section 1.1 the rewrite rules
Deduce, Conflict, Backtrack, and Fail defined an algorithm for solving 4 x 4
Sudokus. The rules operate on the set of Sudoku problem states, starting with
a set of initial states (N; T; T) and finishing either in a solution state (N; D; T)

1.6. REWRITE SYSTEMS 23

or a fail state (IV; T;L). The latter are called normal forms (see below) with
respect, to the above rules, because no more rule is applicable to solution state
(N;D;T) or a fail state (IV; T; L).

Definition 1.6.1 (Rewrite System). A rewrite system is a pair (M, —), where
M is a non-empty set and - C M x M is a binary relation on M. Figure 1.4
defines the needed notions for —.

=% = {(a,a)|ae M} identity

Sl = i i + 1-fold composition

=T = Ujso ' transitive closure

=% = U =" = 2T U0 reflexive transitive closure
== = U0 reflezive closure

-1 =« ={(be)|e—=b} inverse

& = U« symmetric closure

ot = («)F transitive symmetric closure
o = (o) refl. trans. symmetric closure

Figure 1.4: Notation on —

For a rewrite system (M, —) consider a sequence of elements a; that are
pairwise connected by the symmetric closure, i.e., a; ¢ as < a3z... & a,. We
say that a; is a peak in such a sequence, if actually a;—1 < a; = a;41.

Actually, in Definition 1.6.1 T overload the symbol — that has already
denoted logical implication, see Section 1.4, with a rewrite relation.
This overloading will remain throughout this book. The rule symbol

= is only used on the meta level in this book, e.g., to define the Sudoku algo-
rithm on problem states, Section 1.1. Nevertheless, this meta rule systems are
also rewrite systems in the above sense. The rewrite symbol — is used on the
formula level inside a problem state. This will become clear when I turn to more
complex logics starting from Chapter 2.

Definition 1.6.2 (Reducible). Let (M,—) be a rewrite system. An element
a € M is reducible, if there is a b € M so that a — b. An element a € M is in
normal form (irreducible), if it is not reducible. An element ¢ € M is a normal
form of b, if b —* ¢ and ¢ is in normal form, notated ¢ = b| (if the normal
form of b is unique). Two elements b and ¢ are joinable, if there is an a so that
b —* a *< ¢, notated b | c.

Definition 1.6.3 (Properties of —). A relation — is called

Church-Rosser if b* cimplies b | ¢

confluent if b "« a —* cimplies b | ¢

locally confluent if b < a — ¢ implies b | ¢

terminating if there is no infinite descending chain by — by ...
normalizing if every b € A has a normal form

convergent if it is confluent and terminating

24 CHAPTER 1. PRELIMINARIES

Lemma 1.6.4. If — is terminating, then it is normalizing.

The reverse implication of Lemma 1.6.4 does not hold. Assuming this
is a frequent mistake. Consider M = {a,b, ¢} and the relation a — b,
b — a, and b — c. Then (M, —) is obviously not terminating, because
we can cycle between a and b. However, (M, —) is normalizing. The normal form
is ¢ for all elements of M. Similarly, there are rewrite systems that are locally

confluent, but not confluent, see Figure ??. *** to be done *** In the context
of termination the property holds, see Lemma 1.6.6.

Theorem 1.6.5. The following properties are equivalent for any rewrite system
(S, —):

(i) — has the Church-Rosser property.

(if) — is confluent.

Proof. (i) = (ii): trivial.
(ii) = (i): by induction on the number of peaks in the derivation b <* ¢. O

Lemma 1.6.6 (Newman’s Lemma [?]: Confluence versus Local Confluence).
Let (M, —) be a terminating rewrite system. Then the following properties are
equivalent:

(i) — is confluent

(if) — is locally confluent

Proof. (i) = (ii): trivial.

(ii) = (i): Since — is terminating, it is a well-founded ordering (see Ex-
ercise ?77?). This justifies a proof by Noetherian induction where the property
Q(a) is “a is confluent”. Applying Noetherian induction, confluence holds for
all a’ € M with a =% a' and needs to be shown for a. Consider the confluence
property for a: b *<— a —* ¢. If b = a or ¢ = a the proof is done. For otherwise,
the situation can be expanded to b *« b’ + a — ¢ —* ¢. By local confluence
there is an o' with b’ —=* o’ *< ¢’. Now d/, b, ¢ are strictly smaller than a, they
are confluent and hence can be rewritten so a single a”, finishing the proof. O

Lemma 1.6.7. If — is confluent, then every element has at most one normal
form.

Proof. Suppose that some element a € A has normal forms b and ¢, then b *«
a —* c¢. If — is confluent, then b —* d *+ ¢ for some d € A. Since b and ¢ are
normal forms, both derivations must be empty, hence b —=° d % ¢, so b, ¢, and
d must be identical. O

Corollary 1.6.8. If — is normalizing and confluent, then every element b has
a unique normal form.

Proposition 1.6.9. If — is normalizing and confluent, then b <+* ¢ if and only
if b} = cl.

Proof. Either using Theorem 1.6.5 or directly by induction on the length of the
derivation of b <* c. O

1.6. REWRITE SYSTEMS

Historic and Bibliographic Remarks

For context free languages see [2].

25

26

CHAPTER 1. PRELIMINARIES

Chapter 2

Propositional Logic

2.1 Syntax

Consider a finite, non-empty signature ¥ of propositional variables, the “alpha-
bet” of propositional logic. In addition to the alphabet “propositional connec-
tives” are further building blocks composing the sentences (formulas) of the
language and auxiliary symbols such as parentheses enable disambiguation.

Definition 2.1.1 (Propositional Formula). The set PROP(X) of propositional
formulas over a signature ¥ is inductively defined by:

PROP(X) Comment

L connective 1 denotes “false”

T connective T denotes “true”

P for any propositional variable P € ¥
=) connective - denotes “negation”

A1) connective A denotes “conjunction”
V) connective V denotes “disjunction”

(¢ — 1) connective — denotes “implication”
(¢ <> 1) connective +> denotes “equivalence”

where ¢, 1 € PROP(X).

The above definition is an abbreviation for setting PROP(X) to be the
language of a context free grammar PROP(X) = L((N,T, P, S)) (see Defini-
tion 1.3.9) where N = {¢, ¢}, T =S U{(,)}U{L, T,~,A,V, =, <} with start
symbol rules S = L | T | (=) | (6A¢) | (6V) | (6 = v) | (6 ¢ ¢) and
S= Plorevery PE€ S, 6= L| T | (~¢) | (6A®) | (9V) | (6 = v) | (6 >),
W= LI TI(0) [(GAE)] (9VE) | (6= v) | (¢), and ¢ = P, ¢ = P
for every P € X.

As a notational convention we assume that — binds strongest and we omit
outermost parenthesis. So =P V @ is actually a shorthand for ((=P) V @). For
all other logical connectives we will explicitly put parenthesis when needed.

27

28 CHAPTER 2. PROPOSITIONAL LOGIC

From the semantics we will see that A and V are associative and commutative.
Therefore instead of ((P A @) A R) we simply write P A Q A R.

Definition 2.1.2 (Atom, Literal). A propositional formula P is called an atom.
It is also called a (positive) literal and its negation —P is called a (negative)
literal. If L is a literal, then =L = P if L = =P and =L = -P if L = P,
|- P| = P and |P| = P. Literals are denoted by letters L, K. The literals P and
=P are called complementary.

Automated reasoning is very much formula manipulation. In order to pre-
cisely represent the manipulation of a formula, we introduce positions.

Definition 2.1.3 (Position). A position is a word over N. The set of positions
of a formula ¢ is inductively defined by

pos(¢) = {e}ifpe{T,L}orpeX
pos(=p) = {e}U{lp|p € pos(¢)}
pos(¢potp) = {e}U{lp|p € pos(¢)}U{2p|p € pos(¢)}

where o € {A,V, =, <}

The prefix order < on positions is defined by p < ¢ if there is some p’ such
that pp’ = ¢. Note that the prefix order is partial, e.g., the positions 12 and 21
are not comparable, they are “parallel”, see below. By < we denote the strict
part of <, i.e.,, p < ¢ if p < ¢ but not ¢ < p. By || we denote incomparable
positions, i.e., p || ¢ if neither p < ¢, nor ¢ < p. Then we say that p is above ¢ if
p < q, pis strictly above q if p < q, and p and ¢ are parallel if p || q.

The size of a formula ¢ is given by the cardinality of pos(@): |¢| := | pos(d)].
The subformula of ¢ at position p € pos(¢) is recursively defined by ¢|. := ¢,
=@|1p = @lp, and (1 o P2)|ip = Pilp, where i € {1,2}, o € {A,V,—, <}
Finally, the replacement of a subformula at position p € pos(¢) by a formula
¢ is recursively defined by @[] := ¢ and (é1 © ¢2)[¥]1p = (d1[¢]p © ¢2),
(¢1 0 ¢2)[¢]2P = (10 ¢2[¢]P)7 where o € {/\,V,—),(—)}.

Example 2.1.4. The set of positions for the formula ¢ = (PA Q) = (P V Q)
is pos(¢) = {¢,1,11,12,2,21,22}. The subformula at position 22 is @, ¢|22 = @
and replacing this formula by P + @Q results in ¢[P ¢ Q22 = (PAQ) —
(PV (P < Q)).

A further prerequisite for efficient formula manipulation is notion of the
polarity of a subformula of ¢ at position p. The polarity considers the number
of “negations” starting from ¢ at € down to p. It is 1 for an even number along the
path, —1 for an odd number and 0 if there is at least one equivalence connective
along the path.

Definition 2.1.5 (Polarity). The polarity of a subformula of ¢ at position
p € pos(¢) is inductively defined by

2.2. SEMANTICS 29

pol(¢p,e) = 1
pol(=¢,1p) := —pol(e,p)
pol(¢1 0 ¢2,ip) = pol(¢s,p) if o € {A,V}
pol(¢1 — ¢2,1p) = —pol(¢1,p)
pol(¢1 — ¢2,2p) = pol(¢2,p)
pol(¢1 ¢ ¢2,ip) = 0

Example 2.1.6. We reuse the formula ¢ = (AAB) — (AVB) of Example 2.1.4.
Then pol(¢,1) = pol(4,11) = —1 and pol(4,2) = pol(¢,22) = 1. For the
formula ¢’ = (AA B) & (AV B) we get pol(¢’,€) = 1 and pol(¢’, p) = 0 for all
other p € pos(¢'), p # e.

2.2 Semantics

In classical logic there are two truth values “true” and “false” which we shall
denote, respectively, by 1 and 0. There are many-valued logics [21] having more
than two truth values and in fact, as we will see later on, for the definition of
some propositional logic calculi, we will need an implicit third truth value called
“undefined”.

Definition 2.2.1 ((Partial) Valuation). A Y-valuation is a map
A:¥ - {0,1}.

where {0,1} is the set of truth values. A partial ¥-valuation is a map A" : ¥' —
{0,1} where £’ C 3.

