
Chapter 1

Preliminaries

This 
hapter introdu
es all abstra
t 
on
epts needed for the rest of this book.

Generi
 problem solving a
tually starts with a problem. In this book problems

will appear in the form of examples. In order to solve a problem in a generi


way, i.e., by generi
 algorithms, the �rst step is to formalize the problem using

a generi
 language. A generi
 language has a mathemati
ally pre
ise syntax

and semanti
s, be
ause eventually it is analyzed by a program running on a


omputer. Su
h a language is 
alled a logi
. The problem be
omes a senten
e,

i.e., a formula of the logi
. In parti
ular, semanti
s in this 
ontext always means

a notion of truth. The notion of truth is a very expressive instrument to a
tually

formalize what it means to eventually solve a parti
ular problem. A solution

to the formula should result in a solution to the problem. Dete
ting that the

formula is true (false) 
orresponds to solving the problem.

On
e the problem is des
ribed in a logi
, the generi
 language, it needs

rules that reason about the truth of formulas and hen
e eventually solve the

problem. A logi
 plus its reasoning rules is 
alled a 
al
ulus. The rules operate

on a symboli
 representation of a problem state that in
ludes in parti
ular the

formula formalizing the problem. Typi
ally, further information is added to the

state representation in order to keep tra
k of the solution pro
ess. The rules

should enjoy a number of properties in order to be useful. They should be

sound, i.e., whenever they 
ompute a solution the result is a
tually a solution

to the initial problem. And whenever they 
ompute that there is no solution

this should hold as well. The rules should be 
omplete, i.e., whenever there is a

solution to the problem they 
ompute it. Finally, they should be terminating.

If they are applied to a starting problem state, they always stop after a �nite

number of steps. Typi
ally, be
ause no more rule is appli
able. Depending on the


omplexity of the problem and the involved logi
, not all the desired properties

soundness, 
ompleteness, termination, 
an be a
hieved, in general. But I will

turn to this later.

The rules of a 
al
ulus are typi
ally designed to operate independently and


an therefore be exe
uted in a non-deterministi
 way. The advantage of su
h

a presentation is that properties of the rules, e.g., like soundness, 
an also be

3



4 CHAPTER 1. PRELIMINARIES

shown independently for ea
h rule. And if a property 
an be shown for the rule

set, it applies to all potential exe
ution orderings of the rules. The disadvantage

of su
h a presentation is that a random appli
ation of the rules typi
ally leads to

an ineÆ
ient algorithm. Therefore, a strategy is added to the 
al
ulus (rules) and

the strategy plus the rules build an automated reasoning algorithm or shortly an

algorithm. Depending on the type of property and the a
tual 
al
ulus, sometimes

we prove it for the 
al
ulus or the respe
tive algorithm.

An automated reasoning algorithm is still an abstra
t, mathemati
al 
on-

stru
t and there is typi
ally a signi�
ant gap between su
h an algorithm and

an a
tual 
omputer program implementing the algorithm. An implementation

often requires a dedi
ated 
ontrol of the 
al
ulus plus the invention of spe
i�


data stru
tures and algorithms. The implementation of an algorithm is 
alled a

system. Eventually the system is applied to real world problems, i.e., an appli-


ation.

Appli
ation

System + Problem

System

Algorithm + Implementation

Algorithm

Cal
ulus + Strategy

Cal
ulus

Logi
 + States + Rules

Logi


Syntax + Semanti
s

C

Typi
ally 
omputer s
ien
e algorithms are formulated in languages

that are 
lose to a
tual programming languages su
h as C, C++,

or Java

1

. So, in parti
ular, they rely on deterministi
 programming

languages with an operational semanti
s. I overload the notion of a 
lassi
al


omputer s
ien
e algorithm and an automated reasoning algorithm. An auto-

mated reasoning algorithm is build on a rule set plus a strategy and typi
ally

the strategy does not turn the rules into a deterministi
 algorithm. There is still

some room left that will eventually be de
ided for an appli
ation. The di�eren
e

in design re
e
ts the di�eren
e in s
ope. A 
lassi
al 
omputer s
ien
e algorithm

solves a very spe
i�
 problem, e.g., it sorts a �nite list of numbers. An algo-

rithm is meant to solve a whole 
lass of problems, e.g., later on I will show that

ordered resolution 
an solve any polynomial time 
omputable problem based on

a fragment of �rst-order logi
.

As a start, Se
tion 1.1 studies the overall above approa
h in
luding all men-

tioned properties in full detail on a 
on
rete problem: 4� 4-Sudokus. Although

this is a rather trivial and a
tually �nite problem and the suggested algorithm is

1
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1.1. SOLVING 4� 4 SUDOKU 5

very naive, it serves ni
ely as a throughout example demonstrating all aspe
ts.

Later on, I will develop far more 
omplex logi
s that then 
an be used to solve

more interesting problems. In parti
ular, real world problems.

The subsequent se
tions abstra
t from solving Sudokus and develop the un-

derlying 
on
epts needed as a basi
 toolbox for the rest of this book. Basi


mathemati
al notions on numbers, sets, relations, and words are de�ned in Se
-

tion 1.2. In order to be able to talk about the 
omplexity of algorithms Se
-

tion 1.3 in parti
ular explains Big O notation and NP-hardness. Se
tion 1.4 is

devoted to orderings, be
ause they show up on the meta-level, e.g. as a means

to prove termination. They also serve as a basis for proving properties of rule

sets by indu
tion, Se
tion 1.5, and also on the logi
al reasoning level where they

will be a
tually an e�e
tive means for de�ning more eÆ
ient rule sets. Finally,

Se
tion 1.6 introdu
es the most important 
on
epts of rule based reasoning in

general by an introdu
tion to basi
 
on
epts of (abstra
t) rewrite systems.

1.1 Solving 4� 4 Sudoku

Consider solving a 4� 4 Sudoku as it is depi
ted on the left in Figure 1.1. The

goal is to �ll in natural numbers from 1 to 4 into the 4�4 square so that in ea
h


olumn, row and 2�2 box sharing an outer 
orner with the original square ea
h

number o

urs exa
tly on
e. Conditions of this kind are 
alled 
onstraints as

they restri
t �lling the Sudoku with numbers in an arbitrary way. The Sudoku

(Solution) on the right (Figure 1.1) shows the, in this 
ase, unique solution to

the Sudoku (Start) on the left.

2 1

3 1

1 2

Start

2 1 4 3

3 4 1 2

4 2 3 1

1 3 2 4

Solution

Figure 1.1: A 4� 4 Sudoku and its Solution

Why is this solution unique? It is be
ause the 
onstraints of 4� 4 Sudokus

have already for
ed all other values. To start, the only square for the missing

1 is the square above the 3. All other squares would violate a 
onstraint. But

then the third 
olumn is almost �lled so the top square of this 
olumn must be

a 4, and so on.

In the following, I will build a spe
i�
 logi
 for 4 � 4 Sudokus, in
luding

an algorithm in form of a set of rules and a strategy for solving the problem

and a
tually prove that the algorithm is sound, 
omplete, and terminating. As

already said, an algorithm is sound if any solution the algorithm de
lares to

have found is a
tually a solution. It is 
omplete if it �nds a solution in 
ase
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one exists. It is terminating if it does not run forever. Sin
e Sudokus are �nite


ombinatorial puzzles, su
h an algorithm exists. The most simple algorithm is

to systemati
ally guess all values for all unde�ned squares of the Sudoku and to


he
k whether the guessed values a
tually 
onstitute a solution. However, this

amounts to 
he
king 4

16

di�erent assignments of values to the squares. Su
h an

approa
h is even worse than the one I will introdu
e in the sequel.

I 
onsider a Sudoku to be a two dimensional array f indexed from 1 to 4 in

ea
h dimension, starting from the upper left 
orner. So f(1; 1) is the value of the

square in the upper left 
orner and in 
ase of our initial Sudoku. For the start

Sudoku in Figure 1.1 the value of this square is given to be 2 whi
h I denote

by the equation f(1; 1) � 2. So the logi
 for Sudokus are �nite 
onjun
tions

(
onjun
tion denoted by ^) of equations f(x; y) � z, where the variables x, y, z

range over the domain 1, 2, 3, 4. The meaning of a 
onjun
tion is that all values

given by the equations should be simultaneously true in the Sudoku. The overall

left Sudoku (Start in Figure 1.1) is then given by the 
onjun
tion of equations

f(1; 1) � 2 ^ f(1; 2) � 1 ^ f(3; 3) � 3 ^ f(3; 4) � 1 ^ f(4; 1) � 1 ^ f(4; 3) � 2

T

If you are already familiar with 
lassi
al logi
, you know that the

formulas f(1; 1) � 2^ f(1; 2) � 1 and f(1; 2) � 1^ f(1; 1) � 2 
annot

be distinguished semanti
ally. They have always the same truth value,

be
ause 
onjun
tion (^) is 
ommutative, and, in addition, asso
iative. However,

here, the above 
onjun
tion will be
ome part of a problem state. The sudoku

logi
 rules synta
ti
ally manipulate problem states. A problem state 
ontaining

f(1; 1) � 2 ^ f(1; 2) � 1 will be di�erent from one 
ontaining f(1; 2) � 1 ^

f(1; 1) � 2, be
ause the former impli
itly means that there is no solution to the

sudoku with f(1; 1) � 1, whereas the latter means that there is no solution to

the sudoku with f(1; 1) � 1 in presen
e of f(1; 2) � 1.

The goal of the algorithm is then to �nd the assignments for the empty

squares with respe
t to the above mentioned 
onstraints on the number o

ur-

ren
es in 
olumns, rows and boxes. The algorithm 
onsists of four rules that

ea
h take a state of the solution pro
ess and transform it into a di�erent one,


loser to a solution. A state is des
ribed by a triple (N ;D; r) where N 
on-

tains the equations of the starting Sudoku, for example, the above 
onjun
tion

of equations, D is a 
onjun
tion of additional equations 
omputed by the al-

gorithm, and r 2 f>;?g des
ribes whether the a
tual values for f in N and

D potentially 
onstitute a solution. If r = > then no 
onstraint violation has

been dete
ted and if r = ? a 
onstraint violation has been dete
ted but not

yet resolved. The initial problem state is represented by the triple (N ;>;>)

where > also denotes an empty 
onjun
tion and hen
e truth. The problem state

(N ;>;?) denotes the fail state, i.e., there is no solution for a Sudoku starting

with the assignments 
ontained in N .

A square f(x; y) where x; y 2 f1; 2; 3; 4g is 
alled de�ned by N ^D if there is

an equation f(x; y) � z, z 2 f1; 2; 3; 4g in N or D. Otherwise, f(x; y) is 
alled

unde�ned. For an initial state (N ;>;>) I assume that the same square is not
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de�ned several times in N . We say that N ^D

0

is a solution to a Sudoku N , if

all squares are de�ned in N ^D

0

, no square is de�ned more than on
e in N ^D

0

and the assignments in N ^D

0

do not violate any 
onstraint. It is a solution to

a problem state (N ;D;>) if all equations from D o

ur in D

0

. In the sequel we

always assume that for any start state (N ;>;>) ea
h square is de�ned at most

on
e in N and all variables x; y; z (possibly indexed, primed) range over values

1 to 4. Then the four rules of a �rst (naive) algorithm are

Dedu
e

(N ;D;>) ) (N ;D ^ f(x; y) � 1;>)

provided f(x; y) is unde�ned in N ^D, for any x; y 2 f1; 2; 3; 4g.

Con
i
t

(N ;D;>) ) (N ;D;?)

provided for (i) f(x; y) = f(x; z) for f(x; y), f(x; z) de�ned in N ^D for some

x; y; z and y 6= z, or,

(ii) f(y; x) = f(z; x) for f(y; x), f(z; x) de�ned in N ^ D for some x; y; z and

y 6= z, or,

(iii) f(x; y) = f(x

0

; y

0

) for f(x; y), f(x

0

; y

0

) de�ned in N ^D and [x; x

0

2 f1; 2g

or x; x

0

2 f3; 4g℄ and [y; y

0

2 f1; 2g or y; y

0

2 f3; 4g℄ and (x; y) 6= (x

0

; y

0

).

Ba
ktra
k

(N ;D

0

^f(x; y) � z^D

00

;?) ) (N ;D

0

^f(x; y) � z+1;>)

provided z < 4 andD

00

= > orD

00


ontains only equations of the form f(x

0

; y

0

) �

4.

Fail

(N ;D;?) ) (N ;>;?)

provided D 6= > and D 
ontains only equations of the form f(x; y) � 4.

Rules are applied to a state by �rst mat
hing the left hand side of the rule

(left side of )) to the state, 
he
king the side 
onditions des
ribed below the

rule and if they are ful�lled then repla
ing the state by the right hand side of

the rule. There is no order among the rules, so they are applied \don't 
are non-

deterministi
ally". A strategy will �x the ordering and turn into an algorithm.

Furthermore, even a single rule may not be deterministi
. For example rule

Dedu
e does not spe
ify 
on
rete values for x; y so it 
an be applied to any

unde�ned square f(x; y).

Starting with the state 
orresponding to the initial Sudoku shown on the left

in Figure 1.1, a one step derivation by rule Dedu
e is (N ;>;>)! (N ; f(1; 3) �

1;>). A
tually the rule Dedu
e is the only appli
able rule to (N ;>;>). Con-


erning the new state (N ; f(1; 3) � 1;>) two rules are appli
able: Dedu
e and

Con
i
t. An appli
ation of Con
i
t, where side 
ondition (i) is satis�ed, yields

(N ; f(1; 3) � 1;?) and after an appli
ation of Ba
ktra
k to this state the rule


omputes (N ; f(1; 3) � 2;>). Applying Dedu
e to (N ; f(1; 3) � 1;>) results,

e.g., in (N ; f(1; 3) � 1:f(1; 4) � 1;>). Figure 1.2 shows this sequen
e of rule

appli
ations together with the 
orresponding Sudokus.

This is one reason why the rule set is ineÆ
ient. Dedu
e still �res in 
ase of

an already existing 
onstraint violation and Dedu
e does not 
onsider already
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2 1

3 1

1 2

(N = f(1; 1) � 2 ^ f(1; 2) � 1^

f(3; 3) � 3 ^ f(3; 4) � 1^

f(4; 1) � 1 ^ f(4; 3) � 2;>;>)

+ Dedu
e f(1; 3) � 1

2 1 1

3 1

1 2

(N ; f(1; 3) � 1;>)

+ Con
i
t

2 1 1

3 1

1 2

(N ; f(1; 3) � 1;?)

+ Ba
ktra
k f(1; 3) � 2;

2 1 2

3 1

1 2

(N ; f(1; 3) � 2;>)

Figure 1.2: E�e
t of Applying the Inferen
e Rules

existing equations when assigning a new value. It simply always assigns \1".

Improving the algorithm along the se
ond line is subje
t to Exer
ises ??, ??.

Furthermore, note that if in a start state (N ;>;>) the initial assignments in N

already 
ontain a 
onstraint violation, then the rule 
on
i
t dire
tly produ
es

the �nal fail state. An appropriate, very simple strategy turns the rule set into

an algorithm and prefers Con
i
t over Dedu
e.

The Algorithm 1, SimpleSudoku(S), 
onsists of the four rules together with

a rule appli
ation strategy. The s
ope of loops and if-then-else statements is

indi
ated by indentation. A statement Rule(S) for some Rule means that the

appli
ation of the rule is tested and if appli
able it is applied to the problem

state S. If su
h a statement o

urs in a ifrule 
ondition, it is applied as before

and returns true i� (if and only if) the rule was appli
able. For example, the

statement at line 1

ifrule (Con
i
t(S)) then

return S;

is a shorthand for

if ( the rule Con
i
t is appli
able to state S ) then
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Algorithm 1: SimpleSudoku(S)

Input : An initial state S = (N ;>;>).

Output: A �nal state S = (N ;D;>) or S = (N ;>;?)

1 ifrule (Con
i
t(S)) then

2 return S;

3 while (any rule appli
able) do

4 ifrule (Con
i
t(S)) then

5 Ba
ktra
k(S);

6 Fail(S);

7 else

8 Dedu
e(S);

9

10 end

11 return S;

apply rule Con
i
t to S;

return S;

where the appli
ation 
ondition is separated from the rule appli
ation.

At line 1 the rule Con
i
t is tested and if appli
able it will produ
e the

�nal state S = (N ;>;?), so the algorithm returns S. The while-loop starting

at line 3 terminates if no rule is appli
able anymore. For otherwise, the rule

Con
i
t is tested before Dedu
e in order to prevent useless Dedu
e steps. The

rules Ba
ktra
k and Fail are only appli
able after an appli
ation of Con
i
t, so

they are guarded by an appli
ation of Con
i
t. Therefore, SimpleSudoku is a

fair algorithm in the sense that no rule appli
ation needed to 
ompute a �nal

state will be prohibited.

If the rules are 
onsidered in the 
ontext of the SimpleSudoku algorithm, then

they 
an be simpli�ed. For example, the 
ondition for rule Fail that all equations

are of the form f(x; y) � 4 
an be dropped, be
ause in SimpleSudoku the rule

Fail is only tested and potentially applied after having tested Ba
ktra
king.

C

It is a design issue how mu
h rule appli
ation 
ontrol is a
tually put

into the side 
onditions of the rules and how mu
h 
ontrol into the

algorithm. It depends, of 
ourse, on the problem to be solved but also

on whi
h level properties 
an be shown. For SimpleSudoku all properties 
an be

shown on the 
al
ulus, i.e., rule level. In general, showing termination of a rule

set often requires a parti
ular strategy, i.e., algorithm.