Definition 2.2.2 (Semantics). A Y-valuation A is inductively extended from
propositional variables to propositional formulas ¢, ¢ € PROP(X) by

A(L) = 0

A(T) = 1

Ad) = 1- A()
AGAY) = min({A(S), AW)))
AGVY) = max({A(6) AW)))
A 0) = max({(1-A(6)), AG)))
Al <) = if A(¢) = A(¢) then 1 else 0

If A(¢) = 1 for some X-valuation A of a formula ¢ then ¢ is satisfiable and
we write A E ¢. If A(¢) = 1 for all T-valuations A of a formula ¢ then ¢ is
valid and we write = ¢. If there is no X-valuations A for a formula ¢ where
A(¢p) = 1 we say ¢ is unsatisfiable. A formula ¢ entails v, written ¢ = ¢, if for
all ¥-valuations A whenever A = ¢ then A |= 1.

Accordingly, a formula ¢ is satisfiable, valid, unsatisfiable, respectively, with
respect to a partial valuation A’ with domain ¥', if for any valuation A with
A(P) = A'(P) for all P € ¥' the formula ¢ is satisfiable, valid, unsatisfiable,
respectively, with respect to a A.

30 CHAPTER 2. PROPOSITIONAL LOGIC

I call the fact that some formula ¢ is satisfiable, unsatisfiable, or valid, the
status of ¢. Note that if ¢ is valid it is also satisfiable, but not the other way
round.

Valuations can be nicely represented by sets or sequences of literals that do
not contain complementary literals nor duplicates. If A is a (partial) valuation
of domain ¥ then it can be represented by the set {P | P € ¥ and A(P) =
1}U{=P | P € ¥ and A(P) = 0}. For example, for the valuation A = {P,-Q}
the truth value of PV Q is A(PV Q) =1, for PV R it is A(PV R) = 1, for
“PARIitis A(-P A R) =0, and the status of =P V R cannot be established
by A. In particular, A is a partial valuation for ¥ = {P,Q, R}.

Example 2.2.3. The formula ¢ V —¢ is valid, independently of ¢. According
to Definition 2.2.2 we need to prove that for all Y-valuations A of ¢ we have
A(p vV =¢) = 1. So let A be an arbitrary valuation. There are two cases to
consider. If A(¢) = 1 then A(¢ V —¢) = 1 because the valuation function takes
the maximum if distributed over V. If 4(¢) = 0 then A(—¢) = 1 and again by
the before argument A(¢ V —¢) = 1. This finishes the proof that | ¢ V —¢.

Proposition 2.2.4. ¢ E¢ iff E¢p = ¢

Proof. (=) Suppose that ¢ entails ¢ and let A be an arbitrary X-valuation.
We need to show A = ¢ — ¢. If A(¢) = 1, then A(¢)) = 1, because ¢ entails
¥, and therefore A |= ¢ — 1. For otherwise, if A(¢) = 0, then A(¢ — ¢) =
max({(1—A(¢)), A(¥)}) = max({(1, A(¢)}) = 1, independently of the value of
A(%). In both cases A = ¢ — 1.

(<) By contraposition. Suppose that ¢ does not entail 1). Then there exists a
Y-valuation A such that A = ¢, A(¢) = 1 but A £ ¢, A(p) = 0. By definition,
Al = ¥) = max({(1 — A(@)), A(%)}) = max({(1 - 1),0}) = 0, hence ¢ — ¢
does not hold in A. O

Proposition 2.2.5. The equivalences of Figure 2.1 are valid for all formulas

b1, X-

From Figure 2.1 we conclude that the propositional language introduced
in Definition 2.1.1 is redundant in the sense that certain connectives can be
expressed by others. For example, the equivalence Eliminate — expresses im-
plication by means of disjunction and negation. So for any propositional for-
mula ¢ there exists an equivalent formula ¢’ such that ¢’ does not contain the
implication connective. In order to prove this proposition we need the below
replacement lemma.

Note that the formulas ¢ A ¢ and ¢ A ¢ are equivalent. Nevertheless,
recalling the problem state definition for Sudokus in Section 1.1 the
two states (N; f(2,3) = 1A f(2,4) = 4;T) and (NV; f(2,4) = 4 A
f(2,3) = 1; T) are significantly different. For example, it can be that the first

state can lead to a solution by the rules of the algorithm where the latter
cannot, because the latter implicitly means that the square (2,4) has already

2.2. SEMANTICS 31

I (pAB) < ¢ Idempotency A
(pVe) & ¢ Idempotency V
(II) (pNAY) & (W AP) Commutativity A
(V) & (PV) Commutativity V
(111) (A (W AX)) & ((pAY) AX) Associativity A
(VW VX)) e (eVY)VYX) Associativity V
(IV) (A (WY V X)) < (@AY)V(PpAX) Distributivity AV
(eV (W AX)) & (@VY)A(PV x) Distributivity VA
V) BABVY) & 6 Absorption AV
OV (pAY)) & @ Absorption VA
(VD) (P VY) < (mdp A—) De Morgan —V
(P AY) & (0o V) De Morgan —A
(VII) (P A=) < L Introduction L
(pV—9) T Introduction T
=T L Propagate =T
Al T Propagate =L
(PAT) < & Absorption TA
(VL)< o Absorption LV
(79) < ¢ Absorption ==
(¢ = L)< —o Eliminate — L
(L=9)T Eliminate 1 —
(p—=T)<T Eliminate — T
(T—=9) <o Eliminate T —
(g L)< -0 Eliminate 1 <
(P& T)e o Eliminate T <
(pVT)eT Propagate T
(pAL) & L Propagate L
(VIII) (p =) & (mp V) Eliminate —

(IX) (p 1)) < (= Y)A () — ¢) Eliminatel «
(¢ <) < (pAY)V (mp A=) Eliminate2 <

Figure 2.1: Valid Propositional Equivalences

32 CHAPTER 2. PROPOSITIONAL LOGIC

been checked for all values smaller than 4. This reveals the important point that
arguing by logical equivalence in the context of a rule set manipulating formulas
can lead to wrong results.

Lemma 2.2.6 (Formula Replacement). Let ¢ be a propositional formula con-
taining a subformula ¢ at position p, i.e., ¢|, = . Furthermore, assume

= ¢ x. Then = ¢ ¢ ¢[x],-

Proof. By induction on |p| and structural induction on ¢. For the base step let
p =€ and A be an arbitrary valuation.

A(p) = A(Y) (by definition of replacement)
= A(x) (because A = ¢ < x)
= A(d[x]e) (by definition of replacement,)

For the induction step the lemma holds for all positions p and has to be
shown for all positions ip. By structural induction on ¢ I show the cases where
¢ = g1 and ¢ = @1 — @2 in detail. All other cases are analogous.

If = —¢1 then showing the lemma amounts to proving = —¢1 < =1 [x]1p-
Let A be an arbitrary valuation.

A(=¢1) =1 - A(d1) (expanding semantics)
=1-A(¢1][x]p) (by induction hypothesis)
= A(=d[x]1p) (applying semantics)

If ¢ = ¢1 — ¢2 then showing the lemma amounts to proving the two cases
F (01 = ¢2) < (¢1 = d2)[x]1p and |= (61 = ¢2) < (¢1 = ¢2)[x]2p- Both

cases are similar so I show only the first case. Let A be an arbitrary valuation.

A(p1 = ¢2) = max({(1 — A(é1)), A(d2)}) (expanding semantics)
=max({(1 — A(¢1[x]p)), A(#2)}) (by induction hypothesis)
= A((¢1 = ¢2)[x]1p) (applying semantics)

O

Lemma 2.2.7 (Polarity Dependent Replacement). Consider a formula ¢, po-
sition p € pos(¢), pol(¢,p) = 1 and (partial) valuation A with A(¢) = 1. If for
some formula ¢, A(y)) =1 then A(¢[¢)],) = 1. Symmetrically, if pol(¢,p) = —1
and A(y) = 0 then A(¢[¢],) = 1.

Proof. By induction on the length of p. O

Note that the case for the above lemma where pol(¢,p) = 0 is actually
Lemma 2.2.6.

2.3. ABSTRACT PROPERTIES OF CALCULI 33
The equivalences of Figure 2.1 show that the propositional language
introduced in Definition 2.1.1 is redundant in the sense that certain

connectives can be expressed by others. For example, the equivalence Elimi-
nate — expresses implication by means of disjunction and negation. So for any
propositional formula ¢ there exists an equivalent formula ¢’ such that ¢’ does

not contain the implication connective. In order to prove this proposition the
above replacement lemma, is key.

2.3 Abstract Properties of Calculi

A proof procedure can be sound, complete, strongly complete, refutationally
complete or terminating. Terminating means that it terminates on any input
formula. Now depending on whether the calculus investigates validity (unsatis-
fiability) or satisfiability the before notions have a different meaning.

Validity Satisfiability
Sound Whenever the calculus | Whenever the calculus
outputs a proof the | outputs a model the
formula is valid. formula has a model.
Complete If the formula is valid the | If the formula is satisfi-
calculus outputs a proof. able, the calculus outputs
a model.
Strongly For any proof of the for- | For any model of the for-
Complete mula, there is a sequence | mula, there is a sequence
of rule applications that | of rule applications that
generates this proof. generates this model.

There are some assumptions underlying these informal definitions. First, the
calculus actually produces a proof in case of investigating validity, and in case of
investigating satisfiability it produces a model. This in fact requires the notion
of a proof and a model. Then soundness means in both cases that the calculus
has no bugs. The results it produces are correct. Completeness means that if
there is a proof (model) for a formula, the calculus will eventually find it. Strong
completeness requires in addition that any proof (model) can be found by the
calculus. A variant of complete calculus is a refutationally complete calculus: a
calculus is refutationally complete, if for any unsatisfiable formula it outputs
a proof of contradiction. Many automated theorem procedures like resolution
(see Section 2.7), or tableau (see Section 2.5) are actually only refutationally
complete.
mination. A sound and complete (strongly) complete calculus needs
not to be terminating. For example, while investigating validity of an

invalid formula, a sound and complete calculus for validity may not terminate.

Note that soundness and completeness are not closely related to ter-

34 CHAPTER 2. PROPOSITIONAL LOGIC

P Q
0 0
0 1
10
11

)

Figure 2.2: Truth Table for (P A Q) —» P

A sound and terminating procedure needs not to be complete. It can simply
terminate, “giving up”, without producing a proof (model).

2.4 Truth Tables

The first calculus I consider are truth tables. For example, consider proving va-
lidity of the formula ¢ = (A A B) — A. According to Definition 2.2.2 this is the
case if actually for all valuations A over ¥ = {4, B} we have A(¢) = 1. The
extension of A to formulas is defined inductively over the connectives, so if the
result of A4 on the arguments of a connective is known, it can be straightfor-
wardly computed for the overall formula. That’s the idea behind truth tables.
We simply make all valuations A on ¥ explicit and then extend it connective by
connective bottom-up to the overall formula. Stated otherwise, in order to es-
tablish the truth value for a formula ¢ we establish it subformula by subformula
of ¢ according to <. If p,q € pos(¢) and p < ¢ then we first compute the truth
value for ¢|,. The truth table for (P A Q) — P is then depicted in Figure 2.2

Definition 2.4.1 (Truth Table). Let ¢ be a propositional formula over variables
Py,...,P,, p; € pos(¢), 1 < i <k and pr, = €. Then a truth table for ¢ is a
table with n 4+ k columns and 2™ + 1 rows of the form

Po|l...|Pi] ol |- | 9l
010 Ak [] Al
L] 1| A (Blpy) | - | A2n(9p)

such that the A; are exactly the 2™ different valuations for Py, ..., P, and either
Di || Pixj Or pi > pitj, for all 4,5 > 0, i + j < k and whenever ¢|,, has a proper
subformula 1 that is not an atom, there is exactly one j < i with ¢[,, = 1.

Now given a truth table for some formula ¢, ¢ is satisfiable, if there is at
least one 1 in the ¢ column. It is valid, if there is no 0 in the ¢ column. It is
unsatisfiable, if there is no 1 in the ¢ column. So truth tables are a simple and
“easy” way to establish the status of a formula. They need not to be completely
computed in order to establish the status of a formula. For example, as soon as
the column of ¢ in a truth table contains a 1 and a 0, then ¢ is satisfiable but
neither valid nor unsatisfiable.

2.4. TRUTH TABLES 35

P Q R|PVQ|PVR|(PVQ)+ (PVR)
0 0 0] 0 0 1
01 0| 1 0 0
1 0 0] 1 1 1
1 1 0| 1 1 1
00 1] 0 1 0
01 1| 1 1 1
1 0 1] 1 1 1
1 1 1| 1 1 1

Figure 2.3: Truth Table for (P V Q) + (P V R)

The formula (P V Q) < (P V R) is satisfiable but not valid. Figure 2.3
contains a truth table for the formula.

Of course, there are cases where a truth table for some formula ¢ can have
less columns than the number of variables occurring in ¢ plus the number of
subformulas in ¢. For example, for the formula ¢ = (PVQ)A (R = (PV Q))
only one column with formula (P V @) is needed for both subformulas ¢|; and
¢|22. In general, there is only for each different subformula a column is needed.
Detecting subformula equivalence is beneficial. For the above example, this was
simply syntactic, i.e., the two subformulas ¢|; and ¢|s2. But what about a
slight variation of the formula ¢’ = (PV Q) A (R — (QV P))? Strictly speaking,
now the two subformulas ¢'[; and ¢'[22 are different, but since disjunction is
commutative, they are equivalent. One or two columns in the truth table for the
two subformulas? Again, saving a column is beneficial but in general, detecting
equivalence of two subformulas may become as difficult as checking whether the
overall formula is valid. A compromise, often performed in practice, are normal
forms that guarantee that certain occurrences of equivalent subformulas can
be found in polynomial time. For our example, we can simply assume some
ordering on the propositional variables and assume that for a disjunction of two
propositional variables, the smaller variable always comes first. So if P < @
then the normal form of PV @ and @ V P is in fact PV Q.

In practice, nobody uses truth tables as a reasoning procedure. Worst
case, computing a truth table for checking the status of a formula ¢
requires O(2") steps, where n is the number of different propositional

variables in ¢. But this is actually not the reason why the procedure is imprac-
tical, because the worst case behavior of all other procedures for propositional
logic known today is also of exponential complexity. So why are truth tables
not a good procedure? The answer is: because they do not adapt to the inher-
ent structure of a formula. The reasoning mechanism of a truth table for two
formulas ¢ and v sharing the same propositional variables is exactly the same:
we enumerate all valuations. However, if ¢ is, e.g., of the form ¢ = P A ¢’ and
we are interested in the satisfiability of ¢, then ¢ can only become true for a
valuation A with A(P) = 1. Hence, 2"~! rows of ¢’s truth table are superflu-

36 CHAPTER 2. PROPOSITIONAL LOGIC
« Left Descendant | Right Descendant
- ¢ ¢
d1 A P2 1 ¢2
d1 & P2 $1 = P2 2 = ¢1
(1 V ¢o) -1 —¢2
—(¢1 — ¢2) b1 o
B8 Left Descendant | Right Descendant
1V P2 b1 P2
D1 — P2 -1 ¢2
—(p1 A p2) Py P
(1 & g2) | (P = ¢2) (2 — ¢1)

Figure 2.4: a- and g-Formulas

ous. All procedures I will introduce in the sequel, automatically detect this (and
further) specific structures of a formula and use it to speed up the reasoning
process.

2.5 Semantic Tableaux

Like resolution, semantic tableaux were developed in the sixties, independently
by Lis [14] and Smullyan [19] on the basis of work by Gentzen in the 30s [11]
and of Beth [3] in the 50s. For an at that time state of the art overview consider
Fitting’s book [10].

In contrast to the calculi introduced in subsequent sections, semantic tableau
does not rely on a normal form of input formulas but actually applies to any
propositional formula. The formulas are divided into a- and S-formulas, where
intuitively an « formula represents a (hidden) conjunction and a 8 formula a
(hidden) disjunction.

Definition 2.5.1 (a-, 8-Formulas). A formula ¢ is called an a-formula if ¢ is

a formula ==, @1 A da, 1 & P2, =(¢1 V ¢2), or =(d1 = ¢2). A formula ¢ is
called an B-formula if ¢ is a formula ¢, Vo, 1 — ¢a, =(d1 Ad2), or =(¢h1 < P2).

A common property of a-, B-formulas is that they can be decomposed into
direct descendants representing (modulo negation) subformulas of the respective
formulas. Then an a-formula is valid iff all its descendants are valid and a -
formula is valid if one of its descendants is valid. Therefore, the literature uses
both the notions semantic tableaux and analytic tableaux.

Definition 2.5.2 (Direct Descendant). Given an a- or S-formula ¢, Figure 2.4
shows its direct descendants.

Duplicating ¢ for the a-descendants of —=—¢ is a trick for conformity. Any
propositional formula is either an a-formula or a S-formula or a literal.

2.5. SEMANTIC TABLEAUX 37

Proposition 2.5.3. For any valuation A: (i) if ¢ is an a-formula then A(¢) =1
iff A(¢1) =1 and A(¢=2) =1 for its descendants ¢y, ¢=. (ii) if ¢ is a S-formula
then A(¢) = 1iff A(¢1) =1 or A(p2) =1 for its descendants ¢1, ¢s.

The tableaux calculus operates on states that are sets of sequences of for-
mulas. Semantically, the set represents a disjunction of sequences that are in-
terpreted as conjunctions of the respective formulas. A sequence of formulas
(¢1,-..,0n) is called closed if there are two formulas ¢; and ¢; in the sequence
where ¢; = ~¢; or ~¢; = ¢;. A state is closed if all its formula sequences are
closed. A state actually represents a tree and this tree is called a tableau in
the literature. So if a state is closed, the respective tree, the tableau is closed
too. The tableaux calculus is a calculus showing unsatisfiability. Such calculi are
called refutational calculi. Later on soundness and completeness of the calculus
imply that a formula ¢ is valid iff the rules of tableaux produce a closed state
starting with N = {(—¢)}.

A formula ¢ occurring in some sequence is called open if in case ¢ is an
a-formula not both direct descendants are already part of the sequence and if
it is a S-formula none of its descendants is part of the sequence.

a-Expansion NO{(1.,y 0n)} =1 NIH{(d1,...,0, ..., dn,¥1,02)}

provided v is an open a-formula, 11, 15 its direct descendants and the sequence
is not closed.

B-Expansion NO{(1, .-,y n)} =1 NO{(d1,...,0, ..., ¢n,101) Y
{(@1,. s, b0, 12)}

provided v is an open [-formula, 1, ¥ its direct descendants and the sequence
is not closed.

Consider the question of validity of the formula (PA-(QV-R)) = (QAR).
Applying the tableau rules generates the following derivation:

{([(PA-(@V ~R)) = (Q A R)])}
a-Expansion =% {(=[(P A =(Q V —~R)) = (Q A R)],
PA _'(Q \% _'R)a _'(Q A R)7 P, _'(Q \% _'R)7 -Q, _'_'RaR)}
B-Expansion =1 {(=[(P A =(Q V —R)) = (Q A R)],
PA _'(Q \ _'R)7 _'(Q A R)a Pa _'(Q \ _'R)a _'Qa _'_'RaRa _'Q)a
(=[(PA~(QV-R)) = (QAR),
PA —|(Q \% —IR), —I(Q A R), P, —|(Q V —|R), -@Q,—R,R, —|R)}

The state after 8-expansion is final, i.e., no more rule can be applied. The
first sequence is not closed, whereas the second sequence is because it contains R
and —R. A tree representation, where common formulas of sequences are shared,
can be found in Figure 2.5.

Theorem 2.5.4 (Semantic Tableaux is Sound). If for a formula ¢ the tableaux
calculus computes {(—¢)} =% N and N is a closed, then ¢ is valid.

38 CHAPTER 2. PROPOSITIONAL LOGIC

S[(PA-(QV=R)) = (QAR)]
PA=(QV-R)
~(Q AR)
P
~(QV —R)
—Q
-—R
R

/\

-Q R
Figure 2.5: A Tableau for (P A —=(Q V =R)) = (Q A R)

Proof. Tt is sufficient to show the following: (i) if V is closed then the disjunction
of the conjunction of all sequence formulas is unsatisfiable (ii) all two tableaux
rules preserve satisfiability.

Part (i) is obvious: if N is closed all its sequences are closed. A sequence is
closed if it contains a formula and its negation. The conjunction of two such
formulas is unsatisfiable.

Part (ii) is shown by induction on the length of a derivation and then by a
case analysis for the two rules. a-Expansion: for any valuation A if A(y) =1
then A(¢n) = A(y2) = 1. B-Expansion: for any valuation A if A(y) = 1 then
A1) =1 or A(¢p2) = 1 (see Proposition 2.5.3). O

Theorem 2.5.5 (Semantic Tableaux Terminates). Starting from a start state
{(¢)} for some formula ¢, =7 is well-founded.

Proof. Take the two-folded multi-set extension of the lexicographic extension
of > on the naturals on triples (n, k,!). The measure y is first defined on for-
mulas by u(¢) := (n, k,l) where n is the number of equivalence symbols in ¢,
k is the sum of all disjunction, conjunction, implication symbols in ¢ and [is
|¢|. On sequences (¢1,...,¢,) the measure is defined to deliver a multiset by
w((op1,...,0n)) == {t1,...,tn} where t; = u(¢;) if ¢ is open in the sequence
and t; = (0,0,0) otherwise. Finally, u is extended to states by computing the
multiset u(N) := {u(s) | s € N}.

Note, that a-, as well as f-expansion strictly extend sequences. Once a for-
mula is closed in a sequence by applying an expansion rule, it remains closed
forever in the sequence.

An a-expansion on a formula 1)1 A on the sequence (¢1, ..., 1A Y2, ..., dn)
results in (@1, ...,9%1 A2, ..., dn,¥1,12). It needs to be shown u((¢1,...,9%1 A

1:[]27 T ¢n)) >mul M((Qsla e 717[]1 A ¢2, e ¢nawlaw2))‘ In the second sequence
w(tby A e) = (0,0,0) because the formula is closed. For the triple (n,k,1)

assigned by p to ¢ A1y in the first sequence, it holds (n,k,l) >1ex (1),

2.6. NORMAL FORMS 39

(n,k,1) >1ex p(t2) and (n,k,1) >ex (0,0,0), the former because the 1; are
subformulas and the latter because | # 0. This proves the case.