In the sequel, I will prove that the four rules are sound, 
omplete and ter-

minating. Sound means that whenever the rules 
ompute some state (N ;D;>)

and it has a solution, then this solution is also a solution for N . Complete means

that whenever there is a solution to the Sudoku, exhaustive appli
ation of the

four rules will 
ompute a solution. Note that for 
ompleteness the 
omputation

of any solution, not an a priori sele
ted one, is suÆ
ient. In 
ase of the Sudoku
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rules even strong 
ompleteness holds: for any solution N ^ D of the Sudoku,

there is a sequen
e of rule appli
ations so that (N ;D;>) is a terminating state.

So any a priori sele
ted solution 
an be generated. Termination at the rule level

means that independently of the a
tual sequen
e of rule appli
ations to a start

state, there is no in�nite sequen
e of rule appli
ations possible. In the sequel,

I will 
onsider a fourth property important for rule based systems: 
on
uen
e.

A set of rules is 
on
uent if whenever there are several rules appli
able to a

given state, then the di�erent generated states 
an be rejoined by further rule

appli
ations. So 
on
uen
e guarantees unique results on termination. Be
ause

of the above informal fairness argument for the SimpleSudoku algorithm, all

these properties also hold not only for the rule set but also for the algorithm.

Proposition 1.1.1 (Soundness). The rules Dedu
e, Con
i
t, Ba
ktra
k and

Fail are sound. Starting from an initial state (N ;>;>): (i) for any �nal state

(N ;D;>), the equations in N ^ D are a solution, and, (ii) for any �nal state

(N ;>;?) there is no solution to the initial problem.

Proof. First of all note that no rule manipulates N , the �rst 
omponent of a

state (N ;D; r). This justi�es the way this proposition is stated. (i) So assume a

�nal state (N ;D;>) so that no rule is appli
able. In parti
ular, this means that

for all x; y 2 f1; 2; 3; 4g the square f(x; y) is de�ned in N ^D as for otherwise

Dedu
e would be appli
able, 
ontradi
ting that (N ;D;>) is a �nal state. So

all squares are de�ned by N ^ D. No square is de�ned more than on
e. What

remains to be shown is that those assignments a
tually 
onstitute a solution to

the Sudoku. However, if some assignment in N ^ D results in a repetition of

a number in some 
olumn, row or 2 � 2 box of the Sudoku, then rule Con
i
t

is appli
able, 
ontradi
ting that (N ;D;>) is a �nal state. In sum, (N ;D;>) is

a solution to the Sudoku and hen
e the rules Dedu
e, Con
i
t, Ba
ktra
k and

Fail are sound.

(ii) So assume that the initial problem (N ;>;>) has a solution. I prove by


ontradi
tion based on an indu
tive argument that in this 
ase the rules 
annot

generate a state (N ;>;?). So let (N ;D;>) be an arbitrary state with D of max-

imal length still having a solution, but (N ;>;?) is rea
hable from (N ;D;>).

This in
ludes the initial state if D = >. An appropriate sele
tion of rule ap-

pli
ations 
orre
tly de
ides the next square. Sin
e (N ;D;>) still has a solution

the only appli
able rule is Dedu
e. It generates (N ;D^f(x; y) � 1;>) for some

x; y 2 f1; 2; 3; 4g. If (N ;D ^ f(x; y) � 1;>) still has a solution the proof is

done sin
e this violates D to be of maximal length. So (N ;D ^ f(x; y) � 1;>)

does not have a solution anymore. But then eventually Con
i
t and Ba
ktra
k

are appli
able to a state (N ;D ^ f(x; y) � 1 ^ D

0

;?) where D

0

only 
ontains

equations of the form f(x

0

; y

0

) � 4 resulting in (N ;D ^ f(x; y) � 2;>). Now

repeating the argument we will eventually rea
h a state (N ;D ^ f(x; y) � k;>)

that has a solution, �nally 
ontradi
ting D to be of maximal length.

For the �rst part of the soundness proof, Proposition 1.1.1, neither the rule

Ba
ktra
k nor Fail shows up. This is be
ause an empty rule system is trivially
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sound. The rules Ba
ktra
k or Fail are indispensable for the se
ond part of the

proof and for showing 
ompleteness.

C

The above proof 
ontains a \handwaving argument", the senten
e

\But then eventually Con
i
t and Ba
ktra
k are appli
able to a state

(N ;D ^ f(x; y) � 1 ^D

0

;?) where D

0

only 
ontains equations of the

form f(x

0

; y

0

) � 4 resulting in (N ;D ^ f(x; y) � 2;>)." needs a proof on its

own. I will not do the proof here, but for some of the rule sets for de
iding

satis�ability of propositional logi
, Chapter 2, I will do analogous proofs in full

detail.

Proposition 1.1.2 (Strong Completeness). The rules Dedu
e, Con
i
t, Ba
k-

tra
k and Fail are strongly 
omplete. For any solution N ^ D of the Sudoku

there is a sequen
e of rule appli
ations so that (N ;D;>) is a �nal state.

Proof. A parti
ular strategy for the rule appli
ations is needed to indeed gen-

erate (N ;D;>) out of (N ;>;>) for some spe
i�
 solution N ^D. Without loss

of generality I assume the assignments in D to be sorted so that assignments

to a number k 2 f1; 2; 3; 4g pre
ede any assignment to some number l > k. So

if, for example, N does not assign all four values 1, then the �rst assignment

in D is of the form f(x; y) � 1 for some x; y. Now I apply the following strat-

egy, subsequently adding all assignments from D to (N ;>;>). The strategy has

a
hieved state (N ;D

0

;>) and the next assignment from D to be established is

f(x; y) � k, meaning f(x; y) is not de�ned in N ^ D

0

. Then until l = k the

strategy does the following, starting from l = 1. It applies Dedu
e adding the

assignment f(x; y) � l. If Con
i
t is appli
able to this assignment, it is applied

and then Ba
ktra
k, generating the new assignment f(x; y) � l+ 1 and so on.

I need to show that this strategy in fa
t eventually adds f(x; y) � k to

D

0

. As long as l < k any added assignment f(x; y) � l results in rule Con
i
t

appli
able, be
ause D is ordered and all four values for all l < k are already

established. The eventual assignment f(x; y) � k does not generate a 
on
i
t

be
ause D is a solution. For the same reason, the rule Fail is never appli
able.

Therefore, the strategy generates (N ;D;>) out of (N ;>;>).

Note the subtle di�eren
e between the se
ond part of proving Proposi-

tion 1.1.1 and the above strong 
ompleteness proof. The former shows that any

solution 
an be produ
ed by the rules whereas the latter shows that a spe
i�
,

a priori sele
ted solution 
an be generated.

Proposition 1.1.3 (Termination). The rules Dedu
e, Con
i
t, Ba
ktra
k and

Fail terminate on any input state (N ;>;>).

Proof. On
e the rule Fail is appli
able, no other rule is appli
able on the result

anymore. So there is no need to 
onsider rule Fail for termination. The idea of

the proof is to assign a measure over the natural numbers to every state so that

ea
h rule stri
tly de
reases this measure and that the measure 
annot get below

0. The measure is as follows.
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For any given state S = (N ;D; r) with r 2 f>;?g with D = f(x

1

; y

1

) �

k

1

^ : : : ^ f(x

n

; y

n

) � k

n

I assign the measure �(S) by

�(S) = 2

49

� p�

n

X

i=1

k

i

� 2

49�3i

where p = 0 if r = > and p = 1 otherwise.

The measure �(S) is well-de�ned and 
annot be
ome negative as n � 16,

p � 1, and 1 � k

i

� 4 for any D. In parti
ular, the former holds be
ause the

rule Dedu
e only adds values for unde�ned squares and the overall number of

squares is bound to 16. What remains to be shown is that ea
h rule appli
ation

de
reases �. I do this by a 
ase analysis over the rules.

Dedu
e:

�((N ;D;>)) = 2

49

�

P

n

i=1

k

i

� 2

49�3i

> 2

49

�

P

n

i=1

k

i

� 2

49�3i

� 1 � 2

49�3(n+1)

= �((N ;D ^ f(x; y) � 1;>))

Con
i
t:

�((N ;D;>)) = 2

49

�

P

n

i=1

k

i

� 2

49�3i

> 2

49

� 1�

P

n

i=1

k

i

� 2

49�3i

= �((N ;D;?))

Ba
ktra
k:

�((N ;D

0

^ f(x

l

; y

l

) � k

l

^D

00

;?))

= 2

49

� 1� (

P

l�1

i=1

k

i

� 2

49�3i

)� k

l

� 2

49�3l

�

P

n

i=l+1

k

i

� 2

49�3i

> 2

49

� (

P

l�1

i=1

k

i

� 2

49�3i

)� (k

l

+ 1) � 2

49�3l

= �(N ;D

0

^ f(x

l

; y

l

) � k

l

+ 1;>)

where the stri
t inequation holds be
ause 2

49�3l

>

P

n

i=l+1

k

i

� 2

49�3i

+ 1.

As already mentioned, there is another important property for don't 
are

non-deterministi
 rule sets: 
on
uen
e. It means that whenever several sequen
es

of rules are appli
able to a given state, the respe
tive results 
an be rejoined

by further rule appli
ations to a 
ommon problem state. A weaker 
ondition

is lo
al 
on
uen
e where only one step of di�erent rule appli
ations needs to

be rejoined. In Se
tion 1.6, Lemma 1.6.6, the equivalen
e of 
on
uen
e and

lo
al 
on
uen
e in 
ase of a terminating rule system is shown. Assuming this

result, for the Sudoku rule system only one step of so 
alled overlaps needs to

be 
onsidered. There are two potential kinds of overlaps for the Sudoku rule

system. First, an appli
ation of Dedu
e and Con
i
t to some state. Se
ond, two

di�erent appli
ations of Dedu
e to a state. The below Proposition 1.1.4 shows

that the former 
ase 
an in fa
t be rejoined and Example 1.1.5 shows that the

latter 
annot. So in sum, the system is not lo
ally 
on
uent and hen
e not


on
uent. This fa
t has already shown up in the soundness and 
ompleteness

proofs.
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Proposition 1.1.4 (Dedu
e and Con
i
t are 
on
uent). Given a state

(N ;D;>) out of whi
h two di�erent states (N ;D

1

;>) and (N ;D

2

;?) 
an be

generated by Dedu
e and Con
i
t, respe
tively, then the two states 
an be re-

joined to a state (N ;D

0

; �) via further rule appli
ations.

Proof. Consider an appli
ation of Dedu
e and Con
i
t to a state (N ;D;>)

resulting in (N ;D ^ f(x; y) � 1;>) and (N ;D;?), respe
tively. We will now

show that in fa
t we 
an rejoin the two states. Noti
e that sin
e Con
i
t is

appli
able to (N ;D;>) it is also appli
able to (N ;D ^ f(x; y) � 1;>). So the

�rst sequen
e of rejoin steps is

(N ;D ^ f(x; y) � 1;>) ) (N ;D ^ f(x; y) � 1;?)

) (N ;D ^ f(x; y) � 2;>)

)

�

(N ;D ^ f(x; y) � 4;?)

where we subsequently applied Con
i
t and Ba
ktra
k to rea
h the state (N ;D^

f(x; y) � 4;?) and )

�

abbreviates those �nite number of rule appli
ations.

Finally applying Ba
ktra
k (or Fail) to (N ;D;?) and (N ;D ^ f(x; y) � 4;?)

results in the same state.

Example 1.1.5 (Dedu
e is not 
on
uent). Consider the Sudoku state (f(1; 1) �

1 ^ f(2; 2) � 1;>;>) and two appli
ations of Dedu
e generating the respe
-

tive su

essor states (f(1; 1) � 1 ^ f(2; 2) � 1; f(3; 3) � 1;>) and (f(1; 1) �

1 ^ f(2; 2) � 1; f(3; 4) � 1;>). Obviously, both states 
an be 
ompleted to a

solution, but don not have a 
ommon solution. Therefore, it will not be possible

to rejoin the two states, see Figure 1.3.

1

1

Start

1

1

1

1

1

1

Dedu
e: f(3; 3) � 1Dedu
e: f(3; 4) � 1

Figure 1.3: Divergen
e of Rule Dedu
e

C

Is it desirable that a rule set for Sudoku is 
on
uent? It depends on

the purpose of the algorithm. In 
ase of the above rules set for Sudoku,

strong 
ompleteness and 
on
uen
e 
annot both be a
hieved, be
ause

any solution of the Sudoku results in its own, unique, �nal state.
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1.2 Basi
 Mathemati
al Prerequisites

The set of the natural numbers in
luding 0 is denoted by N, N = f0; 1; 2; : : :g,

the set of positive natural numbers without 0 by N

+

, N

+

= f1; 2; : : :g, and the

set of integers by Z. A

ordingly Q denotes the rational numbers and R the real

numbers, respe
tively.

Given a set M , a multi-set S over M is a mapping S : M ! N, where S

spe
i�es the number of o

urren
es of elements m of the base set M within the

multiset S. I use the standard set notations 2, �, �, [, \ with the analogous

meaning for multisets, for example (S

1

[ S

2

)(m) = S

1

(m) + S

2

(m). I also write

multi-sets in a set like notation, e.g., the multi-set S = f1; 2; 2; 4g denotes a

multi-set over the set f1; 2; 3; 4g where S(1) = 1, S(2) = 2, S(3) = 0, and

S(4) = 1. A multi-set S over a set M is �nite if fm 2 M j S(m) > 0g is �nite.

For the purpose of this book I only 
onsider �nite multi-sets.

An n-ary relation R over some set M is a subset of M

n

: R � M

n

. For two

n-ary relations R;Q over some setM , their union ([) or interse
tion (\) is again

an n-ary relation, where R [ Q := f(m

1

; : : : ;m

n

) 2 M j (m

1

; : : : ;m

n

) 2 R or

(m

1

; : : : ;m

n

) 2 Qg and R \ Q := f(m

1

; : : : ;m

n

) 2 M j (m

1

; : : : ;m

n

) 2 R

and (m

1

; : : : ;m

n

) 2 Qg . A relation Q is a subrelation of a relation R if

Q � R. The 
hara
teristi
 fun
tion of a relation R or sometimes 
alled pred-

i
ate indi
ates membership. In addition of writing (m

1

; : : : ;m

n

) 2 R I also

write R(m

1

; : : : ;m

n

). So the predi
ate R(m

1

; : : : ;m

n

) holds or is true if in fa
t

(m

1

; : : : ;m

n

) belongs to the relation R.

Given a nonempty alphabet � the set �

�

of �nite words over � is de�ned

by the (i) empty word � 2 �

�

, (ii) for ea
h letter a 2 � also a 2 �

�

and, �nally,

(iii) if u; v 2 �

�

so uv 2 �

�

where uv denotes the 
on
atenation of u and v. The

length juj of a word u 2 �

�

is de�ned by (i) j�j := 0, (ii) jaj := 1 for any a 2 �

and (iii) juvj := juj+ jvj for any u; v 2 �

�

.

1.3 Basi
 Computer S
ien
e Prerequisites

1.3.1 Data Stru
tures

1.3.2 While Languages over Rules

When presenting pseudo
ode for algorithms in textbooks typi
ally so 
alled

while languages are used (e.g., see [15℄). I assume familiarity with su
h lan-

guages and spe
ialize it here to rules. So let Rule be a rule de�ned on some

state S. Then

Rule(S);

is a shorthand for

if Rule is appli
able to S then apply it on
e to S;
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where in parti
ular nothing happens if Rule is not appli
able to S. There may

be several potential appli
ations ofRule to S. In this 
ase any of these is 
hosen.

The statement

whilerule(Rule(S)) do Body ;

is a shorthand for

while (Rule is appli
able to S) do

apply Rule on
e to S;

exe
ute Body ;

where the s
ope of the while loop is shown by indentation. The 
ondition of

the whilerule statement may also be a disjun
tion of rule statements. In this


ase the disjun
tion is exe
uted in a non-deterministi
, lazy way. We use k to

indi
ate the disjun
tion. Furthermore, a single rule statement may be followed

by a negation, indi
ated by !. In this 
ase the rule is tested for appli
ation,

if it is appli
able it is applied and the 
ondition be
omes false. If the rule is

not appli
able the 
ondition be
omes true. Ex
ept for these extensions, boolean


ombinations over rule statements are not part of the language. Finally, the

statement

ifrule(Rule(S)) then Body ;

is a shorthand for

if (Rule is appli
able to S) then

apply Rule on
e to S;

exe
ute on
e Body ;

In Se
tion 1.1 I have already used the language for des
ribing an algorithm

solving sudokus, Algorithm 1, SimpleSudoku(S).

1.3.3 Complexity

This book is about algorithms solving problems presented in logi
. Su
h an al-

gorithm is typi
ally represented by a �nite set of rules, manipulating a problem

state that 
ontains the logi
al representation plus bookkeeping information. For

example, for solving 4 � 4-Sudokus, see Se
tion 1.1, we represented the board

by a �nite 
onjun
tion of equations. The problem state was given by the repre-

sentation of the board plus assignments for remaining empty squares, plus an

indi
ation whether two 
on
i
ting assignments have been dete
ted. The rules

then take a start problem state and eventually transform it into a solved form.

In order to 
ompare the performan
e of this rule set with a di�erent one or to

give an overall performan
e guarantee of the rule set, the 
lassi
al way in 
om-

puter s
ien
e is to 
onsider the (worst 
ase) running time until termination. A


onsequen
e of the Sudoku termination proof, Lemma 1.1.3, is that at most 2

49

rule appli
ations are needed. Generalizing this result, for a given n�n-Sudoku,

the running time would by of \order" n

n

2

, be
ause in the worst 
ase we need to
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guess n di�erent numbers for ea
h square and there are n

2

squares of the board.