A (-expansion on a formula ©); V)2 on the sequence (¢1, ..., 101 Vo, ..., dn)
results in (¢1, . ,’(/11 \/’QZJQ, ey ¢n7'¢}1)7 (¢1, . ,’(/11 \/’QZJQ, ey ¢n,’¢12). It needs to
be shown u((¢1, Ce ,’(ﬁl \/'(,bg, e, ¢n)) >mul H((¢1, . ,'(ﬁl \/’QZJQ, . ¢n7'¢}1)) and

M((¢1, N awl Vil]g, ey ¢n)) >mul /.L((¢1, e ,11]1 V’(ﬁQ, ey ¢n,w2)) In the derived
sequences u(¢; V) = (0,0,0) because the formula is closed. For the triple

(n, k,1) assigned by p to ¢ V 12 in the starting sequence, it holds (n, k,1) >jex
w(hr), (n, k, 1) >1ex u(tp2) and (n, k,1) >1ex (0,0,0), the former because the ;
are subformulas and the latter because [# 0. This proves the case. O

Theorem 2.5.6 (Semantic Tableaux is Complete). If ¢ is valid, semantic
tableaux computes a closed state out of {(—¢)}.

Proof. If ¢ is valid then —¢ is unsatisfiable. Now assume after termination the
resulting state and hence at least one sequence is not closed. For this sequence
consider a valuation A consisting of the literals in the sequence. By assumption
there are no opposite literals, so A is well-defined. I prove by contradiction that
A is a model for the sequence. Assume not. Then there is a minimal formula
in the sequence, with respect to the ordering on triples considered in the proof
of Theorem 2.5.5, that is not satisfied by 4. By definition of A the formula
cannot be a literal. So it is an a-formula or a S-formula. In all cases at least one
descendant formula is contained in the sequence, is smaller than the original
formula, false in A (Proposition 2.5.3) and hence contradicts the assumption.
Therefore, A satisfies the sequence contradicting that —¢ is unsatisfiable. [

Corollary 2.5.7 (Semantic Tableaux generates Models). Let ¢ be a formula,
{(¢)} =% N and s € N be a sequence that is not closed and neither a-expansion
nor 3-expansion are applicable to s. Then the literals in s form a valuation that
is a model for ¢.

Proof. A consequence of the proof of Theorem 2.5.6 O

Consider the example tableau shown in Figure 2.5. The open first branch
corresponds to the valuation A = {P, R, ~Q} which is a model of the formula
S[(PA=(QV-R)) = (QAR).

2.6 Normal Forms

In order to check the status of a formula ¢ via truth tables, the truth table
contains a column for the subformulas of ¢ and all valuations for its variables.
Any shape of ¢ is fine in order to generate the respective truth table. The
superposition calculus (Section 2.8) and the CDCL (Conflict Driven Clause
Learning) calculus (Section 2.10) both operate on a normal form, i.e., the shape
of ¢ is restricted. Both calculi accept only conjunctions of disjunctions of literals,
a particular normal form. It is called Clause Normal Form or simply CNF. The
purpose of this section is to show that an arbitrary formula ¢ can be effectively
transformed into an equivalent formula in CNF.

40 CHAPTER 2. PROPOSITIONAL LOGIC

2.6.1 Conjunctive and Disjunctive Normal Forms

Definition 2.6.1 (CNF, DNF). A formulais in conjunctive normal form (CNF)
or clause normal form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction of
conjunctions of literals.

So a CNF has the form A,;V; L; and a DNF the form \/; A, L; where L;
are literals. A disjunction of literals Ly V ...V L, is called a clause. In the
sequel the logical notation with V is overloaded with a multiset notation. Both
the disjunction Ly V ...V L, and the multiset {L1,...,L,} are clauses. For
clauses the letters C', D, possibly indexed are used. Furthermore, a conjunction
of clauses is considered as a set of clauses. Then, for a set of clauses, the empty
set denotes T. For a clause, the empty multiset denotes) and at the same time
1.

Although CNF and DNF are defined in almost any text book on au-
tomated reasoning, the definitions in the literature differ with respect

to the “border” cases: (i) are complementary literals permitted in a
clause? (ii) are duplicated literals permitted in a clause? (iii) are empty dis-
junctions/conjunctions permitted? For the above Definition 2.6.1 the answer is
“yes” to all three questions. A clause containing complementary literals is valid,
as in PV @ V —P. Duplicate literals may occur, as in PV Q V P. The empty
disjunction is 1 and the empty conjunction T, i.e., the empty disjunction is
always false while the empty conjunction is always true.

Checking the validity of CNF formulas or the unsatisfiability of DNF formu-
las is easy: (i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and —P, (ii) conversely, a formula
in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of
complementary literals P and —P.

On the other hand, checking the unsatisfiability of CNF formulas or
the validity of DNF formulas is coNP-complete. For any propositional

formula ¢ there is an equivalent formula in CNF and DNF and I will
prove this below by actually providing an effective procedure for the transforma-
tion. However, also because of the above comment on validity and satisfiability
checking for CNF and DNF formulas, respectively, the transformation is costly.
In general, a CNF or DNF of a formula ¢ is exponentially larger than ¢ as
long as the normal forms need to be logically equivalent. If this is not needed,
then by the introduction of fresh propositional variables, CNF or DNF normal
forms for ¢ can be computed in linear time in the size of ¢. More concretely,
given a formula ¢ instead of checking validity the unsatisfiability of —¢ can be
considered. Then the linear time CNF normal form algorithm (see Section ?7)
computes a satisfiability preserving formula, i.e., the linear time CNF of —¢ is
unsatisfiable iff —¢ is.

2.6. NORMAL FORMS 41

ElimEquiv x[(¢ < ¢¥)], =Bcene X[(6 = ¥) A (Y = d)],
ElimImp x[(¢ = ¢¥)], =Bene X[(7¢ VY],
PushNegl x[-(¢V ¥)], =Bene X[(00 A)],

[
PushNeg2 x[-(¢ A)], =Bene X[(—0V)],
PushNeg3 x[-—¢], =Bone X[9]p
PushDisj x[(¢1 A ¢2) V], =Bene X[(61 V) A (2 V)],
PushConj x[(¢1V ¢2) AY], =BDNE X[(01 AY)V (62 A)],p
EimTB1 Xx[(@#AT)l, =Bonre X[9lp
ElimTB2 x[(¢A L)], =rone X[Llp
ELimTB3 x[(¢V T)l, =rone X[Tlp
ElimTB4 x[(¢V 1), =Bone X[9]p
ElimTB5 x[-1], =scne X[Tlp
ElimTB6 x[-T], =scne X[y

Figure 2.6: Basic CNF/DNF Transformation Rules

Proposition 2.6.2. For every formula there is an equivalent formula in CNF
and also an equivalent formula in DNF.

Proof. See the rewrite systems =pgcnrF, and = acnrk below and the lemmata on
their properties. O

2.6.2 Basic CNF/DNF Transformation

The below algorithm benf is a basic algorithm for transforming any propositional
formula into CNF, or DNF if rule PushDisj is replaced by PushConj.

Algorithm 2: benf(¢)

Input : A propositional formula ¢.

Output: A propositional formula v equivalent to ¢ in CNF.
whilerule (ElimEquiv(¢)) do ;

whilerule (ElimImp(¢)) do ;

whilerule (ElimTB1(¢),...,ElimTB6(¢)) do ;
whilerule (PushNegl(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;

D A W N =

In the sequel I study only the CNF version of the algorithm. All properties
hold in an analogous way for the DNF version. To start an informal analysis of
the algorithm, consider the following example CNF transformation.

42 CHAPTER 2. PROPOSITIONAL LOGIC

~((PVQ) & (P—=(QAT))

SSeRl S((PVQ) = (P = (QAT)IALP = (QAT)) = (PVQ))

=gk ~(L(PVQ) V(P @QATNIAIP = (QAT) = (PVQ)D
Speke ([FPVQ)V (P = (QATNIA[(P = (QAT)V(PVQ))
S3R2 S([A(PVQ)V (P = (QAT)A[(-PV(QAT) V(PVQ))
Spcke ((PVQ)VPVQATIAEPYQAT)V(PVQ))
SER S S([~(PVQ)V (=P V Q) A[=(=PV Q) V (PV Q)

SR S([(-P A=Q) V (=P V Q)] A[A(=PV Q) V (PV Q)])

SR e S([(AP A=Q) V (=P V Q)] A[(-=P A=Q) V (PV Q)])

S5t (P A-Q)V (-PV Q) A[(-=P A-Q) V (PV Q)])

SEeNE + [(57PV=2Q) A (-=P AQ)]V [(+==P V==Q) A (<P A-Q)]

[
Shonb [(PVQ)A(PA=Q)]V (=P V Q) A (=P A=Q)]
=Spone” (PVQV-PVQ)A(PVQV-P)A(PVQV=Q)A(PV-PV
QAN (PV-PYA(PV-Q)AN(-QV=PVQ)A(=QV-=P)A(=QV Q)

Figure 2.7: Example Basic CNF Transformation

Example 2.6.3. Consider the formula =((PV Q) < (P = (Q A T))) and the
application of =gonr depicted in Figure 2.7. Already for this simple formula
the CNF transformation via =pcng becomes quite messy. Note that the CNF
result in Figure 2.7 is still highly redundant. If I remove all disjunctions that
are trivially true, because they contain a propositional literal and its negation,
the result becomes
(PV=Q)V(-QV-P)A(=QV Q)
now elimination of duplicate literals beautifies the third clause and the overall
formula into
(PV=Q)V(~QV-P)A-Q.
Now let’s inspect this formula a little closer. Any valuation satisfying the formula
must set A(Q) = 0, because of the third clause. But then the first two clauses
are already satisfied. The formula # @ subsumes the formulas P V =@ and
=@ V P in this sense. The notion of subsumption will be discussed in detail
for clauses in Section 2.7.
So it is eventually equivalent to
-Q.
The correctness of the result is obvious by looking at the original formula and
doing a case analysis. For any valuation A with A(Q) = 1 the two parts of the
equivalence become true, independently of P, so the overall formula is false.
For A(Q) = 0, for any value of P, the truth values of the two sides of the
equivalence are different, so the equivalence becomes false and hence the overall
formula true.

After proving =pcNp correct and terminating, in the succeeding section I
will present an algorithm = scnp that actually generates =@ out of =((PVQ) +
(P — (QAT))) and does this without generating the mess of formulas =gceNr

2.6. NORMAL FORMS 43

does. Please recall that the above rules apply modulo commutativity of V, A,
e.g., the rule ElimTB1 is both applicable to the formulas ¢ A T and T A ¢.