The so 
alled big O notation 
overs the term \order" formally.

De�nition 1.3.1 (Big O). Let f(n) and g(n) be fun
tions from the naturals

into the nonnegative reals. Then

O(f(n)) = fg(n) j 9 
 > 0 9n

0

2 N

+

8n � n

0

g(n) � 
 � f(n)g

Thus, the running time of the Sudoku algorithm for an n � n-Sudoku is

O(n

n

2

), if the number of rule appli
ations are taken to be the 
onstant time

units. This sounds somewhat surprising be
ause it means that the algorithm

will already fail for reasonably small n, if implemented in pra
ti
e. For example,

for the well-established 9 � 9-Sudoku puzzles the algorithm will in the worst


ase need about 9

81

� 2 � 10

77

rule appli
ations to �gure out whether a given

Sudoku has a solution. This way, assuming a fast 
omputer that 
an perform

1 Million rule appli
ations per se
ond it will take longer to solve a single Sudoku

than the 
urrently estimated age of the universe. Nevertheless, human beings

typi
ally solve a 9� 9-Sudoku in some minutes. So what is wrong here? First of

all, as I already said, the algorithm presented in Se
tion 1.1 is 
ompletely naive.

This algorithm will de�nitely not solve 9�9-Sudokus in reasonable time. It 
an

be turned into an algorithm that will work ni
ely in pra
ti
e, see Exer
ise (??).

Nevertheless, problems su
h as Sudokus are diÆ
ult to solve, in general. Testing

whether a parti
ular assignment is a solution 
an be done eÆ
iently, in 
ase of

Sudokus in time O(n

2

). For the purpose of this book, I say a problem 
an be

eÆ
iently solved if there is an algorithm solving the problem and a polynomial

p(n) so that the exe
ution time on inputs of size n is O(p(n)). Although it is

eÆ
ient for Sudokus to validate whether an assignment is a solution, there are

exponentially many possible assignments to 
he
k in order to �gure out whether

there exists a solution. So if we are allowed to make guesses, then Sudokus 
an

be solved eÆ
iently. This property des
ribes the 
lass of NP (Nondeterministi


Polynomial) problems in general that I will introdu
e now.

A de
ision problem is a subset L � �

�

for some �xed �nite alphabet �.

The fun
tion 
hr(L; x) denotes the 
hara
teristi
 fun
tion for some de
ision

problem L and is de�ned by 
hr(L; u) = 1 if u 2 L and 
hr(L; u) = 0 otherwise.

A de
ision problem is solvable in polynomial-time i� its 
hara
teristi
 fun
tion


an be 
omputed in polynomial-time. The 
lass P denotes all polynomial-time

de
ision problems.

De�nition 1.3.2 (NP). A de
ision problem L is in NP i� there is a predi
ate

Q(x; y) and a polynomial p(n) so that for all u 2 �

�

we have (i) u 2 L i� there

is an v 2 �

�

with jvj � p(juj) and Q(u; v) holds, and (ii) the predi
ate Q is in

P.

A de
ision problem L is polynomial time redu
ible to a de
ision problem L

0

if there is a fun
tion g 2 P so that for all u 2 �

�

we have u 2 L i� g(u) 2 L

0

.

For example, if L is redu
ible to L

0

and L

0

2 P then L 2 P. A de
ision problem

is NP-hard if every problem in NP is polynomial time redu
ible to it. A de
ision
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problem is NP-
omplete if it is NP-hard and in NP. A
tually, the �rst NP-


omplete problem [7℄ has been propositional satis�ability (SAT). Chapter 2 is


ompletely devoted to solving SAT.

1.3.4 Word Grammars

When G�odel presented his unde
idability proof on the basis of arithmeti
, many

people still believed that the 
onstru
tion is so arti�
ial that su
h problems will

never arise in pra
ti
e. This didn't 
hange with Turing's invention of the Turing

ma
hine and the unde
idable halting problem of su
h a ma
hine. However, then

Post presented his 
orresponden
e problem in 1946 [18℄ it be
ame obvious that

unde
idability is not an arti�
ial 
on
ept.

De�nition 1.3.3 (Finite Word). Given a nonempty alphabet � the set �

�

of

�nite words over � is de�ned by

1. the empty word � 2 �

�

2. for ea
h letter a 2 � also a 2 �

�

3. if u; v 2 �

�

so uv 2 �

�

where uv denotes the 
on
atenation of u and v.

De�nition 1.3.4 (Length of a Finite Word). The length juj of a word u 2 �

�

is de�ned by

1. j�j := 0,

2. jaj := 1 for any a 2 � and

3. juvj := juj+ jvj for any u; v 2 �

�

.

De�nition 1.3.5 (Word Embedding). Given two words u, v, then u is embedded

in v written u v v if for u = a

1

: : : a

n

there are words v

0

; : : : ; v

n

su
h that

v = v

0

a

1

v

1

a

2

: : : a

n

v

n

.

Reformulating the above de�nition, a word u is embedded in v if u 
an

be obtained from v by erasing letters. For example, higman is embedded in

highmountain.

De�nition 1.3.6 (PCP). Given two �nite lists of words (u

1

; : : : ; u

n

) and

(v

1

; : : : ; v

n

) the Post Corresponden
e Problem (PCP) is to �nd a �nite index

list (i

1

; : : : ; i

k

), 1 � i

j

� n, so that u

i

1

u

i

2

: : : u

i

k

= v

i

1

v

i

2

: : : v

i

k

.

Take for example the two lists (a; b; bb) and (ab; ab; b) over alphabet � =

fa; bg. Then the index list (1; 3) is a solution to the PCP with 
ommon word

abb.

Theorem 1.3.7 (Post 1942). PCP is unde
idable.

Lemma 1.3.8 (Higman's Lemma 1952). For any in�nite sequen
e of words

u

1

; u

2

; : : : over a �nite alphabet there are two words u

k

; u

k+l

su
h that u

k

v

u

k+l

.
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Proof. By 
ontradi
tion. Assume an in�nite sequen
e u

1

; u

2

; : : : su
h that for

any two words u

k

; u

k+l

they are not embedded, i.e., u

k

6v u

k+l

. Furthermore, I

assume that the sequen
e is minimal at any word with respe
t to length, i.e.,


onsidering any u

k

, there is no in�nite sequen
e with the above property that

shares the words up to u

k�1

and then 
ontinues with a word of smaller length

than u

k

. Next, the alphabet is �nite, so there must be a letter, say a that o
-


urs in�nitely often as the �rst letter of the words of the sequen
e. The words

starting with a form an in�nite subsequen
e au

0

k

1

; au

0

k

2

; : : : where u

k

i

= au

0

k

i

.

This in�nite subsequen
e itself has the non-embedding property, be
ause it is

a subsequen
e of the originial sequen
e. Now 
onsider the in�nite sequen
e

u

1

; u

2

; : : : ; u

k

1

�1

; u

0

k

1

; u

0

k

2

; : : :. Also this sequen
e has the non-embedding prop-

erty: if some u

i

v u

0

k

j

then u

i

v au

0

k

j


ontradi
ting that the starting sequen
e is

non-embedding. But then the 
onstru
ted sequen
e 
ontradi
ts the minimality

assumption with respe
t to length, �nishing the proof.

De�nition 1.3.9 (Context-Free Grammar). A 
ontext-free grammar G =

(N;T; P; S) 
onsists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols T

3. a set P of rules A) w where A 2 N and w 2 (N [ T )

�

4. a start symbol S where S 2 N

For rules A) w

1

, A) w

2

we write A) w

1

j w

2

.

Given a 
ontext free grammarG and two words u; v 2 (N[T )

�

I write u) v

if u = u

1

Au

2

and v = u

1

wu

2

and there is a rule A ) w in G. The language

generated by G is L(G) = fw 2 T

�

j S )

�

wg, where )

�

is the re
exive and

transitive 
losure of ).

A 
ontext free grammar G is in Chomsky Normal Form [6℄ if all rules are if

the form A ) B

1

B

2

with B

i

2 N or A ) w with w 2 T

�

. It is said to be in

Greiba
h Normal Form [12℄ if all rules are of the form A) aw with a 2 T and

w 2 N

�

.

1.4 Orderings

An ordering R is a binary relation on some set M . Depending on parti
ular

properties su
h as

(re
exivity) 8x 2M R(x; x)

(irre
exivity) 8x 2M :R(x; x)

(antisymmetry) 8x; y 2M (R(x; y) ^ R(y; x)! x = y)

(transitivity) 8x; y; z 2M (R(x; y) ^ R(y; z)! R(x; z))

(totality) 8x; y 2M (R(x; y) _ R(y; x))
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there are di�erent types of orderings. The relation = is the identity relation

onM . The quanti�er 8 reads \for all", and the boolean 
onne
tives ^, _, and!

read \and", \or", and \implies", respe
tively. For example, the above formula

stating re
exivity 8x 2M R(x; x) is a shorthand for \for all x 2M the relation

R(x; x) holds".

C

A
tually, the de�nition of the above properties is informal in the sense

that I rely on the meaning of 
ertain symbols su
h as 2 or !. While

the former is assumed to be known from s
hool math, the latter is

\explained" above. So, stri
tly speaking this book is neither self 
ontained,

nor overall formal. For the 
on
rete logi
s developed in subsequent 
hapters, I

will formally de�ne ! but here, where it is used to state properties needed to

eventually de�ne the notion of an ordering, it remains informal. Although it is

possible to develop the overall 
ontent of this book in a 
ompletely formal style,

su
h an approa
h is typi
ally impossible to read and 
omprehend. Sin
e this

book is about tea
hing a general framework to eventually generate automated

reasoning pro
edures this would not be the right way to go. In parti
ular, being

informal starts already with the use of natural language. In order to support

this \mixed" style, examples and exer
ises deepen the understanding and rule

out potential mis
on
eptions.

Now, based on the above de�ned properties of a relation, the usual notions

with respe
t to orderings are stated below.

De�nition 1.4.1 (Orderings). A partial ordering � (or simply ordering) on

a set M , denoted (M;�), is a re
exive, antisymmetri
, and transitive binary

relation on M . It is a total ordering if it also satis�es the totality property. A

stri
t ordering � is a transitive and irre
exive binary relation on M . A stri
t

ordering is well-founded, if there is no in�nite des
ending 
hain m

0

� m

1

�

m

2

� : : : where m

i

2M .

Given a stri
t partial order � on some set M , its respe
tive partial order �

is 
onstru
ted by taking the transitive 
losure of (� [ =). If the partial order

� extension of some stri
t partial order � is total, then we 
all also � total. As

an alternative, a stri
t partial order � is total of it satis�es the stri
t totality

axiom 8x; y 2 M (x 6= y ! (R(x; y) _ R(y; x))). Given some ordering � the

respe
tive ordering � is de�ned by a � b i� b � a.

Example 1.4.2. The well-known relation � on N, where k � l if there is a j

so that k + j = l for k; l; j 2 N, is a total ordering on the naturals. Its stri
t

subrelation < is well-founded on the naturals. However, < is not well-founded

on Z.

De�nition 1.4.3 (Minimal and Smallest Elements). Given a stri
t ordering

(M;�), an element m 2M is 
alled minimal, if there is no element m

0

2M so

that m � m

0

. An element m 2 M is 
alled smallest, if m

0

� m for all m

0

2 M

di�erent from m.
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Note the subtle di�eren
e between minimal and smallest. There may be

several minimal elements in a setM but only one smallest element. Furthermore,

in order for an element being smallest in M it needs to be 
omparable to all

other elements from M .

Example 1.4.4. In N the number 0 is smallest and minimal with respe
t to <.

For the set M = fq 2 Q j q � 5g the ordering < on M is total, has the minimal

element 5 but is not well-founded.

If < is the an
estor relation on the members of a human family, then <

typi
ally will have several minimal elements, the 
urrently youngest 
hildren of

the family, but no smallest element, as long as there is a 
ouple with more than

one 
hild. Furthermore, < is not total, but well-founded.

Well-founded orderings 
an be 
ombined to more 
omplex well-founded or-

derings by lexi
ographi
 or multiset extensions.

De�nition 1.4.5 (Lexi
ographi
 and Multi-Set Ordering Extensions). Let

(M

1

;�

1

) and (M

2

;�

2

) be two stri
t orderings. Their lexi
ographi
 
ombination

�

lex

= (�

1

;�

2

) on M

1

�M

2

is de�ned as (m

1

;m

2

) � (m

0

1

;m

0

2

) i� m

1

�

1

m

0

1

or

m

1

= m

0

1

and m

2

�

2

m

0

2

.

Let (M;�) be a stri
t ordering. The multi-set extension �

mul

to multi-sets

over M is de�ned by S

1

�

mul

S

2

i� S

1

6= S

2

and 8m 2 M [S

2

(m) > S

1

(m) !

9m

0

2M (m

0

� m ^ S

1

(m

0

) > S

2

(m

0

))℄.

The de�nition of the lexi
ographi
 ordering extensions 
an be exapanded to

n-tuples in the obvious way. So it is also the basis for the standard lexi
ographi


ordering on words as used, e.g., in di
tionaries. In this 
ase theM

i

are alphabets,

say a-z, where a � b � : : : � z. Then a

ording to the above de�nition tiger �

tree.

Example 1.4.6 (Multi Set Ordering). Consider the multiset extension of (N; >

). Then f2g >

mul

f1; 1; 1g be
ause there is no element in f1; 1; 1g that is larger

than 2. As a border 
ase, f2; 1g >

mul

f2g be
ause there is no element that has

more o

urren
es in f2g 
ompared to f2; 1g. The other way round, 1 has more

o

urren
es in f2; 1g than in f2g and there is no larger element to 
ompensate

for it, so f2g 6>

mul

f2; 1g.

Proposition 1.4.7 (Properties of Lexi
ographi
 and Multi-Set Ordering Ex-

tensions). Let (M;�), (M

1

;�

1

), and (M

2

;�

2

) be orderings. Then

1. �

lex

is an ordering on M

1

�M

2

.

2. if (M

1

;�

1

) and (M

2

;�

2

) are well-founded so is �

lex

.

3. if (M

1

;�

1

) and (M

2

;�

2

) are total so is �

lex

.

4. �

mul

is an ordering on multi-sets over M .

5. if (M;�) is well-founded so is �

mul

.

6. if (M;�) is total so is �

mul

.
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TThe lexi
ographi
 ordering on words is not well-founded if words of

arbitrary length are 
onsidered. Starting from the standard ordering

on the alphabet, e.g., the following in�nite des
ending sequen
e 
an be 
on-

stru
ted: b � ab � aab � : : :. It be
omes well-founded if it is lexi
ographi
ally


ombined with the length oordering, see Exer
ise ??.

Lemma 1.4.8 (K�onig's Lemma). Every �nitely bran
hing tree with in�nitely

many nodes 
ontains an in�nite path.

1.5 Indu
tion

More or less all sets of obje
ts in 
omputer s
ien
e or logi
 are de�ned indu
-

tively. Typi
ally, this is done in a bottom-up way, where starting with some

de�nite set, it is 
losed under a given set of operations.

Example 1.5.1 (Indu
tive Sets). In the following, some examples for indu
-

tively de�ned sets are presented:

1. The set of all Sudoku problem states, see Se
tion 1.1, 
onsists of the set of

start states (N ;>;>) for 
onsistent assignments N plus all states that 
an

be derived from the start states by the rules Dedu
e, Con
i
t, Ba
ktra
k,

and Fail. This is a �nite set.

2. The set N of the natural numbers, 
onsists of 0 plus all numbers that 
an

be 
omputed from 0 by adding 1. This is an in�nite set.

3. The set of all strings �

�

over a �nite alphabet �. All letters of � are


ontained in �

�

and if u and v are words out of �

�

so is the word uv, see

Se
tion 1.2. This is an in�nite set.

All the previous examples have in 
ommon that there is an underlying well-

founded ordering on the sets indu
ed by the 
onstru
tion. The minimal elements

for the Sudoku are the problem states (N ;>;>), for the natural numbers it is

0 and for the set of strings it is the empty word. Now if we want to prove

a property of an indu
tive set it is suÆ
ient to prove it (i) for the minimal

element(s) and (ii) assuming the property for an arbitrary set of elements, to

prove that it holds for all elements that 
an be 
onstru
ted \in one step" out

those elements. This is the prin
iple of Noetherian Indu
tion.

Theorem 1.5.2 (Noetherian Indu
tion). Let (M;�) be a well-founded order-

ing, and let Q be a predi
ate over elements ofM . If for allm 2M the impli
ation

if Q(m

0

), for all m

0

2M so that m � m

0

, (indu
tion hypothesis)

then Q(m). (indu
tion step)

is satis�ed, then the property Q(m) holds for all m 2M .
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Proof. Let X = fm 2 M j Q(m) does not holdg. Suppose, X 6= ;. Sin
e (M;�

) is well-founded, X has a minimal element m

1

. Hen
e for all m

0

2M with

m

0

� m

1

the property Q(m

0

) holds. On the other hand, the impli
ation whi
h

is presupposed for this theorem holds in parti
ular also for m

1

, hen
e Q(m

1

)

must be true so that m

1


annot be in X - a 
ontradi
tion.

Note that although the above impli
ation sounds like a one step proof te
h-

nique it is a
tually not. There are two 
ases. The �rst 
ase 
on
erns all elements

that are minimal with respe
t to � in M and for those the predi
ate Q needs

to hold without any further assumption. The se
ond 
ase is then the indu
tion

step showing that by assuming Q for all elements stri
tly smaller than some m,

we 
an prove it for m.

Now for 
ontext free grammars. *** Motivate Further *** Let G =

(N;T; P; S) be a 
ontext-free grammar (possibly in�nite) and let q be a property

of T

�

(the words over the alphabet T of terminal symbols of G).

q holds for all words w 2 L(G), whenever one 
an prove the following two

properties:

1. (base 
ases)

q(w

0

) holds for ea
h w

0

2 T

�

so that X ::= w

0

is a rule in P .

2. (step 
ases)

If X ::= w

0

X

0

w

1

: : : w

n

X

n

w

n+1

is in P with X

i

2 N , w

i

2 T

�

, n � 0,

then for all w

0

i

2 L(G;X

i

), whenever q(w

0

i

) holds for 0 � i � n, then also

q(w

0

w

0

0

w

1

: : : w

n

w

0

n

w

n+1

) holds.

Here L(G;X

i

) � T

�

denotes the language generated by the grammar G from

the nonterminal X

i

.

Let G = (N;T; P; S) be an unambiguous (why?) 
ontext-free grammar. A

fun
tion f is well-de�ned on L(G) (that is, unambiguously de�ned) whenever

these 2 properties are satis�ed:

1. (base 
ases)

f is well-de�ned on the words w

0

2 T

�

for ea
h rule X ::= w

0

in P .

2. (step 
ases)

IfX ::= w

0

X

0

w

1

: : : w

n

X

n

w

n+1

is a rule in P then f(w

0

w

0

0

w

1

: : : w

n

w

0

n

w

n+1

)

is well-de�ned, assuming that ea
h of the f(w

0

i

) is well-de�ned.

1.6 Rewrite Systems

The �nal ingredient to a
tually start the journey through di�erent logi
al sys-

tems is rewrite systems. Here I de�ne the needed 
omputer s
ien
e ba
kground

for de�ning algorithms in the form of rule sets. In Se
tion 1.1 the rewrite rules

Dedu
e, Con
i
t, Ba
ktra
k, and Fail de�ned an algorithm for solving 4 � 4

Sudokus. The rules operate on the set of Sudoku problem states, starting with

a set of initial states (N ;>;>) and �nishing either in a solution state (N ;D;>)
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or a fail state (N ;>;?). The latter are 
alled normal forms (see below) with

respe
t to the above rules, be
ause no more rule is appli
able to solution state

(N ;D;>) or a fail state (N ;>;?).

De�nition 1.6.1 (Rewrite System). A rewrite system is a pair (M;!), where

M is a non-empty set and ! � M �M is a binary relation on M . Figure 1.4

de�nes the needed notions for !.

!

0

= f (a; a) j a 2M g identity

!

i+1

= !

i

Æ! i+ 1-fold 
omposition

!

+

=

S

i>0

!

i

transitive 
losure

!

�

=

S

i�0

!

i

= !

+

[!

0

re
exive transitive 
losure

!

=

= ![!

0

re
exive 
losure

!

�1

=  = f (b; 
) j 
! b g inverse

$ = ![ symmetri
 
losure

$

+

= ($)

+

transitive symmetri
 
losure

$

�

= ($)

�

re
. trans. symmetri
 
losure

Figure 1.4: Notation on !

For a rewrite system (M;!) 
onsider a sequen
e of elements a

i

that are

pairwise 
onne
ted by the symmetri
 
losure, i.e., a

1

$ a

2

$ a

3

: : : $ a

n

. We

say that a

i

is a peak in su
h a sequen
e, if a
tually a

i�1

 a

i

! a

i+1

.

C

A
tually, in De�nition 1.6.1 I overload the symbol! that has already

denoted logi
al impli
ation, see Se
tion 1.4, with a rewrite relation.

This overloading will remain throughout this book. The rule symbol

) is only used on the meta level in this book, e.g., to de�ne the Sudoku algo-

rithm on problem states, Se
tion 1.1. Nevertheless, this meta rule systems are

also rewrite systems in the above sense. The rewrite symbol ! is used on the

formula level inside a problem state. This will be
ome 
lear when I turn to more


omplex logi
s starting from Chapter 2.

De�nition 1.6.2 (Redu
ible). Let (M;!) be a rewrite system. An element

a 2 M is redu
ible, if there is a b 2 M so that a ! b. An element a 2 M is in

normal form (irredu
ible), if it is not redu
ible. An element 
 2 M is a normal

form of b, if b !

�


 and 
 is in normal form, notated 
 = b# (if the normal

form of b is unique). Two elements b and 
 are joinable, if there is an a so that

b!

�

a

�

 
, notated b # 
.

De�nition 1.6.3 (Properties of !). A relation ! is 
alled

Chur
h-Rosser if b$

�


 implies b # 



on
uent if b

�

 a!

�


 implies b # 


lo
ally 
on
uent if b a! 
 implies b # 


terminating if there is no in�nite des
ending 
hain b

0

! b

1

: : :

normalizing if every b 2 A has a normal form


onvergent if it is 
on
uent and terminating



24 CHAPTER 1. PRELIMINARIES

Lemma 1.6.4. If ! is terminating, then it is normalizing.

T

The reverse impli
ation of Lemma 1.6.4 does not hold. Assuming this

is a frequent mistake. Consider M = fa; b; 
g and the relation a! b,

b! a, and b! 
. Then (M;!) is obviously not terminating, be
ause

we 
an 
y
le between a and b. However, (M;!) is normalizing. The normal form

is 
 for all elements of M . Similarly, there are rewrite systems that are lo
ally


on
uent, but not 
on
uent, see Figure ??. *** to be done *** In the 
ontext

of termination the property holds, see Lemma 1.6.6.

Theorem 1.6.5. The following properties are equivalent for any rewrite system

(S;!):

(i) ! has the Chur
h-Rosser property.

(ii) ! is 
on
uent.

Proof. (i) ) (ii): trivial.

(ii)) (i): by indu
tion on the number of peaks in the derivation b$

�


.

Lemma 1.6.6 (Newman's Lemma [?℄: Con
uen
e versus Lo
al Con
uen
e).

Let (M;!) be a terminating rewrite system. Then the following properties are

equivalent:

(i) ! is 
on
uent

(ii) ! is lo
ally 
on
uent

Proof. (i) ) (ii): trivial.

(ii) ) (i): Sin
e ! is terminating, it is a well-founded ordering (see Ex-

er
ise ??). This justi�es a proof by Noetherian indu
tion where the property

Q(a) is \a is 
on
uent". Applying Noetherian indu
tion, 
on
uen
e holds for

all a

0

2M with a!

+

a

0

and needs to be shown for a. Consider the 
on
uen
e

property for a: b

�

 a!

�


. If b = a or 
 = a the proof is done. For otherwise,

the situation 
an be expanded to b

�

 b

0

 a ! 


0

!

�


. By lo
al 
on
uen
e

there is an a

0

with b

0

!

�

a

0 �

 


0

. Now a

0

, b, 
 are stri
tly smaller than a, they

are 
on
uent and hen
e 
an be rewritten so a single a

00

, �nishing the proof.

Lemma 1.6.7. If ! is 
on
uent, then every element has at most one normal

form.

Proof. Suppose that some element a 2 A has normal forms b and 
, then b

�

 

a !

�


. If ! is 
on
uent, then b !

�

d

�

 
 for some d 2 A. Sin
e b and 
 are

normal forms, both derivations must be empty, hen
e b!

0

d

0

 
, so b, 
, and

d must be identi
al.

Corollary 1.6.8. If ! is normalizing and 
on
uent, then every element b has

a unique normal form.

Proposition 1.6.9. If ! is normalizing and 
on
uent, then b$

�


 if and only

if b# = 
#.

Proof. Either using Theorem 1.6.5 or dire
tly by indu
tion on the length of the

derivation of b$

�


.
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Histori
 and Bibliographi
 Remarks

For 
ontext free languages see [2℄.
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Chapter 2

Propositional Logi


2.1 Syntax

Consider a �nite, non-empty signature � of propositional variables, the \alpha-

bet" of propositional logi
. In addition to the alphabet \propositional 
onne
-

tives" are further building blo
ks 
omposing the senten
es (formulas) of the

language and auxiliary symbols su
h as parentheses enable disambiguation.

De�nition 2.1.1 (Propositional Formula). The set PROP(�) of propositional

formulas over a signature � is indu
tively de�ned by:

PROP(�) Comment

? 
onne
tive ? denotes \false"

> 
onne
tive > denotes \true"

P for any propositional variable P 2 �

(:�) 
onne
tive : denotes \negation"

(� ^  ) 
onne
tive ^ denotes \
onjun
tion"

(� _  ) 
onne
tive _ denotes \disjun
tion"

(�!  ) 
onne
tive ! denotes \impli
ation"

(�$  ) 
onne
tive $ denotes \equivalen
e"

where �;  2 PROP(�).

The above de�nition is an abbreviation for setting PROP(�) to be the

language of a 
ontext free grammar PROP(�) = L((N;T; P; S)) (see De�ni-

tion 1.3.9) where N = f�;  g, T = � [ f(; )g [ f?;>;:;^;_;!;$g with start

symbol rules S ) ? j > j (:�) j (� ^  ) j (� _  ) j (� !  ) j (� $  ) and

S ) P for every P 2 �, �) ? j > j (:�) j (�^ ) j (�_ ) j (�!  ) j (�$  ),

 ) ? j > j (:�) j (� ^  ) j (� _  ) j (� !  ) j (� $  ), and � ) P ,  ) P

for every P 2 �.

As a notational 
onvention we assume that : binds strongest and we omit

outermost parenthesis. So :P _ Q is a
tually a shorthand for ((:P ) _ Q). For

all other logi
al 
onne
tives we will expli
itly put parenthesis when needed.

27
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From the semanti
s we will see that ^ and _ are asso
iative and 
ommutative.

Therefore instead of ((P ^Q) ^ R) we simply write P ^Q ^ R.

De�nition 2.1.2 (Atom, Literal). A propositional formula P is 
alled an atom.

It is also 
alled a (positive) literal and its negation :P is 
alled a (negative)

literal. If L is a literal, then :L = P if L = :P and :L = :P if L = P ,

j:P j = P and jP j = P . Literals are denoted by letters L;K. The literals P and

:P are 
alled 
omplementary.

Automated reasoning is very mu
h formula manipulation. In order to pre-


isely represent the manipulation of a formula, we introdu
e positions.

De�nition 2.1.3 (Position). A position is a word over N. The set of positions

of a formula � is indu
tively de�ned by

pos(�) := f�g if � 2 f>;?g or � 2 �

pos(:�) := f�g [ f1p j p 2 pos(�)g

pos(� Æ  ) := f�g [ f1p j p 2 pos(�)g [ f2p j p 2 pos( )g

where Æ 2 f^;_;!;$g.

The pre�x order � on positions is de�ned by p � q if there is some p

0

su
h

that pp

0

= q. Note that the pre�x order is partial, e.g., the positions 12 and 21

are not 
omparable, they are \parallel", see below. By < we denote the stri
t

part of �, i.e., p < q if p � q but not q � p. By k we denote in
omparable

positions, i.e., p k q if neither p � q, nor q � p. Then we say that p is above q if

p � q, p is stri
tly above q if p < q, and p and q are parallel if p k q.

The size of a formula � is given by the 
ardinality of pos(�): j�j := j pos(�)j.

The subformula of � at position p 2 pos(�) is re
ursively de�ned by �j

�

:= �,

:�j

1p

:= �j

p

, and (�

1

Æ �

2

)j

ip

:= �

i

j

p

where i 2 f1; 2g, Æ 2 f^;_;!;$g.

Finally, the repla
ement of a subformula at position p 2 pos(�) by a formula

 is re
ursively de�ned by �[ ℄

�

:=  and (�

1

Æ �

2

)[ ℄

1p

:= (�

1

[ ℄

p

Æ �

2

),

(�

1

Æ �

2

)[ ℄

2p

:= (�

1

Æ �

2

[ ℄

p

), where Æ 2 f^;_;!;$g.

Example 2.1.4. The set of positions for the formula � = (P ^ Q) ! (P _Q)

is pos(�) = f�; 1; 11; 12; 2; 21; 22g. The subformula at position 22 is Q, �j

22

= Q

and repla
ing this formula by P $ Q results in �[P $ Q℄

22

= (P ^ Q) !

(P _ (P $ Q)).

A further prerequisite for eÆ
ient formula manipulation is notion of the

polarity of a subformula of � at position p. The polarity 
onsiders the number

of \negations" starting from � at � down to p. It is 1 for an even number along the

path, �1 for an odd number and 0 if there is at least one equivalen
e 
onne
tive

along the path.

De�nition 2.1.5 (Polarity). The polarity of a subformula of � at position

p 2 pos(�) is indu
tively de�ned by
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pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

Example 2.1.6. We reuse the formula � = (A^B) ! (A_B) of Example 2.1.4.

Then pol(�; 1) = pol(�; 11) = �1 and pol(�; 2) = pol(�; 22) = 1. For the

formula �

0

= (A ^ B)$ (A _ B) we get pol(�

0

; �) = 1 and pol(�

0

; p) = 0 for all

other p 2 pos(�

0

), p 6= �.

2.2 Semanti
s

In 
lassi
al logi
 there are two truth values \true" and \false" whi
h we shall

denote, respe
tively, by 1 and 0. There are many-valued logi
s [21℄ having more

than two truth values and in fa
t, as we will see later on, for the de�nition of

some propositional logi
 
al
uli, we will need an impli
it third truth value 
alled

\unde�ned".

De�nition 2.2.1 ((Partial) Valuation). A �-valuation is a map

A : �! f0; 1g:

where f0; 1g is the set of truth values. A partial �-valuation is a map A

0

: �

0

!

f0; 1g where �

0

� �.

De�nition 2.2.2 (Semanti
s). A �-valuation A is indu
tively extended from

propositional variables to propositional formulas �;  2 PROP(�) by

A(?) := 0

A(>) := 1

A(:�) := 1�A(�)

A(� ^  ) := min(fA(�);A( )g)

A(� _  ) := max(fA(�);A( )g)

A(�!  ) := max(f(1�A(�));A( )g)

A(�$  ) := if A(�) = A( ) then 1 else 0

If A(�) = 1 for some �-valuation A of a formula � then � is satis�able and

we write A j= �. If A(�) = 1 for all �-valuations A of a formula � then � is

valid and we write j= �. If there is no �-valuations A for a formula � where

A(�) = 1 we say � is unsatis�able. A formula � entails  , written � j=  , if for

all �-valuations A whenever A j= � then A j=  .

A

ordingly, a formula � is satis�able, valid, unsatis�able, respe
tively, with

respe
t to a partial valuation A

0

with domain �

0

, if for any valuation A with

A(P ) = A

0

(P ) for all P 2 �

0

the formula � is satis�able, valid, unsatis�able,

respe
tively, with respe
t to a A.
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I 
all the fa
t that some formula � is satis�able, unsatis�able, or valid, the

status of �. Note that if � is valid it is also satis�able, but not the other way

round.

Valuations 
an be ni
ely represented by sets or sequen
es of literals that do

not 
ontain 
omplementary literals nor dupli
ates. If A is a (partial) valuation

of domain � then it 
an be represented by the set fP j P 2 � and A(P ) =

1g [ f:P j P 2 � and A(P ) = 0g. For example, for the valuation A = fP;:Qg

the truth value of P _ Q is A(P _ Q) = 1, for P _ R it is A(P _ R) = 1, for

:P ^ R it is A(:P ^ R) = 0, and the status of :P _ R 
annot be established

by A. In parti
ular, A is a partial valuation for � = fP;Q;Rg.

Example 2.2.3. The formula � _ :� is valid, independently of �. A

ording

to De�nition 2.2.2 we need to prove that for all �-valuations A of � we have

A(� _ :�) = 1. So let A be an arbitrary valuation. There are two 
ases to


onsider. If A(�) = 1 then A(� _ :�) = 1 be
ause the valuation fun
tion takes

the maximum if distributed over _. If A(�) = 0 then A(:�) = 1 and again by

the before argument A(� _ :�) = 1. This �nishes the proof that j= � _ :�.

Proposition 2.2.4. � j=  i� j= �!  

Proof. ()) Suppose that � entails  and let A be an arbitrary �-valuation.

We need to show A j= � !  . If A(�) = 1, then A( ) = 1, be
ause � entails

 , and therefore A j= � !  . For otherwise, if A(�) = 0, then A(� !  ) =

max(f(1�A(�));A( )g) = max(f(1;A( )g) = 1, independently of the value of

A( ). In both 
ases A j= �!  .

(() By 
ontraposition. Suppose that � does not entail  . Then there exists a

�-valuation A su
h that A j= �, A(�) = 1 but A 6j=  , A( ) = 0. By de�nition,

A(� !  ) = max(f(1 � A(�));A( )g) = max(f(1 � 1); 0g) = 0, hen
e � !  

does not hold in A.

Proposition 2.2.5. The equivalen
es of Figure 2.1 are valid for all formulas

�;  ; �.

From Figure 2.1 we 
on
lude that the propositional language introdu
ed

in De�nition 2.1.1 is redundant in the sense that 
ertain 
onne
tives 
an be

expressed by others. For example, the equivalen
e Eliminate ! expresses im-

pli
ation by means of disjun
tion and negation. So for any propositional for-

mula � there exists an equivalent formula �

0

su
h that �

0

does not 
ontain the

impli
ation 
onne
tive. In order to prove this proposition we need the below

repla
ement lemma.