Figure 2.1 contains more potential for simplification. For example, the
idempotency equivalences (¢ A ¢) <> ¢, (¢ V ¢) <+ ¢ can be turned
into simplification rules by applying them left to right. However, the

way they are stated they can only be applied in case of identical subformulas.
The formula (PV Q) A (QV P) does this way not reduce to (Q V P). A solution
is to consider identity modulo commutativity. But then identity modulo com-
mutativity and associativity (AC) asin (PV Q) V R) A (QV (R V P) is still
not detected. On the other hand, in practice, checking identity modulo AC is
often too expensive. An elegant way out of this situation is to implement AC
connectives like V or A with flexible arity, to normalize nested occurrences of
the connectives, and finally to sort the arguments using some total ordering.
Applying this to (PV Q) V R) A (Q V (R V P) with ordering R > P > @ the
result is (Q VPV R)A (QV PV R). Now complete AC simplification is back
at the cost of checking for identical subformulas. Note that in an appropriate
implementation, the normalization and ordering process is only done once at
the start and then normalization and argument ordering is kept as an invariant.

2.6.3 Advanced CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 can be improved in
various ways: (i) more aggressive formula simplification, (ii) renaming, (iii) po-
larity dependant transformations. The before studied Example 2.6.3 serves al-
ready as a nice motivation for (i) and (iii). Firstly, removing T from the formula
-((PVQ) & (P— (QAT))) first and not in the middle of the algorithm ob-
viously shortens the overall process. Secondly, if the equivalence is replaced
polarity dependant, i.e., using the equivalence (¢ <) < (¢ AY) V (=d A =)
and not the one used in rule ElimEquiv applied before, a lot of redundancy gen-
erated by =pcnr is prevented. In general, if ¥[¢1 <> ¢=], and pol(y,p) = —1
then for CNF transformation do 9[(é1 A ¢2) V (=1 A—¢=2)], and if pol(y,p) =1
do P[(¢1 = @2) A (d2 = ¢1)lp

Item (ii) can be motivated by a formula
P~ (P2 s (P3 s (.. (Pn,1 s Pn) ..)))

where Algorithm 2 generates a CNF with 2™ clauses out of this formula. The
way out of this problem is the introduction of additional fresh propositional
variables that rename subformulas. The price to pay is that a renamed formula
is not equivalent to the original formula due to the extra propositional variables,
but satisfiability preserving. A renamed formula for the above formula is

(Pl(—)(PQ(—)Ql))/\(Ql(—)(Pg(—)QQ))/\

where the ; are additional, fresh propositional variables. The number of clauses
of the CNF of this formula is 4(n — 1) where each conjunct (Q; <> (P; ¢ Qiy1))
contributes four clauses.

44 CHAPTER 2. PROPOSITIONAL LOGIC

Proposition 2.6.4. Let P be a propositional variable not occurring in ¢[¢],.

1. If pol(y, p) = 1, then ¢[¢], is satisfiable if and only if ¢/[P], A (P — ¢) is
satisfiable.

2. If pol(y, p) = —1, then ¢[¢], is satisfiable if and only if Y[P], A (¢ — P)
is satisfiable.

3. If pol(¢), p) = 0, then +[¢], is satisfiable if and only if ¥[P], A (P ¢ ¢) is
satisfiable.

Proof. Exercise. O

So depending on the formula 1, the position p where the variable P is in-
troduced definition of P is given by

(P = 1lp) if pol(y,p) =1
def(sp, p, P) := { (¢|p = P) if pol(y,p) = —1
(P % aplp) if pol(y,p) =0

For renaming there are several choices which subformula to choose. Ob-
viously, since a formula has only linearly many subformulas, renaming every
subformula works [20, 17]. Basically this is what I show below. In the following
section a renaming variant is introduced that produces smallest CNFs.

SimpleRenaming ® =simpRen O[P1]p: [Polps - - - [Palp. A def(d,p1, P1) A
oo A def([Pi]p, [Palps - - - [Pa=1lpn_1sPns> Pn)

provided {pi1,...,pn} C pos(¢) and for all i,i + j either p; || pi+; or p; > piyj
and the P; are different and new to ¢

Actually, the rule SimpleRenaming does not provide an effective way to
compute the set {p1,...,pn} of positions in ¢ to be renamed. Where are several
choices. Following Plaisted and Greenbaum [17], the set contains all positions
from ¢ that do not point to a propositional variable or a negation symbol. In
addition, renaming position € does not make sense because it would generate the
formula P A (P — ¢) which results in more clauses than just ¢. Choosing the
set of Plaisted and Greenbaum prevents the explosion in the number of clauses
during CNF transformation. But not all renamings are needed to this end.

A smaller set of positions from ¢, let’s call it the set of obvious positions, is
still preventing the explosion and given by the rules: (i) if ¢|, is an equivalence
and there is a position ¢ < p such that ¢|, is either an equivalence or disjunctive
in ¢ then p is an obvious position (ii) if ¢|,, is a conjunctive formula in ¢, ¢|,
is a disjunctive formula in ¢ and for all positions r with p < r < pg the formula
é|r is not a conjunctive formula then pg is an obvious position. A formula ¢|,
is conjunctive in ¢ if ¢|, is a conjunction and pol(¢,p) € {0,1} or ¢|, is a
disjunction or implication and pol(¢,p) € {0,—1}. Analogously, a formula ¢|,
is disjunctive in ¢ if ¢|, is a disjunction or implication and pol(¢,p) € {0,1} or
®|, is a conjunction and pol(¢, p) € {0, —1}.

2.6. NORMAL FORMS 45

5
[1/€]
) / \ V
[-1/1] [1/2]
| /N
Y P <—>
[1/11] [1/21] [0/22]
/N /N
[1/111] [1/112] [0/221] [0/222]
| /N | |
P Q R Q R
[-1/1111] [1/1121] [1/1122] [0/2211] [0/2221]

Figure 2.8: Tree representation of [=(=PV (Q AR))] = [PV (-Q + —R)] where
each node is annotated with its [polarity /position].

Consider as an example the formula
(=P V(@A R)] = [PV (~Q ¢ ~R)]

. Its tree representation as well as the polarity and position of each node is
shown in Figure 2.8.

The before mentioned polarity dependent transformations for equivalences
are realized by the following two rules:

ElimEquivl x[(¢ <>)], =aoxe X[(¢ = V) A (L =)],
provided pol(x,p) € {0,1}

ElimEquiv2 x[(¢ <> ¢¥)], =acnxe X[(@ A Q) V (md A=),
provided pol(y,p) = —1

Proposition 2.6.5 (Renaming Preservers Models). Let ¢ be a formula and ¢’
a renamed CNF of ¢ computed by acnf. Then any (partial) model A of ¢' is
also a model for ¢.

Proof. By an inductive argument it is sufficient to consider one renaming appli-
cation, i.e., ¢' = ¢[P], Adef(¢, p, P). There are three cases depending on the po-
larity. (i) if pol(¢, p) = 1 then ¢/ = ¢[P],AP — ¢|,. Tf A(P) = 1 then A(g|,) =1
and hence A(¢) = 1. The interesting case is A(P) = 0 and A(4|,) = 1. But
then because pol(¢,p) = 1 also A(¢) = 1 by Lemma 2.2.7. (ii) if pol(¢,p) = —1
the case is symmetric to the previous one. Finally, (iii) if pol(¢,p) = 0 for any
A satisfying ¢' it holds A(¢|,) = A(P) and hence A(¢p) = 1. O

46 CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 3: acnf(¢)

Input : A formula ¢.

Output: A formula ¢ in CNF satisfiability preserving to ¢.
whilerule (ElimTB1(¢),...,ElimTB6(¢)) do ;
SimpleRenaming($) on obvious positions;

whilerule (ElimEquivl(¢),ElimEquiv2(¢)) do ;
whilerule (ElimImp(¢)) do ;

whilerule (PushNegl(¢),...,PushNeg3(¢)) do ;
whilerule (PushDisj(¢)) do ;

return ¢;

N O R W =

S(PVQ) & (P (QAT))

=3 ~(PVQ) & (P> Q)

=Sheke (PVQ)A(P = Q) V(=(PVQ)A=(P Q)
Saone ! S(PVQ)A(RPV Q) V (<(PV Q) A=(=PV Q)))
SR> (FPA=Q)V (PA=Q) A((PVQ)V (=P V Q)

=S Ronk & (FPVP)A(=PV=Q)A(=QVP)A(=QV=Q)A(PVQV=PVQ)

Figure 2.9: Example Advanced CNF Transformation

2.6.4 Computing Small CNFs

In the previous chapter obvious positions are a suggestion for smaller CNFs
with respect to the renaming positions suggested by Plaisted and Greenbaum.
In this section I develop a set of renaming posisions that is in fact minimal with
respect to the resulting CNF. A subformula is renamed if the eventual number
of generated clauses by benf decreases after renaming [5, 16]. If formulas are
checked top-down for this condition, and profitable formulas in the above sense
are renamed, the resulting CNF is optimal in the number of clauses [5]. The
below function ac computes the number of clauses generated by the algorithm
benf, as long as the formula does not contain T or L.

A state of the art CNF algorithm first tries to simplify a formula be-
fore doing the actual CNF transformation. Eliminating T or L using

the ElimTB is a standard part of any such simplification procedure.
Further simplifications are discussed in Section 2.13.

2.6. NORMAL FORMS 47

%] ac(y) | be(v) |
b1 A P2 ac(d1) + ac(¢2) be(g1) be(¢)
b1V by ac(¢1) ac(¢2) be(¢1) + be(gz)
b1 = P2 be(g1) ac(¢2) ac(¢1) + be(gz)
d1 > do | ac(p1) be(da) + be(gr) ac(gz) | ac(dr) ac(gz) + be(dr) be(ha)
1 be(er) ac(¢1)
P 1 1

Let ¢ be a formula that does not contain L, or T, then ac(¢) computes ex-
actly the number of clauses generated by benf (). The proof is left as an exercise,
but as an example consider the case where ¢ = L ... L, is a disjunction of liter-
als. In this case benf does not change ¢ at all ad produces exactly the clause ¢.
Expanding the definition of ac(¢) produces ac(¢) = ac(Ly) ac(La) ...ac(L,) =1
because if some L; is a propositional variable, then ac(L;) = 1. If some L; is
negative, i.e., Lj = =P then ac(L;) = ac(=P) = be(P) = 1.

A renaming yields fewer clauses, if the difference between the number of
clauses generated without and with a renaming is positive. Consider the renam-
ing of a subformula at position p within a formula ¢ with fresh variable P. The
condition to be checked is

ac(y) = ac(y[Plp) + ac(def(y, p, P)).

The inequality above is not strict. If some formula ¢ = 1|, is replaced inside
¢ where ac(¢p) = ac(y¥[P],) + ac(def(y, p, P)) then this equation turns into a
strict inequality as soon as we do another replacement inside ¢. In this case
ac(def(v), p, P)) will strictly decrease. Therefore, when searching for a minimal
CNF it is mandatory to consider the above inequality non-strict.

Example 2.6.6. For a formula P; < P, renaming does not pay off. If P, is
replaced by some fresh variable @) the result is P, & Q A QQ < P, where the
original formula generates 2 clauses and the formula after replacement generates
4 clauses.

The break even point for nested equivalences is the formula P, + (P <
(P; +» Py)) where replacement at position 22 using the fresh variable @ results
in P & (P, & Q)AQ < (P; < P,). Both formulas eventually generate
8 clauses. So this is an example for the above inequality to be non-strict.