T

Note that the formulas � ^  and  ^ � are equivalent. Nevertheless,

re
alling the problem state de�nition for Sudokus in Se
tion 1.1 the

two states (N ; f(2; 3) = 1 ^ f(2; 4) = 4;>) and (N ; f(2; 4) = 4 ^

f(2; 3) = 1;>) are signi�
antly di�erent. For example, it 
an be that the �rst

state 
an lead to a solution by the rules of the algorithm where the latter


annot, be
ause the latter impli
itly means that the square (2; 4) has already
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(I) (� ^ �)$ � Idempoten
y ^

(� _ �)$ � Idempoten
y _

(II) (� ^  )$ ( ^ �) Commutativity ^

(� _  )$ ( _ �) Commutativity _

(III) (� ^ ( ^ �))$ ((� ^  ) ^ �) Asso
iativity ^

(� _ ( _ �))$ ((� _  ) _ �) Asso
iativity _

(IV) (� ^ ( _ �))$ (� ^  ) _ (� ^ �) Distributivity ^_

(� _ ( ^ �))$ (� _  ) ^ (� _ �) Distributivity _^

(V) (� ^ (� _  ))$ � Absorption ^_

(� _ (� ^  ))$ � Absorption _^

(VI) :(� _  )$ (:� ^ : ) De Morgan :_

:(� ^  )$ (:� _ : ) De Morgan :^

(VII) (� ^ :�)$ ? Introdu
tion ?

(� _ :�)$ > Introdu
tion >

:> $ ? Propagate :>

:? $ > Propagate :?

(� ^ >)$ � Absorption >^

(� _ ?)$ � Absorption ?_

(::�) $ � Absorption ::

(�! ?)$ :� Eliminate ! ?

(? ! �)$ > Eliminate ? !

(�! >)$ > Eliminate ! >

(> ! �)$ � Eliminate > !

(�$ ?)$ :� Eliminate ? $

(�$ >)$ � Eliminate > $

(� _ >)$ > Propagate >

(� ^ ?)$ ? Propagate ?

(VIII) (�!  )$ (:� _  ) Eliminate !

(IX) (�$  )$ (�!  ) ^ ( ! �) Eliminate1 $

(�$  )$ (� ^  ) _ (:� ^ : ) Eliminate2 $

Figure 2.1: Valid Propositional Equivalen
es
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been 
he
ked for all values smaller than 4. This reveals the important point that

arguing by logi
al equivalen
e in the 
ontext of a rule set manipulating formulas


an lead to wrong results.

Lemma 2.2.6 (Formula Repla
ement). Let � be a propositional formula 
on-

taining a subformula  at position p, i.e., �j

p

=  . Furthermore, assume

j=  $ �. Then j= �$ �[�℄

p

.

Proof. By indu
tion on jpj and stru
tural indu
tion on �. For the base step let

p = � and A be an arbitrary valuation.

A(�) = A( ) (by de�nition of repla
ement)

= A(�) (be
ause A j=  $ �)

= A(�[�℄

�

) (by de�nition of repla
ement)

For the indu
tion step the lemma holds for all positions p and has to be

shown for all positions ip. By stru
tural indu
tion on � I show the 
ases where

� = :�

1

and � = �

1

! �

2

in detail. All other 
ases are analogous.

If � = :�

1

then showing the lemma amounts to proving j= :�

1

$ :�

1

[�℄

1p

.

Let A be an arbitrary valuation.

A(:�

1

) = 1�A(�

1

) (expanding semanti
s)

= 1�A(�

1

[�℄

p

) (by indu
tion hypothesis)

= A(:�[�℄

1p

) (applying semanti
s)

If � = �

1

! �

2

then showing the lemma amounts to proving the two 
ases

j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

1p

and j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

2p

. Both


ases are similar so I show only the �rst 
ase. Let A be an arbitrary valuation.

A(�

1

! �

2

) = max(f(1�A(�

1

));A(�

2

)g) (expanding semanti
s)

= max(f(1�A(�

1

[�℄

p

));A(�

2

)g) (by indu
tion hypothesis)

= A((�

1

! �

2

)[�℄

1p

) (applying semanti
s)

Lemma 2.2.7 (Polarity Dependent Repla
ement). Consider a formula �, po-

sition p 2 pos(�), pol(�; p) = 1 and (partial) valuation A with A(�) = 1. If for

some formula  , A( ) = 1 then A(�[ ℄

p

) = 1. Symmetri
ally, if pol(�; p) = �1

and A( ) = 0 then A(�[ ℄

p

) = 1.

Proof. By indu
tion on the length of p.

Note that the 
ase for the above lemma where pol(�; p) = 0 is a
tually

Lemma 2.2.6.
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CThe equivalen
es of Figure 2.1 show that the propositional language

introdu
ed in De�nition 2.1.1 is redundant in the sense that 
ertain


onne
tives 
an be expressed by others. For example, the equivalen
e Elimi-

nate ! expresses impli
ation by means of disjun
tion and negation. So for any

propositional formula � there exists an equivalent formula �

0

su
h that �

0

does

not 
ontain the impli
ation 
onne
tive. In order to prove this proposition the

above repla
ement lemma is key.

2.3 Abstra
t Properties of Cal
uli

A proof pro
edure 
an be sound, 
omplete, strongly 
omplete, refutationally


omplete or terminating. Terminating means that it terminates on any input

formula. Now depending on whether the 
al
ulus investigates validity (unsatis-

�ability) or satis�ability the before notions have a di�erent meaning.

Validity Satis�ability

Sound Whenever the 
al
ulus

outputs a proof the

formula is valid.

Whenever the 
al
ulus

outputs a model the

formula has a model.

Complete If the formula is valid the


al
ulus outputs a proof.

If the formula is satis�-

able, the 
al
ulus outputs

a model.

Strongly

Complete

For any proof of the for-

mula, there is a sequen
e

of rule appli
ations that

generates this proof.

For any model of the for-

mula, there is a sequen
e

of rule appli
ations that

generates this model.

There are some assumptions underlying these informal de�nitions. First, the


al
ulus a
tually produ
es a proof in 
ase of investigating validity, and in 
ase of

investigating satis�ability it produ
es a model. This in fa
t requires the notion

of a proof and a model. Then soundness means in both 
ases that the 
al
ulus

has no bugs. The results it produ
es are 
orre
t. Completeness means that if

there is a proof (model) for a formula, the 
al
ulus will eventually �nd it. Strong


ompleteness requires in addition that any proof (model) 
an be found by the


al
ulus. A variant of 
omplete 
al
ulus is a refutationally 
omplete 
al
ulus: a


al
ulus is refutationally 
omplete, if for any unsatis�able formula it outputs

a proof of 
ontradi
tion. Many automated theorem pro
edures like resolution

(see Se
tion 2.7), or tableau (see Se
tion 2.5) are a
tually only refutationally


omplete.

C

Note that soundness and 
ompleteness are not 
losely related to ter-

mination. A sound and 
omplete (strongly) 
omplete 
al
ulus needs

not to be terminating. For example, while investigating validity of an

invalid formula, a sound and 
omplete 
al
ulus for validity may not terminate.
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P Q P ^Q (P ^Q)! P

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 1

Figure 2.2: Truth Table for (P ^Q)! P

A sound and terminating pro
edure needs not to be 
omplete. It 
an simply

terminate, \giving up", without produ
ing a proof (model).

2.4 Truth Tables

The �rst 
al
ulus I 
onsider are truth tables. For example, 
onsider proving va-

lidity of the formula � = (A^B)! A. A

ording to De�nition 2.2.2 this is the


ase if a
tually for all valuations A over � = fA;Bg we have A(�) = 1. The

extension of A to formulas is de�ned indu
tively over the 
onne
tives, so if the

result of A on the arguments of a 
onne
tive is known, it 
an be straightfor-

wardly 
omputed for the overall formula. That's the idea behind truth tables.

We simply make all valuations A on � expli
it and then extend it 
onne
tive by


onne
tive bottom-up to the overall formula. Stated otherwise, in order to es-

tablish the truth value for a formula � we establish it subformula by subformula

of � a

ording to �. If p; q 2 pos(�) and p � q then we �rst 
ompute the truth

value for �j

q

. The truth table for (P ^Q)! P is then depi
ted in Figure 2.2

De�nition 2.4.1 (Truth Table). Let � be a propositional formula over variables

P

1

; : : : ; P

n

, p

i

2 pos(�), 1 � i � k and p

k

= �. Then a truth table for � is a

table with n+ k 
olumns and 2

n

+ 1 rows of the form

P

1

: : : P

n

�j

p

1

: : : �j

p

k

0 : : : 0 A

1

(�j

p

1

) : : : A

1

(�j

p

k

)

.

.

.

1 : : : 1 A

2

n

(�j

p

1

) : : : A

2

n

(�j

p

k

)

su
h that the A

i

are exa
tly the 2

n

di�erent valuations for P

1

; : : : ; P

n

and either

p

i

k p

i+j

or p

i

� p

i+j

, for all i; j � 0, i+ j � k and whenever �j

p

i

has a proper

subformula  that is not an atom, there is exa
tly one j < i with �j

p

j

=  .

Now given a truth table for some formula �, � is satis�able, if there is at

least one 1 in the � 
olumn. It is valid, if there is no 0 in the � 
olumn. It is

unsatis�able, if there is no 1 in the � 
olumn. So truth tables are a simple and

\easy" way to establish the status of a formula. They need not to be 
ompletely


omputed in order to establish the status of a formula. For example, as soon as

the 
olumn of � in a truth table 
ontains a 1 and a 0, then � is satis�able but

neither valid nor unsatis�able.
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P Q R P _Q P _R (P _Q)$ (P _ R)

0 0 0 0 0 1

0 1 0 1 0 0

1 0 0 1 1 1

1 1 0 1 1 1

0 0 1 0 1 0

0 1 1 1 1 1

1 0 1 1 1 1

1 1 1 1 1 1

Figure 2.3: Truth Table for (P _Q)$ (P _ R)

The formula (P _ Q) $ (P _ R) is satis�able but not valid. Figure 2.3


ontains a truth table for the formula.

Of 
ourse, there are 
ases where a truth table for some formula � 
an have

less 
olumns than the number of variables o

urring in � plus the number of

subformulas in �. For example, for the formula � = (P _ Q) ^ (R ! (P _ Q))

only one 
olumn with formula (P _Q) is needed for both subformulas �j

1

and

�j

22

. In general, there is only for ea
h di�erent subformula a 
olumn is needed.

Dete
ting subformula equivalen
e is bene�
ial. For the above example, this was

simply synta
ti
, i.e., the two subformulas �j

1

and �j

22

. But what about a

slight variation of the formula �

0

= (P _Q)^ (R ! (Q_P ))? Stri
tly speaking,

now the two subformulas �

0

j

1

and �

0

j

22

are di�erent, but sin
e disjun
tion is


ommutative, they are equivalent. One or two 
olumns in the truth table for the

two subformulas? Again, saving a 
olumn is bene�
ial but in general, dete
ting

equivalen
e of two subformulas may be
ome as diÆ
ult as 
he
king whether the

overall formula is valid. A 
ompromise, often performed in pra
ti
e, are normal

forms that guarantee that 
ertain o

urren
es of equivalent subformulas 
an

be found in polynomial time. For our example, we 
an simply assume some

ordering on the propositional variables and assume that for a disjun
tion of two

propositional variables, the smaller variable always 
omes �rst. So if P < Q

then the normal form of P _Q and Q _ P is in fa
t P _Q.

C

In pra
ti
e, nobody uses truth tables as a reasoning pro
edure. Worst


ase, 
omputing a truth table for 
he
king the status of a formula �

requires O(2

n

) steps, where n is the number of di�erent propositional

variables in �. But this is a
tually not the reason why the pro
edure is impra
-

ti
al, be
ause the worst 
ase behavior of all other pro
edures for propositional

logi
 known today is also of exponential 
omplexity. So why are truth tables

not a good pro
edure? The answer is: be
ause they do not adapt to the inher-

ent stru
ture of a formula. The reasoning me
hanism of a truth table for two

formulas � and  sharing the same propositional variables is exa
tly the same:

we enumerate all valuations. However, if � is, e.g., of the form � = P ^ �

0

and

we are interested in the satis�ability of �, then � 
an only be
ome true for a

valuation A with A(P ) = 1. Hen
e, 2

n�1

rows of �'s truth table are super
u-
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::� � �
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^ �
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! �
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^ �

2
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$ �
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! �
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Figure 2.4: �- and �-Formulas

ous. All pro
edures I will introdu
e in the sequel, automati
ally dete
t this (and

further) spe
i�
 stru
tures of a formula and use it to speed up the reasoning

pro
ess.

2.5 Semanti
 Tableaux

Like resolution, semanti
 tableaux were developed in the sixties, independently

by Lis [14℄ and Smullyan [19℄ on the basis of work by Gentzen in the 30s [11℄

and of Beth [3℄ in the 50s. For an at that time state of the art overview 
onsider

Fitting's book [10℄.

In 
ontrast to the 
al
uli introdu
ed in subsequent se
tions, semanti
 tableau

does not rely on a normal form of input formulas but a
tually applies to any

propositional formula. The formulas are divided into �- and �-formulas, where

intuitively an � formula represents a (hidden) 
onjun
tion and a � formula a

(hidden) disjun
tion.

De�nition 2.5.1 (�-, �-Formulas). A formula � is 
alled an �-formula if � is

a formula ::�

1

, �

1

^ �

2

, �

1

$ �

2

, :(�

1

_ �

2

), or :(�

1

! �

2

). A formula � is


alled an �-formula if � is a formula �

1

_�

2

, �

1

! �

2

, :(�

1

^�

2

), or :(�

1

$ �

2

).

A 
ommon property of �-, �-formulas is that they 
an be de
omposed into

dire
t des
endants representing (modulo negation) subformulas of the respe
tive

formulas. Then an �-formula is valid i� all its des
endants are valid and a �-

formula is valid if one of its des
endants is valid. Therefore, the literature uses

both the notions semanti
 tableaux and analyti
 tableaux.

De�nition 2.5.2 (Dire
t Des
endant). Given an �- or �-formula �, Figure 2.4

shows its dire
t des
endants.

Dupli
ating � for the �-des
endants of ::� is a tri
k for 
onformity. Any

propositional formula is either an �-formula or a �-formula or a literal.
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Proposition 2.5.3. For any valuation A: (i) if � is an �-formula then A(�) = 1

i� A(�

1

) = 1 and A(�

2

) = 1 for its des
endants �

1

, �

2

. (ii) if � is a �-formula

then A(�) = 1 i� A(�

1

) = 1 or A(�

2

) = 1 for its des
endants �

1

, �

2

.

The tableaux 
al
ulus operates on states that are sets of sequen
es of for-

mulas. Semanti
ally, the set represents a disjun
tion of sequen
es that are in-

terpreted as 
onjun
tions of the respe
tive formulas. A sequen
e of formulas

(�

1

; : : : ; �

n

) is 
alled 
losed if there are two formulas �

i

and �

j

in the sequen
e

where �

i

= :�

j

or :�

i

= �

j

. A state is 
losed if all its formula sequen
es are


losed. A state a
tually represents a tree and this tree is 
alled a tableau in

the literature. So if a state is 
losed, the respe
tive tree, the tableau is 
losed

too. The tableaux 
al
ulus is a 
al
ulus showing unsatis�ability. Su
h 
al
uli are


alled refutational 
al
uli. Later on soundness and 
ompleteness of the 
al
ulus

imply that a formula � is valid i� the rules of tableaux produ
e a 
losed state

starting with N = f(:�)g.

A formula � o

urring in some sequen
e is 
alled open if in 
ase � is an

�-formula not both dire
t des
endants are already part of the sequen
e and if

it is a �-formula none of its des
endants is part of the sequen
e.

�-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

T

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

1

;  

2

)g

provided  is an open �-formula,  

1

,  

2

its dire
t des
endants and the sequen
e

is not 
losed.

�-Expansion N℄f(�

1

; : : : ;  ; : : : ; �

n

)g )

T

N℄f(�

1

; : : : ;  ; : : : ; �

n

;  

1

)g℄

f(�

1

; : : : ;  ; : : : ; �

n

;  

2

)g

provided  is an open �-formula,  

1

,  

2

its dire
t des
endants and the sequen
e

is not 
losed.

Consider the question of validity of the formula (P ^:(Q_:R)) ! (Q^R).

Applying the tableau rules generates the following derivation:

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄)g

�-Expansion)

�

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R)g

�-Expansion)

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:Q);

(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:R)g

The state after �-expansion is �nal, i.e., no more rule 
an be applied. The

�rst sequen
e is not 
losed, whereas the se
ond sequen
e is be
ause it 
ontains R

and :R. A tree representation, where 
ommon formulas of sequen
es are shared,


an be found in Figure 2.5.

Theorem 2.5.4 (Semanti
 Tableaux is Sound). If for a formula � the tableaux


al
ulus 
omputes f(:�)g )

�

T

N and N is a 
losed, then � is valid.
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:[(P ^ :(Q _ :R))! (Q ^ R)℄

P ^ :(Q _ :R)

:(Q ^R)

P

:(Q _ :R)

:Q

::R

R

:Q :R

Figure 2.5: A Tableau for (P ^ :(Q _ :R))! (Q ^ R)

Proof. It is suÆ
ient to show the following: (i) if N is 
losed then the disjun
tion

of the 
onjun
tion of all sequen
e formulas is unsatis�able (ii) all two tableaux

rules preserve satis�ability.

Part (i) is obvious: if N is 
losed all its sequen
es are 
losed. A sequen
e is


losed if it 
ontains a formula and its negation. The 
onjun
tion of two su
h

formulas is unsatis�able.

Part (ii) is shown by indu
tion on the length of a derivation and then by a


ase analysis for the two rules. �-Expansion: for any valuation A if A( ) = 1

then A( 

1

) = A( 

2

) = 1. �-Expansion: for any valuation A if A( ) = 1 then

A( 

1

) = 1 or A( 

2

) = 1 (see Proposition 2.5.3).