The obvious problem with this condition is that the function ac cannot be
efficiently computed in general, for it grows exponentially in the size of the in-
put formula. Moreover, a straightforward, naive top-down implementation of ac
following the above table results in an algorithm with exponential time com-
plexity, due to the duplication of recursive calls. The exponential complexity
can be avoided using a dynamic programming idea: simply store intermediate
results for subformulas. Nevertheless, because ac grows exponentially, comput-
ing ac requires arbitrary precision integer arithmetic. It turns out that this can

48 CHAPTER 2. PROPOSITIONAL LOGIC

hardly be afforded in practice. The rest of this section is therefore concerned
with a solution to this problem, i.e., I show that it is not necessary to compute
ac at all for deciding the above inequation.

Obviously, the formulas ¢ and 1 [P], differ only at position p, the other parts
of the formulas remain identical. We make use of this fact by an abstraction of
those parts of ¢ that do not influence the changed position. To this end we
introduce the notion of a coefficient as shown in Table 2.1.

(p [vl | o | by |
i | 1 Ao a? by [Tz be())
qi | 1V ay [T, ac(¢;) by
q.1 | ¢1 — ¢ by al ac(¢s)
4.2 | ¢1 = ¢ ag be(¢r) by

g1 | ¢1 & ¢ | a¥ be(da) +bY ac(ds) | al ac(pa) + bY be(gr)
q:2 | ¢1 & da | a¥be(dr) +bY ac(dr) | al ac(pr) + bY be(gr)
q.l —|¢1 bg’ a’;f

€ P 1 0

Table 2.1: Calculating the Coefficients

The coefficients determine how often a particular subformula and its negation
are duplicated in the course of a basic CNF translation. The coefficient a;ﬁ’ is the
factor of ac(¢)],) in the recursive computation whereas the factor bY is the factor
of be()]p). The first column of Table 2.1 shows the form of p, the second column
the form of ¢ directly above position p (¢ itself if p = €). The next two columns
demonstrate the corresponding recursive bottom-up calculations for a;ﬁ’ and bg’,
respectively. Applied to our starting example formula ¢ = ¢ V Vz ¢ where we
renamed position 2.1, i.e., the subformula ¢, the coefficients are a;b_l = ac(¢1)
(Table 2.1, eighth, second and last row, first column) and b;p.l = 0 (eighth, second
and last row, second column). Note that a;f (b;f) is always 0 if pol(y,p) = —1
(pol(¥,p) = 1).

Using the notion of a coefficient, the previously stated condition can be
reformulated as

a;ﬁ’ ac(q) + b;’f be(g) > a;’f + b;f’ + ac(def(y, p, P))

where we still assume that ¢ = 1|, and P is a fresh propositional variable.
Note that, since ¢ is replaced by P in 1 at position p, the coefficients al, b¥ are
multiplied by 1 in the renamed version, because ac(P) = bc(P) = 1. Depending

on the polarity of 4|, the inequality is equivalent to one of the three inequalities:
ay ac(¢) > af + ac(¢) if pol(y,p) =1
by be(4) > by + be(¢) if pol(y,p) = —1
a? ac(@) + bl be(d) > a¥ +bY + ac(¢) + be(¢) if pol(yh,p) =0

2.6. NORMAL FORMS 49

By simple arithmetical transformations, we can group all occurrences of factors
ag’, b’*p” and all occurrences of ac(¢) and bec(g), respectively:

(ay —1)(ac($) —1)>1 if pol(y,p) =1
(by — 1)(be(¢) —1)>1 if pol(y,p) = ~1
(af = D(ac(¢) — 1) + (b = 1)(be(¢) —1) =2 if pol(,p) =0

D
Let us abbreviate the product (af —1)(ac(¢) — 1) with p, and (b% —1)(bc(¢)—1)
with pp. Since neither p, nor p, can become negative, in any of the cases where
they appear, the first inequality holds if p, > 1, the second inequality holds if
pp > 1 and the third inequality holds if (i) p, > 2 or (ii) pp > 2 or (iii) p, > 1
and p, > 1. In order to check these conditions, it suffices to test whether the
coefficients a?, b and the number of clauses ac(¢), be(¢) are strictly greater
than 1, 2 or 3, respectively. This can always be checked in linear time with
respect to the size of 1. The condition ac(¢) > 1 holds iff there exists a position
p such that ¢[p1 < ¢2]p or ¢[d1 A ¢=], and pol(p,p) = 1 or ¢[d1 o P2], with
pol(¢,p) = —1 and o € {V,—}. The computations for the boolean conditions
ac(¢) > 2 and ac(¢) > 3 are depicted in Table 2.2. The computation of the
conditions for bc works accordingly, see Table 2.3.

As for the factors, Table 2.4 shows how to compute a;ﬁ’ > 1 and, following
Table 2.1, this can be extended to the other cases for the a factor and the
corresponding conditions for the b factor.

Hence we turned a test that required the computation of exponentially grow-
ing functions into a boolean condition that does not require any arithmetic
calculation at all.

Theorem 2.6.7 (Formula Renaming). Formula Renaming preserves satisfia-
bility and can be computed in polynomial time.

In order to further reduce the number of eventually generated clauses it may
still be useful to rename a formula, even if the above considerations do not apply.
For example, renaming the formula P; V (Q1 A Q=) at position 2 results in three
clauses, whereas a standard CNF translation of the original formula yields two
clauses. This calculation also applies if this situation is repeated, as in

[PLV(QiAQ)IAN[PV (QLAQ2)IN... [PV (Q1LAQ2)]

where our renaming criterion does not apply. But now a simultaneous renaming
of all occurrences (@1 A QQ2) may pay off. It results in n + 2 clauses whereas
the standard CNF translation yields 2n clauses. Hence, it is useful to search for
multiple occurrences of the same subformula. The problem here is to find an
appropriate “equality” or “instance” relation between subformulae. In our ex-
ample syntactic equality was sufficient to detect all such occurrences. In general,
a matching process — probably with respect to the commutativity, associativity
of some logical operators or even logical implication — may be needed to obtain a
suitable renaming result. So we run here into a tradeoff between compact CNFs
and computational complexity to achieve these CNFs.

50 CHAPTER 2. PROPOSITIONAL LOGIC

‘ W ‘ ac(y) > 1
o1 N ¢ | true

$1 Vo2 | ac(pr) > 1or ac(pe) > 1

1 — ¢2 | be(pr) > 1or ac(da) > 1

@1 & o | true

-6 | be(g) > 1

L v | ac(y) > 2 |
$1 NPy | ac(gr) > 1or ac(ge) > 1

$1 Vo | ac(g;) > 2or [ac(gr) > 1 and ac(gs) > 1]

1 — d2 | be(pr) > 2o0r ac(pz) > 2 or [be(pr) > 1 and ac(gs) > 1]
@1 < ¢o | at least one out of ¢y, ¢ is not a literal

) be(g) > 2

[v] ac(y) > 3 |
d1Npa | ac(g;) > 2
1V o2 | ac(d;) > 3or[ac(e;) > 2 and ac(g;) > 1,i # j]
$1 = ¢2 | be(gr) > 2or ac(gz) > 2 or [be(¢pr) > 1 and ac(g2) > 1]
¢1 <> ¢o | ac(d;) > 3 or be(p;) > 3 or ¢ is not a literal

) be(g) > 3

)

Table 2.2: The Boolean Conditions for ac

For the formulation of the optimized CNF algorithm I rely on the equiv-
alences from categories (I), (V) and (VII) from Figure 2.1. They are used to
transform the formula. The equivalences are always applied from left to right.
So “applying” such an equivalence means turning it into a rule. For example,
the equivalence (¢ V (¢ A) <> ¢ from category (V) generates the rule

xloV (@A), =ocnr X[8lp
Applying this rule with respect to commutativity of V means, for example, that
both the formulas (¢ V (¢ A1) and ((p A1)V ¢) can be transformed by the rule
to ¢ where in both cases p = €. Rules are always applied modulo associativity
and commutativity of A, V.

The procedure is depicted in Algorithm 4. Although computing ac for Step 2
is not practical in general, because the function is exponentially growing, the
test ac(Y[@]p) > ac(Y[P]p Adef(s, p, P)) can be computed in constant time after

2.7. PROPOSITIONAL RESOLUTION 51

| v] be() > 1
$1 ANd2 | be(dr) > 1or be(ge) > 1
o1V ¢ | true

¢1 = o | true

¢1 & o | true

- ac(¢) > 1

v be(y) > 2

$1V ey | be(pr) > 1or be(ds) > 1

d1 Apa | be(g;) > 2o0r be(dr) > 1 and be(gps) > 1
¢ ac(¢p) > 2

v] be() > 3 |

D1V P be(d;) > 2

¢1 A2 | be(g;) > 3or [be(g;) > 2and be(gy) > 1,0 # j]
¢ ac(¢p) > 3

Table 2.3: The Boolean Conditions for bc

a linear time processing phase.

Applying Algorithm 4 to the formula =((P V Q) < (P — (Q A T))) of
Example 2.6.3 results in the transformation depicted in Figure 2.10. Looking
at the result it is already very close to —@Q, as it contains the clause (=Q V
—@)). Removing duplicate literals in clauses and removing clauses containing
complementary literals from the result yields

(=P V=Q) A (=QV P) A-Q
which is even closer to just =@). The first two clauses can actually be removed
because they are subsumed by —@Q, i.e., considered as multisets, —=() is a subset
of these clauses. Subsumption will be introduced in the next section. Logically,
they can be removed because =) has to be true for any satisfying assignment
of the formula and then the first two clauses are satisfied anyway.

2.7 Propositional Resolution
A calculus is a set of inference and reduction rules for a given logic (here

PROP(X)). We only consider calculi operating on a set of clauses N. Infer-
ence rules add new clauses to N whereas reduction rules remove clauses from

52

CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 4: ocnf(¢)

Input : A formula ¢.
Output: A formula ¢ in CNF satisfiability preserving to ¢.

1 whilerule (ElimRedI(¢),ElimRedV(¢),ElimRedVII(¢)) do ;
2 SimpleRenaming(¢) on beneficial positions;
3 whilerule (ElimEquivl(¢),ElimEquiv2(¢)) do ;
4 whilerule (ElimImp(¢)) do ;
5 whilerule (PushNegl(¢),...,PushNeg3(¢)) do ;
6 whilerule (PushDisj(¢)) do ;
7 return ¢;
“(PVQ) & (P—=(QAT))
Socke ~((PVQ) & (P Q)
=Socmp ((PVQ)A(P = Q)]V[=(PVQ)A~(P—Q))
=ocnr ((PVQ) AP VQ)V[-(PVQ)A=(=PVQ))
=5enp . CIPVQ) APV Q) APV Q) A=(=PV Q)]
S5enp . [S(PVQ) VA(=PVQIAPVQ)V (=P V Q)]
=oenp” [(GPA=Q)V (PA-QIA[(PVQ)V (=P V Q)]
=5ene " [(GPVP)A(=PV=Q)A(=QVP)A(=QV-Q)IA[PVQV-PVQ)]

Figure 2.10: Example Optimized CNF Transformation

2.7. PROPOSITIONAL RESOLUTION 53

B aj > 1
qi | o1\ o al >1
q.i | ¢1V do a;f > 1l or ac(¢;) > 1 for some i

Table 2.4: The Boolean Conditions for a

N or replace clauses by “simpler” ones.