Theorem 2.5.5 (Semanti
 Tableaux Terminates). Starting from a start state

f(�)g for some formula �, )

+

T

is well-founded.

Proof. Take the two-folded multi-set extension of the lexi
ographi
 extension

of > on the naturals on triples (n; k; l). The measure � is �rst de�ned on for-

mulas by �(�) := (n; k; l) where n is the number of equivalen
e symbols in �,

k is the sum of all disjun
tion, 
onjun
tion, impli
ation symbols in � and l is

j�j. On sequen
es (�

1

; : : : ; �

n

) the measure is de�ned to deliver a multiset by

�((�

1

; : : : ; �

n

)) := ft

1

; : : : ; t

n

g where t

i

= �(�

i

) if � is open in the sequen
e

and t

i

= (0; 0; 0) otherwise. Finally, � is extended to states by 
omputing the

multiset �(N) := f�(s) j s 2 Ng.

Note, that �-, as well as �-expansion stri
tly extend sequen
es. On
e a for-

mula is 
losed in a sequen
e by applying an expansion rule, it remains 
losed

forever in the sequen
e.

An �-expansion on a formula  

1

^ 

2

on the sequen
e (�

1

; : : : ;  

1

^ 

2

; : : : ; �

n

)

results in (�

1

; : : : ;  

1

^ 

2

; : : : ; �

n

;  

1

;  

2

). It needs to be shown �((�

1

; : : : ;  

1

^

 

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;  

1

^  

2

; : : : ; �

n

;  

1

;  

2

)). In the se
ond sequen
e

�( 

1

^  

2

) = (0; 0; 0) be
ause the formula is 
losed. For the triple (n; k; l)

assigned by � to  

1

^  

2

in the �rst sequen
e, it holds (n; k; l) >

lex

�( 

1

),
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(n; k; l) >

lex

�( 

2

) and (n; k; l) >

lex

(0; 0; 0), the former be
ause the  

i

are

subformulas and the latter be
ause l 6= 0. This proves the 
ase.

A �-expansion on a formula  

1

_ 

2

on the sequen
e (�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

)

results in (�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

1

), (�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

2

). It needs to

be shown �((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

1

)) and

�((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;  

1

_ 

2

; : : : ; �

n

;  

2

)). In the derived

sequen
es �( 

1

_  

2

) = (0; 0; 0) be
ause the formula is 
losed. For the triple

(n; k; l) assigned by � to  

1

_  

2

in the starting sequen
e, it holds (n; k; l) >

lex

�( 

1

), (n; k; l) >

lex

�( 

2

) and (n; k; l) >

lex

(0; 0; 0), the former be
ause the  

i

are subformulas and the latter be
ause l 6= 0. This proves the 
ase.

Theorem 2.5.6 (Semanti
 Tableaux is Complete). If � is valid, semanti


tableaux 
omputes a 
losed state out of f(:�)g.

Proof. If � is valid then :� is unsatis�able. Now assume after termination the

resulting state and hen
e at least one sequen
e is not 
losed. For this sequen
e


onsider a valuation A 
onsisting of the literals in the sequen
e. By assumption

there are no opposite literals, so A is well-de�ned. I prove by 
ontradi
tion that

A is a model for the sequen
e. Assume not. Then there is a minimal formula

in the sequen
e, with respe
t to the ordering on triples 
onsidered in the proof

of Theorem 2.5.5, that is not satis�ed by A. By de�nition of A the formula


annot be a literal. So it is an �-formula or a �-formula. In all 
ases at least one

des
endant formula is 
ontained in the sequen
e, is smaller than the original

formula, false in A (Proposition 2.5.3) and hen
e 
ontradi
ts the assumption.

Therefore, A satis�es the sequen
e 
ontradi
ting that :� is unsatis�able.

Corollary 2.5.7 (Semanti
 Tableaux generates Models). Let � be a formula,

f(�)g )

�

T

N and s 2 N be a sequen
e that is not 
losed and neither �-expansion

nor �-expansion are appli
able to s. Then the literals in s form a valuation that

is a model for �.

Proof. A 
onsequen
e of the proof of Theorem 2.5.6

Consider the example tableau shown in Figure 2.5. The open �rst bran
h


orresponds to the valuation A = fP;R;:Qg whi
h is a model of the formula

:[(P ^ :(Q _ :R))! (Q ^ R)℄.

2.6 Normal Forms

In order to 
he
k the status of a formula � via truth tables, the truth table


ontains a 
olumn for the subformulas of � and all valuations for its variables.

Any shape of � is �ne in order to generate the respe
tive truth table. The

superposition 
al
ulus (Se
tion 2.8) and the CDCL (Con
i
t Driven Clause

Learning) 
al
ulus (Se
tion 2.10) both operate on a normal form, i.e., the shape

of � is restri
ted. Both 
al
uli a

ept only 
onjun
tions of disjun
tions of literals,

a parti
ular normal form. It is 
alled Clause Normal Form or simply CNF. The

purpose of this se
tion is to show that an arbitrary formula � 
an be e�e
tively

transformed into an equivalent formula in CNF.
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2.6.1 Conjun
tive and Disjun
tive Normal Forms

De�nition 2.6.1 (CNF, DNF). A formula is in 
onjun
tive normal form (CNF)

or 
lause normal form if it is a 
onjun
tion of disjun
tions of literals, or in other

words, a 
onjun
tion of 
lauses.

A formula is in disjun
tive normal form (DNF), if it is a disjun
tion of


onjun
tions of literals.

So a CNF has the form

V

i

W

j

L

j

and a DNF the form

W

i

V

j

L

j

where L

j

are literals. A disjun
tion of literals L

1

_ : : : _ L

n

is 
alled a 
lause. In the

sequel the logi
al notation with _ is overloaded with a multiset notation. Both

the disjun
tion L

1

_ : : : _ L

n

and the multiset fL

1

; : : : ; L

n

g are 
lauses. For


lauses the letters C, D, possibly indexed are used. Furthermore, a 
onjun
tion

of 
lauses is 
onsidered as a set of 
lauses. Then, for a set of 
lauses, the empty

set denotes >. For a 
lause, the empty multiset denotes ; and at the same time

?.

T

Although CNF and DNF are de�ned in almost any text book on au-

tomated reasoning, the de�nitions in the literature di�er with respe
t

to the \border" 
ases: (i) are 
omplementary literals permitted in a


lause? (ii) are dupli
ated literals permitted in a 
lause? (iii) are empty dis-

jun
tions/
onjun
tions permitted? For the above De�nition 2.6.1 the answer is

\yes" to all three questions. A 
lause 
ontaining 
omplementary literals is valid,

as in P _ Q _ :P . Dupli
ate literals may o

ur, as in P _ Q _ P . The empty

disjun
tion is ? and the empty 
onjun
tion >, i.e., the empty disjun
tion is

always false while the empty 
onjun
tion is always true.

Che
king the validity of CNF formulas or the unsatis�ability of DNF formu-

las is easy: (i) a formula in CNF is valid, if and only if ea
h of its disjun
tions


ontains a pair of 
omplementary literals P and :P , (ii) 
onversely, a formula

in DNF is unsatis�able, if and only if ea
h of its 
onjun
tions 
ontains a pair of


omplementary literals P and :P .

C

On the other hand, 
he
king the unsatis�ability of CNF formulas or

the validity of DNF formulas is 
oNP-
omplete. For any propositional

formula � there is an equivalent formula in CNF and DNF and I will

prove this below by a
tually providing an e�e
tive pro
edure for the transforma-

tion. However, also be
ause of the above 
omment on validity and satis�ability


he
king for CNF and DNF formulas, respe
tively, the transformation is 
ostly.

In general, a CNF or DNF of a formula � is exponentially larger than � as

long as the normal forms need to be logi
ally equivalent. If this is not needed,

then by the introdu
tion of fresh propositional variables, CNF or DNF normal

forms for � 
an be 
omputed in linear time in the size of �. More 
on
retely,

given a formula � instead of 
he
king validity the unsatis�ability of :� 
an be


onsidered. Then the linear time CNF normal form algorithm (see Se
tion ??)


omputes a satis�ability preserving formula, i.e., the linear time CNF of :� is

unsatis�able i� :� is.
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ElimEquiv �[(�$  )℄

p

)

BCNF

�[(�!  ) ^ ( ! �)℄

p

ElimImp �[(�!  )℄

p

)

BCNF

�[(:� _  )℄

p

PushNeg1 �[:(� _  )℄

p

)

BCNF

�[(:� ^ : )℄

p

PushNeg2 �[:(� ^  )℄

p

)

BCNF

�[(:� _ : )℄

p

PushNeg3 �[::�℄

p

)

BCNF

�[�℄

p

PushDisj �[(�

1

^ �

2

) _  ℄

p

)

BCNF

�[(�

1

_  ) ^ (�

2

_  )℄

p

PushConj �[(�

1

_ �

2

) ^  ℄

p

)

BDNF

�[(�

1

^  ) _ (�

2

^  )℄

p

ElimTB1

�[(� ^ >)℄

p

)

BCNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

BCNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

BCNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

BCNF

�[�℄

p

ElimTB5

�[:?℄

p

)

BCNF

�[>℄

p

ElimTB6

�[:>℄

p

)

BCNF

�[?℄

p

Figure 2.6: Basi
 CNF/DNF Transformation Rules

Proposition 2.6.2. For every formula there is an equivalent formula in CNF

and also an equivalent formula in DNF.

Proof. See the rewrite systems)

BCNF

, and)

ACNF

below and the lemmata on

their properties.

2.6.2 Basi
 CNF/DNF Transformation

The below algorithm b
nf is a basi
 algorithm for transforming any propositional

formula into CNF, or DNF if rule PushDisj is repla
ed by PushConj.

Algorithm 2: b
nf(�)

Input : A propositional formula �.

Output: A propositional formula  equivalent to � in CNF.

1 whilerule (ElimEquiv(�)) do ;

2 whilerule (ElimImp(�)) do ;

3 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

4 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

5 whilerule (PushDisj(�)) do ;

6 return �;

In the sequel I study only the CNF version of the algorithm. All properties

hold in an analogous way for the DNF version. To start an informal analysis of

the algorithm, 
onsider the following example CNF transformation.



42 CHAPTER 2. PROPOSITIONAL LOGIC

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

BCNF

:([(P _Q)! (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(P ! (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(:P _ (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (:P _ (Q ^>))℄ ^ [:(:P _ (Q ^>)) _ (P _Q)℄)

)

Step 3

BCNF

:([:(P _Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

�;Step 4

BCNF

[(::P _::Q)^ (::P ^:Q)℄_ [(:::P _::Q)^ (:P ^:Q)℄

)

�;Step 4

BCNF

[(P _Q) ^ (P ^ :Q)℄ _ [(:P _Q) ^ (:P ^ :Q)℄

)

�;Step 5

BCNF

(P _Q_:P _Q)^ (P _Q_:P )^ (P _Q_:Q)^ (P _:P _

Q) ^ (P _ :P ) ^ (P _ :Q) ^ (:Q _ :P _Q) ^ (:Q _ :P ) ^ (:Q _ :Q)

Figure 2.7: Example Basi
 CNF Transformation

Example 2.6.3. Consider the formula :((P _ Q) $ (P ! (Q ^ >))) and the

appli
ation of )

BCNF

depi
ted in Figure 2.7. Already for this simple formula

the CNF transformation via )

BCNF

be
omes quite messy. Note that the CNF

result in Figure 2.7 is still highly redundant. If I remove all disjun
tions that

are trivially true, be
ause they 
ontain a propositional literal and its negation,

the result be
omes

(P _ :Q) _ (:Q _ :P ) ^ (:Q _ :Q)

now elimination of dupli
ate literals beauti�es the third 
lause and the overall

formula into

(P _ :Q) _ (:Q _ :P ) ^ :Q.

Now let's inspe
t this formula a little 
loser. Any valuation satisfying the formula

must set A(Q) = 0, be
ause of the third 
lause. But then the �rst two 
lauses

are already satis�ed. The formula 6= Q subsumes the formulas P _ :Q and

:Q _ :P in this sense. The notion of subsumption will be dis
ussed in detail

for 
lauses in Se
tion 2.7.

So it is eventually equivalent to

:Q.

The 
orre
tness of the result is obvious by looking at the original formula and

doing a 
ase analysis. For any valuation A with A(Q) = 1 the two parts of the

equivalen
e be
ome true, independently of P , so the overall formula is false.

For A(Q) = 0, for any value of P , the truth values of the two sides of the

equivalen
e are di�erent, so the equivalen
e be
omes false and hen
e the overall

formula true.

After proving )

BCNF


orre
t and terminating, in the su

eeding se
tion I

will present an algorithm)

ACNF

that a
tually generates :Q out of :((P _Q)$

(P ! (Q ^>))) and does this without generating the mess of formulas )

BCNF



2.6. NORMAL FORMS 43

does. Please re
all that the above rules apply modulo 
ommutativity of _, ^,

e.g., the rule ElimTB1 is both appli
able to the formulas � ^ > and > ^ �.

I

Figure 2.1 
ontains more potential for simpli�
ation. For example, the

idempoten
y equivalen
es (� ^ �) $ �, (� _ �) $ � 
an be turned

into simpli�
ation rules by applying them left to right. However, the

way they are stated they 
an only be applied in 
ase of identi
al subformulas.

The formula (P _Q)^ (Q_P ) does this way not redu
e to (Q_P ). A solution

is to 
onsider identity modulo 
ommutativity. But then identity modulo 
om-

mutativity and asso
iativity (AC) as in ((P _ Q) _ R) ^ (Q _ (R _ P ) is still

not dete
ted. On the other hand, in pra
ti
e, 
he
king identity modulo AC is

often too expensive. An elegant way out of this situation is to implement AC


onne
tives like _ or ^ with 
exible arity, to normalize nested o

urren
es of

the 
onne
tives, and �nally to sort the arguments using some total ordering.

Applying this to ((P _ Q) _ R) ^ (Q _ (R _ P ) with ordering R > P > Q the

result is (Q _ P _ R) ^ (Q _ P _ R). Now 
omplete AC simpli�
ation is ba
k

at the 
ost of 
he
king for identi
al subformulas. Note that in an appropriate

implementation, the normalization and ordering pro
ess is only done on
e at

the start and then normalization and argument ordering is kept as an invariant.

2.6.3 Advan
ed CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 
an be improved in

various ways: (i) more aggressive formula simpli�
ation, (ii) renaming, (iii) po-

larity dependant transformations. The before studied Example 2.6.3 serves al-

ready as a ni
e motivation for (i) and (iii). Firstly, removing > from the formula

:((P _ Q) $ (P ! (Q ^ >))) �rst and not in the middle of the algorithm ob-

viously shortens the overall pro
ess. Se
ondly, if the equivalen
e is repla
ed

polarity dependant, i.e., using the equivalen
e (�$  )$ (� ^  ) _ (:� ^ : )

and not the one used in rule ElimEquiv applied before, a lot of redundan
y gen-

erated by )

BCNF

is prevented. In general, if  [�

1

$ �

2

℄

p

and pol( ; p) = �1

then for CNF transformation do  [(�

1

^�

2

)_ (:�

1

^:�

2

)℄

p

and if pol( ; p) = 1

do  [(�

1

! �

2

) ^ (�

2

! �

1

)℄

p

Item (ii) 
an be motivated by a formula

P

1

$ (P

2

$ (P

3

$ (: : : (P

n�1

$ P

n

) : : :)))

where Algorithm 2 generates a CNF with 2

n


lauses out of this formula. The

way out of this problem is the introdu
tion of additional fresh propositional

variables that rename subformulas. The pri
e to pay is that a renamed formula

is not equivalent to the original formula due to the extra propositional variables,

but satis�ability preserving. A renamed formula for the above formula is

(P

1

$ (P

2

$ Q

1

)) ^ (Q

1

$ (P

3

$ Q

2

)) ^ : : :

where the Q

i

are additional, fresh propositional variables. The number of 
lauses

of the CNF of this formula is 4(n�1) where ea
h 
onjun
t (Q

i

$ (P

j

$ Q

i+1

))


ontributes four 
lauses.
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Proposition 2.6.4. Let P be a propositional variable not o

urring in  [�℄

p

.

1. If pol( ; p) = 1, then  [�℄

p

is satis�able if and only if  [P ℄

p

^ (P ! �) is

satis�able.

2. If pol( ; p) = �1, then  [�℄

p

is satis�able if and only if  [P ℄

p

^ (� ! P )

is satis�able.

3. If pol( ; p) = 0, then  [�℄

p

is satis�able if and only if  [P ℄

p

^ (P $ �) is

satis�able.

Proof. Exer
ise.

So depending on the formula  , the position p where the variable P is in-

trodu
ed de�nition of P is given by

def( ; p; P ) :=

8

<

:

(P !  j

p

) if pol( ; p) = 1

( j

p

! P ) if pol( ; p) = �1

(P $  j

p

) if pol( ; p) = 0

For renaming there are several 
hoi
es whi
h subformula to 
hoose. Ob-

viously, sin
e a formula has only linearly many subformulas, renaming every

subformula works [20, 17℄. Basi
ally this is what I show below. In the following

se
tion a renaming variant is introdu
ed that produ
es smallest CNFs.