We are only interested in unsatisfiability, i.e., the considered calculi test
whether a clause set N is unsatisfiable. This is in particular motivated by the
renaming step of CNF transformation, see Section 2.6.3. So, in order to check
validity of a formula ¢ we check unsatisfiability of the clauses generated from
—¢.

For clauses we switch between the notation as a disjunction, e.g., PVQV PV
—R, and the notation as a multiset, e.g., { P, @, P,~R}. This makes no difference
as we consider V in the context of clauses always modulo AC. Note that L, the
empty disjunction, corresponds to (), the empty multiset. Clauses are typically
denoted by letters C, D, possibly with subscript.

The resolution calculus consists of the inference rules Resolution and Fac-
toring. So, if we consider clause sets IV as states, ¥ is disjoint union, we get the
inference rules

Resolution (NW{C1VP,CoV-P}) =rps (NU{C1VP,CoV-P}U{C1V(C>})

Factoring (Ny{CVLVL}) =res (NU{CVLVL}U{CVL})

Theorem 2.7.1. The resolution calculus is sound and complete:
N is unsatisfiable iff N =g {1}

Proof. (<) Soundness means for all rules that N |= N’ where N’ is the clause
set obtained from N after applying Resolution or Factoring. For Resolution it
is sufficient to show that Cy V P,C2 V =P |= Cy V C5. This is obvious by a case
analysis of valuations satisfying Cy V P,Cy V= P: of P is true in such a valuation
so must be Cs, hence C7 V Cy. If P is false in some valuation then C| must
be true and so C V 3. Soundness for Factoring is obvious this way because it
simply removes a duplicate literal in the respective clause.

(=) The traditional method of proving resolution completeness are semantic
trees. A semantic tree is a binary tree where the edges a labeled with literals
such that: (i) edges of children of the same parent are labeled with L and =L,
and (ii) any node has either no or two children, and (iii) for any path from
the root to a leave, each propositional variable occurs at most once. Therefore,
each path corresponds to a partial valuation. Now for an unsatisfiable clause

54 CHAPTER 2. PROPOSITIONAL LOGIC

set N there is a semantic tree such that for each leave of the tree there is a
clause in N that is false with respect to the partial valuation at that leave.
Let this tree be minimal in the sense that there is no smaller tree with less
nodes having this property. Now consider two sister leaves of the same parent
of this tree, where the edges are labeled with L and —L, respectively. Let C
and Cs be the two false clauses at the respective leaves. Obviously, C; = C{V L
and Cy = C} V =L as for otherwise the tree would not be minimal. If C; (or
C>) contains further occurrences of L (or C of L), then the rule Factoring is
applied to eventually remove all additional occurrences. Therefore, I can assume
L ¢ C{ and =L ¢ C}. A resolution step between these two clauses on L yields
C Vv C% which is false at the parent of the two leaves, because the resolvent
neither contains L nor —L. Furthermore, the resulting tree from cutting the
two leaves is minimal for N U {C] V C}} and strictly smaller. By an inductive
argument this proves completeness. O

Example 2.7.2 (Resolution Completeness). Consider the clause set
Pv@Q@,-PVvQ@, PVv-Q, -PVv-QVS, -PV-QV-S
and the corresponding semantic tree ...

The reduction rules are

Subsumption (N W {C1,C3}) =rrs (NU{Ci})
pI‘OVided Cl g CQ

Tautology N Py P N
Deletion (NW{OVPV-PY) =res (N)

Condensation (N W {C; VLV L}) =grrs (NU{C;V L})

Note the different nature of inference rules and reduction rules. Resolution
and Factorization only add clauses to the set whereas Subsumption, Tautology
Deletion and Condensation delete clauses or replace clauses by “simpler” ones.
In the next section, Section 2.8, T will show that “simpler” means.

At first, it looks strange to have the same rule both as a reduction
rules and as an inference rule, i.e., Factorization and Condensation.
On the propositional level there is obviously no difference and it is
possible to get rid of one of the two. In Section ?? the resolution calculus is
extended to first-order logic. In first-order logic Factorization and Condensation

are actually different. They are separated here to eventually obtain the same
set of resolution calculus rules for propositional and first-order logic.

Proposition 2.7.3. The reduction rules Subsumption, Tautology Deletion and
Condensation are sound.

2.8. PROPOSITIONAL SUPERPOSITION 95

Proof. This is obvious for Tautology Deletion and Condensation. For Subsump-
tion we have to show that Cy = Cs, because this guarantees that if NU{C} } has
a model, N & {C},C>} has a model too. So assume A(C;) = 1 for an arbitrary
A. Then there is some literal L € C with A(L) = 1. Since Cy C C5, also L € Cy
and therefore A(Cs) = 1. O

Theorem 2.7.4 (Resolution Termination). If redundancy rules are preferred
over inference rules and no inference rule is applied twice to the same clause(s),
then =gq is well-founded.

Proof. For some given clause set N the redundancy rules Subsumption, Tautol-
ogy Deletion and Condensation always terminate because they all reduce the
number of literals occurring in N. Furthermore, a clause set N where the re-
dundancy rules have been exhaustively applied does not contain any tautology,
no clause with duplicate literals and, in particular, no duplicate clauses. The
number of such clauses can be overestimated by 3" where n is the number of
propositional variables in N. Hence, there are at most 23" different, finite clause
sets with respect to clause sets where the redundancy rules have been applied.
Obviously, for each of such clause sets there are only finitely many different
Resolution and Factoring steps. O

Of course, what needs to be shown is that the strategy employed in
Theorem 2.7.4 is still complete. This is not completely trivial and gets
very nasty using semantic trees as the proof method of choice. So let’s

wait until superposition is established where this result becomes a particular
case of superposition completeness.

2.8 Propositional Superposition

Superposition was originally developed for first-order logic [1]. Here I introduce
its projection to propositional logic. Compared to the resolution calculus su-
perposition adds (i) ordering and selection restrictions on inferences, (ii) an
abstract redundancy notion, (iii) the notion of a partial model for inference
guidance, and (iv) a saturation concept.

Definition 2.8.1 (Clause Ordering). Let < be a total strict ordering on X.
Then < can be lifted to a total ordering on literals by <C<r, and P <y, =P and
P <p @, P <1 =Q for all P < Q. The ordering <, can be lifted to a total
ordering on clauses <¢ by considering the multiset extension of <, for clauses.

Proposition 2.8.2 (Properties of the Clause Ordering). (i) The orderings on
literals and clauses are total and well-founded.

(ii) Let C and D be clauses with P = |max(C)|, @ = | max(D)|, where max(C')
denotes the maximal literal in C'.

1. If Q <1 P then D <o C.

o6 CHAPTER 2. PROPOSITIONAL LOGIC

2. If P = @, P occurs negatively in C but only positively in D, then D <& C.

Eventually, I overload < with <;, and <¢. So if < is applied to literals it
denotes <, if it is applied to clauses, it denotes <. Note that < is a total
ordering on literals and clauses as well. Eventually we will restrict inferences to
maximal literals with respect to <. For a clause set N, I define N<¢ = {D €
N |D<C}.

Definition 2.8.3 (Abstract Redundancy). A clause C is redundant with respect
to a clause set N if N<¢ = C.

Tautologies are redundant. Subsumed clauses are redundant if C is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

Note that for finite N, and any C € N redundancy N=¢ = C can
be decided but is as hard as testing unsatisfiability for a clause set
N. So the goal is to invent redundancy notions that can be efficiently

decided and that are useful.

Definition 2.8.4 (Selection Function). The selection function sel maps clauses
to one of its negative literals or L. If sel(C') = =P then =P is called selected in
C. If sel(C) = L then no literal in C is selected.

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected on a clause, any
superposition inference must be on the selected literal.

Definition 2.8.5 (Partial Model Construction). Given a clause set N and an
ordering < we can construct a (partial) model Nz for N inductively as follows:

Ne = UD-<C op

{P} if D= D'V P,P strictly maximal, no literal
op = selected in D and Np £ D

0 otherwise
Nz = Uecendo
Clauses C with ¢ # () are called productive.
Proposition 2.8.6. Some properties of the partial model construction.
1. For every D with (C'V =P) < D we have dp # {P}.
2. If §¢ = {P} then Ne Udc = C.

3. If No = D and D < C then for all C' with C < C' we have Nov = D
and in particular Nz |= D.

4. There is no clause C' with PV P < C such that dc = {P}.

2.8. PROPOSITIONAL SUPERPOSITION o7

Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N=<C is of set of clauses from N strictly
smaller than C' with respect to <. Nz, N¢ are sets of atoms, often called Her-
brand Interpretations. Nz is the overall (partial) model for N, whereas N¢ is
generated from all clauses from N strictly smaller than C. Validity is defined
by Nz = P if P € Nz and N7 |E —P if P ¢ Nz, accordingly for N¢.

Given some clause set N the partial model N7 can be extended to a valuation
A by defining A(N7) := Nz U {=P | P ¢ Nz}. So we can also define for some
Herbrand interpretation Nz (N¢) that Nz |= ¢ iff A(Nz)(¢) = 1.

Superposition Left (NW{C,V P,CyV~-P}) =sup (NU{C1V P,CyV
-P}U{CiV (Csy})

where (i) P is strictly maximal in Cy V P (ii) no literal in C; V P is selected
(iii) =P is maximal and no literal selected in Cy V =P or =P is selected in
CyV P

Factoring (Nw{CVPVP}) =sup (NU{CVPVP}U{CVP})

where (i) P is maximal in C'V PV P (ii) no literal is selected in C'vV PV P
Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals.

Definition 2.8.7 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N.

Examples for specific redundancy rules that can be efficiently decided are
Subsumption (Nw{C1,C5}) =sup (NU{C:1})
pI‘OVided Cy C Oy

Tautology Dele- (Nw{CVPV-P}) =sup (N)

tion

Condensation (Ny{CiVLVL}) =sup (NU{Ci1VL})
Subsumption

Resolution (Nw{Cy VL,CyV~L}) =sup (NU{C1VL,C})

where Ol g CQ

Proposition 2.8.8. All clauses removed by Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are redundant with respect to the
kept or added clauses.

Theorem 2.8.9. If N is saturated up to redundancy and L ¢ N then N is
satisfiable and Nz |= N.

58 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. The proof is by contradiction. So I assume: (i) for any clause D derived
by Superposition Left or Factoring from N that D is redundant, i.e., N = D,
(ii) L ¢ N and (iii) Nz [~ N. Then there is a minimal, with respect to <, clause
CV L € N such that Nz £ C'V L and L is a selected literal in C'V L or no literal
in C' V L is selected in L is maximal. This clause must exist because 1 ¢ N.

The clause C'V L is not redundant. For otherwise, N<“V!' |= C' v L and
hence Nz |= C'V L, because Nz = N<¢VE 4 contradiction.