SimpleRenaming � )

SimpRen

�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n

℄

p

n

^ def(�; p

1

; P

1

) ^

: : : ^ def(�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n�1

℄

p

n�1

; p

n

; P

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the P

i

are di�erent and new to �

A
tually, the rule SimpleRenaming does not provide an e�e
tive way to


ompute the set fp

1

; : : : ; p

n

g of positions in � to be renamed. Where are several


hoi
es. Following Plaisted and Greenbaum [17℄, the set 
ontains all positions

from � that do not point to a propositional variable or a negation symbol. In

addition, renaming position � does not make sense be
ause it would generate the

formula P ^ (P ! �) whi
h results in more 
lauses than just �. Choosing the

set of Plaisted and Greenbaum prevents the explosion in the number of 
lauses

during CNF transformation. But not all renamings are needed to this end.

A smaller set of positions from �, let's 
all it the set of obvious positions, is

still preventing the explosion and given by the rules: (i) if �j

p

is an equivalen
e

and there is a position q < p su
h that �j

q

is either an equivalen
e or disjun
tive

in � then p is an obvious position (ii) if �j

pq

is a 
onjun
tive formula in �, �j

p

is a disjun
tive formula in � and for all positions r with p < r < pq the formula

�j

r

is not a 
onjun
tive formula then pq is an obvious position. A formula �j

p

is 
onjun
tive in � if �j

p

is a 
onjun
tion and pol(�; p) 2 f0; 1g or �j

p

is a

disjun
tion or impli
ation and pol(�; p) 2 f0;�1g. Analogously, a formula �j

p

is disjun
tive in � if �j

p

is a disjun
tion or impli
ation and pol(�; p) 2 f0; 1g or

�j

p

is a 
onjun
tion and pol(�; p) 2 f0;�1g.
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!

[1=�℄

:

[�1=1℄

_

[1=11℄

:

[1=111℄

P

[�1=1111℄

^

[1=112℄

Q

[1=1121℄

R

[1=1122℄

_

[1=2℄

P

[1=21℄

$

[0=22℄

:

[0=221℄

Q

[0=2211℄

:

[0=222℄

R

[0=2221℄

Figure 2.8: Tree representation of [:(:P _ (Q^R))℄! [P _ (:Q$ :R)℄ where

ea
h node is annotated with its [polarity/position℄.

Consider as an example the formula

[:(:P _ (Q ^ R))℄! [P _ (:Q$ :R)℄

. Its tree representation as well as the polarity and position of ea
h node is

shown in Figure 2.8.

The before mentioned polarity dependent transformations for equivalen
es

are realized by the following two rules:

ElimEquiv1 �[(�$  )℄

p

)

ACNF

�[(�!  ) ^ ( ! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$  )℄

p

)

ACNF

�[(� ^  ) _ (:� ^ : )℄

p

provided pol(�; p) = �1

Proposition 2.6.5 (Renaming Preservers Models). Let � be a formula and �

0

a renamed CNF of � 
omputed by a
nf. Then any (partial) model A of �

0

is

also a model for �.

Proof. By an indu
tive argument it is suÆ
ient to 
onsider one renaming appli-


ation, i.e., �

0

= �[P ℄

p

^def(�; p; P ). There are three 
ases depending on the po-

larity. (i) if pol(�; p) = 1 then �

0

= �[P ℄

p

^P ! �j

p

. IfA(P ) = 1 then A(�j

p

) = 1

and hen
e A(�) = 1. The interesting 
ase is A(P ) = 0 and A(�j

p

) = 1. But

then be
ause pol(�; p) = 1 also A(�) = 1 by Lemma 2.2.7. (ii) if pol(�; p) = �1

the 
ase is symmetri
 to the previous one. Finally, (iii) if pol(�; p) = 0 for any

A satisfying �

0

it holds A(�j

p

) = A(P ) and hen
e A(�) = 1.
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Algorithm 3: a
nf(�)

Input : A formula �.

Output: A formula  in CNF satis�ability preserving to �.

1 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

2 SimpleRenaming(�) on obvious positions;

3 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

4 whilerule (ElimImp(�)) do ;

5 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

6 whilerule (PushDisj(�)) do ;

7 return �;

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

ACNF

:((P _Q)$ (P ! Q))

)

Step 3

ACNF

:(((P _Q) ^ (P ! Q)) _ (:(P _Q) ^ :(P ! Q)))

)

�;Step 4

ACNF

:(((P _Q) ^ (:P _Q)) _ (:(P _Q) ^ :(:P _Q)))

)

�;Step 5

ACNF

((:P ^ :Q) _ (P ^ :Q)) ^ ((P _Q) _ (:P _Q))

)

�;Step 6

ACNF

(:P _P )^(:P _:Q)^(:Q_P )^(:Q_:Q)^(P _Q_:P _Q)

Figure 2.9: Example Advan
ed CNF Transformation

2.6.4 Computing Small CNFs

In the previous 
hapter obvious positions are a suggestion for smaller CNFs

with respe
t to the renaming positions suggested by Plaisted and Greenbaum.

In this se
tion I develop a set of renaming posisions that is in fa
t minimal with

respe
t to the resulting CNF. A subformula is renamed if the eventual number

of generated 
lauses by b
nf de
reases after renaming [5, 16℄. If formulas are


he
ked top-down for this 
ondition, and pro�table formulas in the above sense

are renamed, the resulting CNF is optimal in the number of 
lauses [5℄. The

below fun
tion a
 
omputes the number of 
lauses generated by the algorithm

b
nf, as long as the formula does not 
ontain > or ?.

C

A state of the art CNF algorithm �rst tries to simplify a formula be-

fore doing the a
tual CNF transformation. Eliminating > or ? using

the ElimTB is a standard part of any su
h simpli�
ation pro
edure.

Further simpli�
ations are dis
ussed in Se
tion 2.13.
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 a
( ) b
( )

�

1

^ �

2

a
(�

1

) + a
(�

2

) b
(�

1

) b
(�

2

)

�

1

_ �

2

a
(�

1

) a
(�

2

) b
(�

1

) + b
(�

2

)

�

1

! �

2

b
(�

1

) a
(�

2

) a
(�

1

) + b
(�

2

)

�

1

$ �

2

a
(�

1

) b
(�

2

) + b
(�

1

) a
(�

2

) a
(�

1

) a
(�

2

) + b
(�

1

) b
(�

2

)

:�

1

b
(�

1

) a
(�

1

)

P 1 1

Let � be a formula that does not 
ontain ?, or >, then a
(�) 
omputes ex-

a
tly the number of 
lauses generated by b
nf(�). The proof is left as an exer
ise,

but as an example 
onsider the 
ase where � = L

1

: : : L

n

is a disjun
tion of liter-

als. In this 
ase b
nf does not 
hange � at all ad produ
es exa
tly the 
lause �.

Expanding the de�nition of a
(�) produ
es a
(�) = a
(L

1

) a
(L

2

) : : : a
(L

n

) = 1

be
ause if some L

i

is a propositional variable, then a
(L

i

) = 1. If some L

j

is

negative, i.e., L

j

= :P then a
(L

j

) = a
(:P ) = b
(P ) = 1.

A renaming yields fewer 
lauses, if the di�eren
e between the number of


lauses generated without and with a renaming is positive. Consider the renam-

ing of a subformula at position p within a formula  with fresh variable P . The


ondition to be 
he
ked is

a
( ) � a
( [P ℄

p

) + a
(def( ; p; P )):

The inequality above is not stri
t. If some formula � =  j

p

is repla
ed inside

 where a
( ) = a
( [P ℄

p

) + a
(def( ; p; P )) then this equation turns into a

stri
t inequality as soon as we do another repla
ement inside �. In this 
ase

a
(def( ; p; P )) will stri
tly de
rease. Therefore, when sear
hing for a minimal

CNF it is mandatory to 
onsider the above inequality non-stri
t.

Example 2.6.6. For a formula P

1

$ P

2

renaming does not pay o�. If P

2

is

repla
ed by some fresh variable Q the result is P

1

$ Q ^ Q $ P

2

where the

original formula generates 2 
lauses and the formula after repla
ement generates

4 
lauses.

The break even point for nested equivalen
es is the formula P

1

$ (P

2

$

(P

3

$ P

4

)) where repla
ement at position 22 using the fresh variable Q results

in P

1

$ (P

2

$ Q) ^ Q $ (P

3

$ P

4

). Both formulas eventually generate

8 
lauses. So this is an example for the above inequality to be non-stri
t.

The obvious problem with this 
ondition is that the fun
tion a
 
annot be

eÆ
iently 
omputed in general, for it grows exponentially in the size of the in-

put formula. Moreover, a straightforward, naive top-down implementation of a


following the above table results in an algorithm with exponential time 
om-

plexity, due to the dupli
ation of re
ursive 
alls. The exponential 
omplexity


an be avoided using a dynami
 programming idea: simply store intermediate

results for subformulas. Nevertheless, be
ause a
 grows exponentially, 
omput-

ing a
 requires arbitrary pre
ision integer arithmeti
. It turns out that this 
an
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hardly be a�orded in pra
ti
e. The rest of this se
tion is therefore 
on
erned

with a solution to this problem, i.e., I show that it is not ne
essary to 
ompute

a
 at all for de
iding the above inequation.

Obviously, the formulas  and  [P ℄

p

di�er only at position p, the other parts

of the formulas remain identi
al. We make use of this fa
t by an abstra
tion of

those parts of  that do not in
uen
e the 
hanged position. To this end we

introdu
e the notion of a 
oeÆ
ient as shown in Table 2.1.

p  j

q

a

 

p

b

 

p

q:i �

1

^ �

2

a

 

q

b

 

q

Q

j 6=i

b
(�

j

)

q:i �

1

_ �

2

a

 

q

Q

j 6=i

a
(�

j

) b

 

q

q:1 �

1

! �

2

b

 

q

a

 

q

a
(�

2

)

q:2 �

1

! �

2

a

 

q

b
(�

1

) b

 

q

q:1 �

1

$ �

2

a

 

q

b
(�

2

) + b

 

q

a
(�

2

) a

 

q

a
(�

2

) + b

 

q

b
(�

2

)

q:2 �

1

$ �

2

a

 

q

b
(�

1

) + b

 

q

a
(�

1

) a

 

q

a
(�

1

) + b

 

q

b
(�

1

)

q:1 :�

1

b

 

q

a

 

q

�  1 0

Table 2.1: Cal
ulating the CoeÆ
ients

The 
oeÆ
ients determine how often a parti
ular subformula and its negation

are dupli
ated in the 
ourse of a basi
 CNF translation. The 
oeÆ
ient a

 

p

is the

fa
tor of a
( j

p

) in the re
ursive 
omputation whereas the fa
tor b

 

p

is the fa
tor

of b
( j

p

). The �rst 
olumn of Table 2.1 shows the form of p, the se
ond 
olumn

the form of  dire
tly above position p ( itself if p = �). The next two 
olumns

demonstrate the 
orresponding re
ursive bottom-up 
al
ulations for a

 

p

and b

 

p

,

respe
tively. Applied to our starting example formula  = �

1

_ 8x�

2

where we

renamed position 2:1, i.e., the subformula �

2

, the 
oeÆ
ients are a

 

2:1

= a
(�

1

)

(Table 2.1, eighth, se
ond and last row, �rst 
olumn) and b

 

2:1

= 0 (eighth, se
ond

and last row, se
ond 
olumn). Note that a

 

p

(b

 

p

) is always 0 if pol( ; p) = �1

(pol( ; p) = 1).

Using the notion of a 
oeÆ
ient, the previously stated 
ondition 
an be

reformulated as

a

 

p

a
(�) + b

 

p

b
(�) � a

 

p

+ b

 

p

+ a
(def( ; p; P ))

where we still assume that � =  j

p

and P is a fresh propositional variable.

Note that, sin
e � is repla
ed by P in  at position p, the 
oeÆ
ients a

 

p

, b

 

p

are

multiplied by 1 in the renamed version, be
ause a
(P ) = b
(P ) = 1. Depending

on the polarity of  j

p

the inequality is equivalent to one of the three inequalities:

a

 

p

a
(�)� a

 

p

+ a
(�) if pol( ; p) = 1

b

 

p

b
(�)� b

 

p

+ b
(�) if pol( ; p) = �1

a

 

p

a
(�) + b

 

p

b
(�)� a

 

p

+ b

 

p

+ a
(�) + b
(�) if pol( ; p) = 0
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By simple arithmeti
al transformations, we 
an group all o

urren
es of fa
tors

a

 

p

, b

 

p

and all o

urren
es of a
(�) and b
(�), respe
tively:

(a

 

p

� 1)(a
(�)� 1)� 1 if pol( ; p) = 1

(b

 

p

� 1)(b
(�)� 1)� 1 if pol( ; p) = �1

(a

 

p

� 1)(a
(�) � 1) + (b

 

p

� 1)(b
(�)� 1)� 2 if pol( ; p) = 0

Let us abbreviate the produ
t (a

 

p

�1)(a
(�)�1) with p

a

and (b

 

p

�1)(b
(�)�1)

with p

b

. Sin
e neither p

a

nor p

b


an be
ome negative, in any of the 
ases where

they appear, the �rst inequality holds if p

a

� 1, the se
ond inequality holds if

p

b

� 1 and the third inequality holds if (i) p

a

� 2 or (ii) p

b

� 2 or (iii) p

a

� 1

and p

b

� 1. In order to 
he
k these 
onditions, it suÆ
es to test whether the


oeÆ
ients a

 

p

, b

 

p

and the number of 
lauses a
(�), b
(�) are stri
tly greater

than 1, 2 or 3, respe
tively. This 
an always be 
he
ked in linear time with

respe
t to the size of  . The 
ondition a
(�) > 1 holds i� there exists a position

p su
h that �[�

1

$ �

2

℄

p

or �[�

1

^ �

2

℄

p

and pol(�; p) = 1 or �[�

1

Æ �

2

℄

p

with

pol(�; p) = �1 and Æ 2 f_;!g. The 
omputations for the boolean 
onditions

a
(�) > 2 and a
(�) > 3 are depi
ted in Table 2.2. The 
omputation of the


onditions for b
 works a

ordingly, see Table 2.3.

As for the fa
tors, Table 2.4 shows how to 
ompute a

 

p

> 1 and, following

Table 2.1, this 
an be extended to the other 
ases for the a fa
tor and the


orresponding 
onditions for the b fa
tor.

Hen
e we turned a test that required the 
omputation of exponentially grow-

ing fun
tions into a boolean 
ondition that does not require any arithmeti



al
ulation at all.

Theorem 2.6.7 (Formula Renaming). Formula Renaming preserves satis�a-

bility and 
an be 
omputed in polynomial time.

In order to further redu
e the number of eventually generated 
lauses it may

still be useful to rename a formula, even if the above 
onsiderations do not apply.

For example, renaming the formula P

1

_ (Q

1

^Q

2

) at position 2 results in three


lauses, whereas a standard CNF translation of the original formula yields two


lauses. This 
al
ulation also applies if this situation is repeated, as in

[P

1

_ (Q

1

^Q

2

)℄ ^ [P

2

_ (Q

1

^Q

2

)℄ ^ : : : [P

n

_ (Q

1

^Q

2

)℄

where our renaming 
riterion does not apply. But now a simultaneous renaming

of all o

urren
es (Q

1

^ Q

2

) may pay o�. It results in n + 2 
lauses whereas

the standard CNF translation yields 2n 
lauses. Hen
e, it is useful to sear
h for

multiple o

urren
es of the same subformula. The problem here is to �nd an

appropriate \equality" or \instan
e" relation between subformulae. In our ex-

ample synta
ti
 equality was suÆ
ient to dete
t all su
h o

urren
es. In general,

a mat
hing pro
ess { probably with respe
t to the 
ommutativity, asso
iativity

of some logi
al operators or even logi
al impli
ation { may be needed to obtain a

suitable renaming result. So we run here into a tradeo� between 
ompa
t CNFs

and 
omputational 
omplexity to a
hieve these CNFs.
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_ �
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! �
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; �

2
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:�

b
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) > 2 and a
(�
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) > 1; i 6= j℄
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! �
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(�
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) > 2 or [b
(�
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) > 1 and a
(�

2

) > 1℄

�
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$ �

2

a
(�

i

) > 3 or b
(�

i

) > 3 or �

2

is not a literal

:�

b
(�) > 3

Table 2.2: The Boolean Conditions for a


For the formulation of the optimized CNF algorithm I rely on the equiv-

alen
es from 
ategories (I), (V) and (VII) from Figure 2.1. They are used to

transform the formula. The equivalen
es are always applied from left to right.

So \applying" su
h an equivalen
e means turning it into a rule. For example,

the equivalen
e (� _ (� ^  ))$ � from 
ategory (V) generates the rule

�[� _ (� ^  )℄

p

)

OCNF

�[�℄

p

Applying this rule with respe
t to 
ommutativity of _ means, for example, that

both the formulas (�_ (�^ )) and ((�^ )_�) 
an be transformed by the rule

to � where in both 
ases p = �. Rules are always applied modulo asso
iativity

and 
ommutativity of ^, _.

The pro
edure is depi
ted in Algorithm 4. Although 
omputing a
 for Step 2

is not pra
ti
al in general, be
ause the fun
tion is exponentially growing, the

test a
( [�℄

p

) > a
( [P ℄

p

^def( ; p; P )) 
an be 
omputed in 
onstant time after
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 b
( ) > 1

�

1

^ �

2

b
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1

) > 1 or b
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2

) > 1

�

1

_ �

2

true

�

1

! �

2

true
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1

$ �

2

true

:�

a
(�) > 1

 b
( ) > 2

�

1

_ �

2

b
(�

1

) > 1 or b
(�

2

) > 1

�

1

^ �

2

b
(�

i

) > 2 or b
(�

1

) > 1 and b
(�

2

) > 1

:�

a
(�) > 2

 b
( ) > 3

�

1

_ �

2

b
(�

i

) > 2

�

1

^ �

2

b
(�

i

) > 3 or [b
(�

i

) > 2 and b
(�

j

) > 1; i 6= j℄

:�

a
(�) > 3

Table 2.3: The Boolean Conditions for b


a linear time pro
essing phase.