I distinguish the case L is a positive and no literal selected in CV L or L is a
negative literal. Firstly, assume L is positive, i.e., L = P for some propositional
variable P. Now if P is strictly maximal in C'V P then actually écvp = {P}
and hence N7 |= C'V P, a contradiction. So P is not strictly maximal. But then
actually C'V P has the form C] V PV P and Factoring derives C| V P where
(Ci vV P)=<(C{VvPVP). Now Cj V P is not redundant, strictly smaller than
CV L, we have C{ VP € N and Nz £ C| V P, a contradiction against the choice
that C'V L is minimal.

Secondly, let us assume L is negative, i.e., L = =P for some propositional
variable P. Then, since Nz £ C'V =P we know P € Nz. So there is a clause
DV P € N where dpyp = {P} and P is strictly maximal in D V P and
(DV P) < (CV —=P). So Superposition Left derives C'V D where (C'V D) <
(C'V—P). The derived clause C'V D cannot be redundant, because for otherwise
either N*PVP = DV P or N*V"FP |=Cv-P.SoCVD € N and N7 £ CVD,
a contradiction against the choice that C'V L is the minimal false clause. O

So the proof actually tells us that at any point in time we need only to
consider either a superposition left inference between a minimal false clause and
a productive clause or a factoring inference on a minimal false clause.

2.9 Davis Putnam Logemann Loveland Proce-
dure (DPLL)

A DPLL problem state is a pair (M; N) where M a sequence of partly annotated
literals, and N is a set of clauses. In particular, the following states can be
distinguished:

(e; N) is the start state for some clause set N
(M;N) is a final state, if M = N
(M;N) is afinal state, if M = =N and there is no literal L™
in M
(M;N) is an intermediate state if M neither is a model for

N nor does it falsify a clause in N

The sequence M will, by construction, neither contain duplicate nor com-
plementary literals. So it will always serve as a partial valuation for the clause
set N.

Here are the rules

2.9. DAVIS PUTNAM LOGEMANN LOVELAND PROCEDURE (DPLL) 59

Propagate (M; N) =nppr, (ML;N)

provided C VL € N, M |E —C, and L is undefined in M
Decide (M;N) =pprr (MLT;N)

provided L is undefined in M

Backtrack (ML My; N) =pprr, (M;—L;N)

provided there is a D € N and M | =D and no K ' in M,

Figure 2.11: The DPLL Calculus

Lemma 2.9.1. Let (M; N) be a state reached by the DPLL algorithm from
the initial state (e; N). If M = M L] MsLy ...L} My, and all M; have no
decision literals then for all 0 < i < m it holds: N, My,..., L] E M4

Proof. Proof by complete induction on the number n of rule applications.

Induction basis: n = 0. No rule has been applied so that M = € and M does
not contain any decision literal. Therefore the statement holds.

Induction hypothesis: If (M; N) is reached via n or less rule applications
where M = ML ML) ... L} My, 1 and all M; have no decision literals then
for all 1 <4 <m it holds: N, My,..., L] E M.

Induction step: n — n+1. Assume (M'; N) is reached via n rule applications.
Then by the use of the induction hypothesis it holds for all 1 < i < m that
N, My,...,L] | M;y; so that it remains to be shown that N, My,..., L}
Mm+1

1. Rule Propagate (M'; N) =pprr, (M'L;N):Tf M' = ML MoLJ ... L] My, 4
and all M; have no decision literals then by definition there is a
clause C VL € N with M' |= -C, ie. CV L,M' = L and
N,ML{ ML ...L} M,+1 = L. Using the induction hypothesis it fol-
lows N, ML M>LJ ...L} | = M,,;1, L.

2. Rule Decide (M'; N) =ppr1, (M'LT; N): The statement holds because of
M', LT = T and the induction hypothesis.

3. Rule Backtrack (M{LTM}; N) =ppr1, (M{=L; N): By definition M} has
no decision literals and there is a clause D € N with M{LTM}
—-D. With the induction hypothesis M{LT = M)} holds. It follows
that M{LT | -D which is equivalent to M{L",D | L and
M{,D | =LT. Since D € N it holds that N,M| | =L. Let M| =
MLT MyL] ... L} M, 1 where all M; have no decision literals then by
induction hypothesis N, My L{ M>L] ...L} & My,41,-L.

O

Proposition 2.9.2. For a state (M; N) that is reached from the initial state
(e; N) where M contains k decision literals L; ... Ly with £ > 0 and for each
valuation A4 with A |= N, Ly,..., Ly it holds that A(L;) =1 for all L; € M.

60 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. Let M = MlLI . L;Mk+1 where all M; have no decision literals. With
Lemma 2.9.1 for all i it holds that N, My L{ ... L] | = M;, i.e. for all i, literals
K € M; and each valuation A with A |= N, L4,..., Ly it holds that A(K) =
1. O

Lemma 2.9.3. If M contains only propagated literals and M = Ly ... L, and
there is a D € N with M = -D where D = K; ... K, then N is unsatisfiable.

Proof. Since M | =D it holds that =K; € M for all 1 < ¢ < m. With Propo-
sition 2.9.2 for each valuation A with A |= N it holds that A(L;) = 1 for all
1 < j < n. Thus in particular it holds that A(—K;) = 1 for all 1 < i < m.
Therefore D is always false under any valuation A and N is always unsatisfi-
able. O

Proposition 2.9.4 (DPLL Soundness). The rules Propagate, Decide, and
Backtrack are sound, i.e. whenever the algorithm terminates in state (M; N)
starting from the initial state (e; N) then it holds: M |= N iff N is satisfiable

Proof. (=) if M |= N then obviously N is satisfiable.

(<) Proof by contradiction. Assume N is satisfiable and the algorithm termi-
nates in state (M; N) starting from the initial state (¢; N). Furthermore, assume
M = N does not hold, i.e. either there is at least one literal that is not defined
in M or there is a clause D € N with M = -D.

For the first case the rule Decide is applicable. This contradicts that the
algorithm terminated.

For the second case either M only contains propagated literals then N is
unsatisfiable with Lemma 2.9.3. This is a contradiction to the assumption that
N is satisfiable. If M does not only contain propagated literals there must be at
least one decision literal in M. Then the rule Backtrack is applicable but this
contraticts that the algorithm terminated.

Therefore M = N and the rules Propagate, Decide, and Backtrack are sound.
O

Proposition 2.9.5 (DPLL Completeness). The rules Propagate, Decide, and
Backtrack are complete: for any valuation M with M = N, there is a sequence
of rule application generating (M, N) as a final state.

Proof. Let M = LiLs...Ly. Since it is a valuation there are no duplicates in
M and k applications of rule Decide yield (L{ Lj ...L/},N) out of (¢; N). This
is a final state because backtrack is not applicable since M = N and Propagate
and Decide are no further applicable since M is a valuation. O

Proposition 2.9.6 (DPLL Termination). The rules Propagate, Decide, and
Backtrack terminate on any input state (e, N).

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 61

Proof. Let n be the number of propositional variables in N. As usual, termina-
tion is shown by assigning a well-founded measure and proving that it decreases
with each rule application. The domain for the measure u are n-tuples over
{1,2,3}.

p((Ly...Lg; N)) = (my,...,mg, 3,...,3)

where m; = 2 if L; is annotated with T and m; = 1 otherwise. So u((e, N)) =
(3,...,3). The well-founded ordering is the lexicographic extension of < to n-
tuples. What remains to be shown is that each rule application decreases p. I
do this by a case analysis over the rules.

Propagate:
w((Ly ...Lg; N)) = (ma, ... ,mg, 3,3,...,3)
> (ml,...,mk,1,3,...,3)
= p((L1 ... Ly L; N))
Decide:
w((Ly ...Lg; N)) = (ma, ... ,mg, 3,3,...,3)
>(my,...,mg,2,3,...,3)
=u((Ly...LyLT; N))
Backtrack:

/j,((Ll...LjLTLj+1...Lk;N)) = (ml,...,mj,2,mj+1,...,mk,3,...,3)
> (mi,...,mj,1,3,...,3)

O

2.10 Conflict Driven Clause Learning (CDCL)

A CDCL problem state is a five-tuple (M; N;U; k; C) where M a sequence of
annotated literals, N and U are sets of clauses, & € N, and C' is a non-empty
clause or T or L. In particular, the following states can be distinguished:

(;N;0;0;T) is the start state for some clause set N
(M;N;U;k;T) isa final state, if M = N and all literals from N are
defined in M
(M;N;U;k; L) is a final state, where N has no model
(M;N;U;k;T) is an intermediate model search state if M = N

(M;N;U;k; D) is a backtracking state if D ¢ {T, L}

A literal L is of level k with respect to a problem state (M; N;U; j; C) if L or
—L occurs in M and the first decision literal left from L (—L)in M is annotated
with k or if there is no such literal 0. A clause D is of level k with respect to a

62 CHAPTER 2. PROPOSITIONAL LOGIC

problem state (M; N;U; j;C) if k is the maximal level of a literal in D. Recall
C'is a non-empty clause or T or L. The rules are

Propagate (M; N;U;k; T) =cpcr, (MLEVE, N, U;k;T)
provided CV L € (NUU), M | —=C, and L is undefined in M

Decide (M;N;U;k;T) =cpcr (ML, N;U;k+1;7T)
provided L is undefined in M

Conflict (M;N;U;k;T) =cper, (M;N;U;k; D)
provided D € (NUU) and M |=-D

Skip (MLCVE; N;U; k; D) =cpcr, (M;N;U;k; D)
provided D ¢ {T, L} and =L does not occur in D

Resolve (MLYV";N;U;k; DV -L) =cpeL (M;N;U;k; DV C)
provided D contains a literal of level k£ or £ =0

For rule Resolve we assume that duplicate literals in D V C' are always re-
moved.

Backtrack (M;K™#'My; N;U;k;DV L) =cper. (M{LPVE;N;U U {D Vv
L};i;T)

provided L is of maximal level k in D V L and D is of level i, where i < k.

Restart (M;N;U;k;T) =cpcrn (6, N;U;0;T)
provided M £ N

Forget (M;N;UU{C};k;T) =cper (M;N;U;k;T)
provided M [N

Here L denotes the empty clause, hence fail. The level of the empty clause
1 is 0. The clause DV L added in rule Backtrack to U is called a learned clause.
The CDCL algorithm stops with a model M if neither Propagate nor Decide nor
Conflict are applicable to a state (M; N;U; k; T), hence M | N and all literals
of N are defined in M. The only possibility to generate a state (M; N;U; k; L) is
by the rule Resolve. So in case of detecting unsatisfiability the CDCL algorithm
actually generates a resolution proof as a certificate. I will discuss this aspect
in more detail in Section 2.12. In the special case of a unit clause L, the rule
Propagate actually annotates the literal L with itself.

Obviously, the CDCL rule set does not terminate in general for a number of
reasons. For example, starting with (e; N;(;0; T) a simple combination Propa-
gate, Decide and eventually Restart yields the start state again. Even after a
successful application of Backtrack, exhaustive application of Forget followed
by Restart again produces the start state. So why these rules? Actually, any
modern SAT solver is based on this rule set and the underlying mechanisms. I
will motivate the rules later on and how they are actually used in an efficient
way.