Applying Algorithm 4 to the formula :((P _ Q) $ (P ! (Q ^ >))) of

Example 2.6.3 results in the transformation depi
ted in Figure 2.10. Looking

at the result it is already very 
lose to :Q, as it 
ontains the 
lause (:Q _

:Q). Removing dupli
ate literals in 
lauses and removing 
lauses 
ontaining


omplementary literals from the result yields

(:P _ :Q) ^ (:Q _ P ) ^ :Q

whi
h is even 
loser to just :Q. The �rst two 
lauses 
an a
tually be removed

be
ause they are subsumed by :Q, i.e., 
onsidered as multisets, :Q is a subset

of these 
lauses. Subsumption will be introdu
ed in the next se
tion. Logi
ally,

they 
an be removed be
ause :Q has to be true for any satisfying assignment

of the formula and then the �rst two 
lauses are satis�ed anyway.

2.7 Propositional Resolution

A 
al
ulus is a set of inferen
e and redu
tion rules for a given logi
 (here

PROP(�)). We only 
onsider 
al
uli operating on a set of 
lauses N . Infer-

en
e rules add new 
lauses to N whereas redu
tion rules remove 
lauses from
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Algorithm 4: o
nf(�)

Input : A formula �.

Output: A formula  in CNF satis�ability preserving to �.

1 whilerule (ElimRedI(�),ElimRedV(�),ElimRedVII(�)) do ;

2 SimpleRenaming(�) on bene�
ial positions;

3 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

4 whilerule (ElimImp(�)) do ;

5 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

6 whilerule (PushDisj(�)) do ;

7 return �;

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

OCNF

:([(P _Q)$ (P ! Q)℄)

)

Step 3

OCNF

:([(P _Q) ^ (P ! Q)℄ _ [:(P _Q) ^ :(P ! Q)℄)

)

Step 2

OCNF

:([(P _Q) ^ (:P _Q)℄ _ [:(P _Q) ^ :(:P _Q)℄)

)

�;Step 3

OCNF

(:[(P _Q) ^ (:P _Q)℄ ^ :[:(P _Q) ^ :(:P _Q)℄)

)

�;Step 3

OCNF

[:(P _Q) _ :(:P _Q)℄ ^ [(P _Q) _ (:P _Q)℄

)

�;Step 3

OCNF

[(:P ^ :Q) _ (P ^ :Q)℄ ^ [(P _Q) _ (:P _Q)℄

)

�;Step 4

OCNF

[(:P _P )^(:P_:Q)^(:Q_P )^(:Q_:Q)℄^[P_Q_:P_Q℄

Figure 2.10: Example Optimized CNF Transformation
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p  j

p

a

 

p

> 1

q:i �

1

^ �

2

a

 

p

> 1

q:i �

1

_ �

2

a

 

p

> 1 or a
(�

i

) > 1 for some i

Table 2.4: The Boolean Conditions for a

N or repla
e 
lauses by \simpler" ones.

We are only interested in unsatis�ability, i.e., the 
onsidered 
al
uli test

whether a 
lause set N is unsatis�able. This is in parti
ular motivated by the

renaming step of CNF transformation, see Se
tion 2.6.3. So, in order to 
he
k

validity of a formula � we 
he
k unsatis�ability of the 
lauses generated from

:�.

For 
lauses we swit
h between the notation as a disjun
tion, e.g., P _Q_P _

:R, and the notation as a multiset, e.g., fP;Q; P;:Rg. This makes no di�eren
e

as we 
onsider _ in the 
ontext of 
lauses always modulo AC. Note that ?, the

empty disjun
tion, 
orresponds to ;, the empty multiset. Clauses are typi
ally

denoted by letters C, D, possibly with subs
ript.

The resolution 
al
ulus 
onsists of the inferen
e rules Resolution and Fa
-

toring. So, if we 
onsider 
lause sets N as states, ℄ is disjoint union, we get the

inferen
e rules

Resolution

(N℄fC

1

_P;C

2

_:Pg) )

RES

(N[fC

1

_P;C

2

_:Pg[fC

1

_C

2

g)

Fa
toring (N ℄ fC _ L _ Lg) )

RES

(N [ fC _ L _ Lg [ fC _ Lg)

Theorem 2.7.1. The resolution 
al
ulus is sound and 
omplete:

N is unsatis�able i� N )

�

RES

f?g

Proof. (() Soundness means for all rules that N j= N

0

where N

0

is the 
lause

set obtained from N after applying Resolution or Fa
toring. For Resolution it

is suÆ
ient to show that C

1

_ P;C

2

_ :P j= C

1

_ C

2

. This is obvious by a 
ase

analysis of valuations satisfying C

1

_P;C

2

_:P : of P is true in su
h a valuation

so must be C

2

, hen
e C

1

_ C

2

. If P is false in some valuation then C

1

must

be true and so C

1

_ C

2

. Soundness for Fa
toring is obvious this way be
ause it

simply removes a dupli
ate literal in the respe
tive 
lause.

()) The traditional method of proving resolution 
ompleteness are semanti


trees. A semanti
 tree is a binary tree where the edges a labeled with literals

su
h that: (i) edges of 
hildren of the same parent are labeled with L and :L,

and (ii) any node has either no or two 
hildren, and (iii) for any path from

the root to a leave, ea
h propositional variable o

urs at most on
e. Therefore,

ea
h path 
orresponds to a partial valuation. Now for an unsatis�able 
lause



54 CHAPTER 2. PROPOSITIONAL LOGIC

set N there is a semanti
 tree su
h that for ea
h leave of the tree there is a


lause in N that is false with respe
t to the partial valuation at that leave.

Let this tree be minimal in the sense that there is no smaller tree with less

nodes having this property. Now 
onsider two sister leaves of the same parent

of this tree, where the edges are labeled with L and :L, respe
tively. Let C

1

and C

2

be the two false 
lauses at the respe
tive leaves. Obviously, C

1

= C

0

1

_L

and C

2

= C

0

2

_ :L as for otherwise the tree would not be minimal. If C

1

(or

C

2

) 
ontains further o

urren
es of L (or C

2

of :L), then the rule Fa
toring is

applied to eventually remove all additional o

urren
es. Therefore, I 
an assume

L 62 C

0

1

and :L 62 C

0

2

. A resolution step between these two 
lauses on L yields

C

0

1

_ C

0

2

whi
h is false at the parent of the two leaves, be
ause the resolvent

neither 
ontains L nor :L. Furthermore, the resulting tree from 
utting the

two leaves is minimal for N [ fC

0

1

_ C

0

2

g and stri
tly smaller. By an indu
tive

argument this proves 
ompleteness.

Example 2.7.2 (Resolution Completeness). Consider the 
lause set

P _Q; :P _Q; P _ :Q; :P _ :Q _ S; :P _ :Q _ :S

and the 
orresponding semanti
 tree ...

The redu
tion rules are

Subsumption (N ℄ fC

1

; C

2

g) )

RES

(N [ fC

1

g)

provided C

1

� C

2

Tautology

Deletion

(N ℄ fC _ P _ :Pg) )

RES

(N)

Condensation

(N ℄ fC

1

_ L _ Lg) )

RES

(N [ fC

1

_ Lg)

Note the di�erent nature of inferen
e rules and redu
tion rules. Resolution

and Fa
torization only add 
lauses to the set whereas Subsumption, Tautology

Deletion and Condensation delete 
lauses or repla
e 
lauses by \simpler" ones.

In the next se
tion, Se
tion 2.8, I will show that \simpler" means.

C

At �rst, it looks strange to have the same rule both as a redu
tion

rules and as an inferen
e rule, i.e., Fa
torization and Condensation.

On the propositional level there is obviously no di�eren
e and it is

possible to get rid of one of the two. In Se
tion ?? the resolution 
al
ulus is

extended to �rst-order logi
. In �rst-order logi
 Fa
torization and Condensation

are a
tually di�erent. They are separated here to eventually obtain the same

set of resolution 
al
ulus rules for propositional and �rst-order logi
.

Proposition 2.7.3. The redu
tion rules Subsumption, Tautology Deletion and

Condensation are sound.
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Proof. This is obvious for Tautology Deletion and Condensation. For Subsump-

tion we have to show that C

1

j= C

2

, be
ause this guarantees that if N[fC

1

g has

a model, N ℄ fC

1

; C

2

g has a model too. So assume A(C

1

) = 1 for an arbitrary

A. Then there is some literal L 2 C

1

with A(L) = 1. Sin
e C

1

� C

2

, also L 2 C

2

and therefore A(C

2

) = 1.

Theorem 2.7.4 (Resolution Termination). If redundan
y rules are preferred

over inferen
e rules and no inferen
e rule is applied twi
e to the same 
lause(s),

then )

+

RES

is well-founded.

Proof. For some given 
lause set N the redundan
y rules Subsumption, Tautol-

ogy Deletion and Condensation always terminate be
ause they all redu
e the

number of literals o

urring in N . Furthermore, a 
lause set N where the re-

dundan
y rules have been exhaustively applied does not 
ontain any tautology,

no 
lause with dupli
ate literals and, in parti
ular, no dupli
ate 
lauses. The

number of su
h 
lauses 
an be overestimated by 3

n

where n is the number of

propositional variables in N . Hen
e, there are at most 2

3

n

di�erent, �nite 
lause

sets with respe
t to 
lause sets where the redundan
y rules have been applied.

Obviously, for ea
h of su
h 
lause sets there are only �nitely many di�erent

Resolution and Fa
toring steps.

C

Of 
ourse, what needs to be shown is that the strategy employed in

Theorem 2.7.4 is still 
omplete. This is not 
ompletely trivial and gets

very nasty using semanti
 trees as the proof method of 
hoi
e. So let's

wait until superposition is established where this result be
omes a parti
ular


ase of superposition 
ompleteness.

2.8 Propositional Superposition

Superposition was originally developed for �rst-order logi
 [1℄. Here I introdu
e

its proje
tion to propositional logi
. Compared to the resolution 
al
ulus su-

perposition adds (i) ordering and sele
tion restri
tions on inferen
es, (ii) an

abstra
t redundan
y notion, (iii) the notion of a partial model for inferen
e

guidan
e, and (iv) a saturation 
on
ept.

De�nition 2.8.1 (Clause Ordering). Let � be a total stri
t ordering on �.

Then � 
an be lifted to a total ordering on literals by ���

L

and P �

L

:P and

:P �

L

Q, :P �

L

:Q for all P � Q. The ordering �

L


an be lifted to a total

ordering on 
lauses �

C

by 
onsidering the multiset extension of �

L

for 
lauses.

Proposition 2.8.2 (Properties of the Clause Ordering). (i) The orderings on

literals and 
lauses are total and well-founded.

(ii) Let C and D be 
lauses with P = jmax(C)j, Q = jmax(D)j, where max(C)

denotes the maximal literal in C.

1. If Q �

L

P then D �

C

C.
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2. If P = Q, P o

urs negatively in C but only positively in D, then D �

C

C.

Eventually, I overload � with �

L

and �

C

. So if � is applied to literals it

denotes �

L

, if it is applied to 
lauses, it denotes �

C

. Note that � is a total

ordering on literals and 
lauses as well. Eventually we will restri
t inferen
es to

maximal literals with respe
t to �. For a 
lause set N , I de�ne N

�C

= fD 2

N j D � Cg.

De�nition 2.8.3 (Abstra
t Redundan
y). A 
lause C is redundant with respe
t

to a 
lause set N if N

�C

j= C.

Tautologies are redundant. Subsumed 
lauses are redundant if � is stri
t.

Dupli
ate 
lauses are anyway eliminated quietly be
ause the 
al
ulus operates

on sets of 
lauses.

C

Note that for �nite N , and any C 2 N redundan
y N

�C

j= C 
an

be de
ided but is as hard as testing unsatis�ability for a 
lause set

N . So the goal is to invent redundan
y notions that 
an be eÆ
iently

de
ided and that are useful.

De�nition 2.8.4 (Sele
tion Fun
tion). The sele
tion fun
tion sel maps 
lauses

to one of its negative literals or ?. If sel(C) = :P then :P is 
alled sele
ted in

C. If sel(C) = ? then no literal in C is sele
ted.

The sele
tion fun
tion is, in addition to the ordering, a further means to

restri
t superposition inferen
es. If a negative literal is sele
ted on a 
lause, any

superposition inferen
e must be on the sele
ted literal.

De�nition 2.8.5 (Partial Model Constru
tion). Given a 
lause set N and an

ordering � we 
an 
onstru
t a (partial) model N

I

for N indu
tively as follows:

N

C

:=

S

D�C

Æ

D

Æ

D

:=

8

>

<

>

:

fPg if D = D

0

_ P; P stri
tly maximal, no literal

sele
ted in D and N

D

6j= D

; otherwise

N

I

:=

S

C2N

Æ

C

Clauses C with Æ

C

6= ; are 
alled produ
tive.

Proposition 2.8.6. Some properties of the partial model 
onstru
tion.

1. For every D with (C _ :P ) � D we have Æ

D

6= fPg.

2. If Æ

C

= fPg then N

C

[ Æ

C

j= C.

3. If N

C

j= D and D � C then for all C

0

with C � C

0

we have N

C

0

j= D

and in parti
ular N

I

j= D.

4. There is no 
lause C with P _ P � C su
h that Æ

C

= fPg.
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TPlease properly distinguish: N is a set of 
lauses interpreted as the


onjun
tion of all 
lauses. N

�C

is of set of 
lauses from N stri
tly

smaller than C with respe
t to �. N

I

, N

C

are sets of atoms, often 
alled Her-

brand Interpretations. N

I

is the overall (partial) model for N , whereas N

C

is

generated from all 
lauses from N stri
tly smaller than C. Validity is de�ned

by N

I

j= P if P 2 N

I

and N

I

j= :P if P 62 N

I

, a

ordingly for N

C

.

Given some 
lause setN the partial modelN

I


an be extended to a valuation

A by de�ning A(N

I

) := N

I

[ f:P j P 62 N

I

g. So we 
an also de�ne for some

Herbrand interpretation N

I

(N

C

) that N

I

j= � i� A(N

I

)(�) = 1.

Superposition Left (N ℄ fC

1

_ P;C

2

_:Pg) )

SUP

(N [ fC

1

_ P;C

2

_

:Pg [ fC

1

_ C

2

g)

where (i) P is stri
tly maximal in C

1

_ P (ii) no literal in C

1

_ P is sele
ted

(iii) :P is maximal and no literal sele
ted in C

2

_ :P or :P is sele
ted in

C

2

_ :P

Fa
toring (N℄fC_P _Pg) )

SUP

(N[fC_P _Pg[fC_Pg)

where (i) P is maximal in C _ P _ P (ii) no literal is sele
ted in C _ P _ P

Note that the superposition fa
toring rule di�ers from the resolution fa
tor-

ing rule in that it only applies to positive literals.

De�nition 2.8.7 (Saturation). A set N of 
lauses is 
alled saturated up to

redundan
y, if any inferen
e from non-redundant 
lauses in N yields a redundant


lause with respe
t to N .

Examples for spe
i�
 redundan
y rules that 
an be eÆ
iently de
ided are

Subsumption (N ℄ fC

1

; C

2

g) )

SUP

(N [ fC

1

g)

provided C

1

� C

2

Tautology Dele-

tion

(N ℄ fC _ P _ :Pg) )

SUP

(N)

Condensation

(N ℄ fC

1

_ L _ Lg) )

SUP

(N [ fC

1

_ Lg)

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ :Lg) )

SUP

(N [ fC

1

_ L;C

2

g)

where C

1

� C

2

Proposition 2.8.8. All 
lauses removed by Subsumption, Tautology Deletion,

Condensation and Subsumption Resolution are redundant with respe
t to the

kept or added 
lauses.

Theorem 2.8.9. If N is saturated up to redundan
y and ? =2 N then N is

satis�able and N

I

j= N .
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Proof. The proof is by 
ontradi
tion. So I assume: (i) for any 
lause D derived

by Superposition Left or Fa
toring from N that D is redundant, i.e., N

�D

j= D,

(ii) ? =2 N and (iii) N

I

6j= N . Then there is a minimal, with respe
t to �, 
lause

C_L 2 N su
h that N

I

6j= C_L and L is a sele
ted literal in C_L or no literal

in C _ L is sele
ted in L is maximal. This 
lause must exist be
ause ? =2 N .

The 
lause C _ L is not redundant. For otherwise, N

�C_L

j= C _ L and

hen
e N

I

j= C _ L, be
ause N

I

j= N

�C_L

, a 
ontradi
tion.

I distinguish the 
ase L is a positive and no literal sele
ted in C _L or L is a

negative literal. Firstly, assume L is positive, i.e., L = P for some propositional

variable P . Now if P is stri
tly maximal in C _ P then a
tually Æ

C_P

= fPg

and hen
e N

I

j= C _P , a 
ontradi
tion. So P is not stri
tly maximal. But then

a
tually C _ P has the form C

0

1

_ P _ P and Fa
toring derives C

0

1

_ P where

(C

0

1

_ P ) � (C

0

1

_ P _ P ). Now C

0

1

_ P is not redundant, stri
tly smaller than

C_L, we have C

0

1

_P 2 N and N

I

6j= C

0

1

_P , a 
ontradi
tion against the 
hoi
e

that C _ L is minimal.

Se
ondly, let us assume L is negative, i.e., L = :P for some propositional

variable P . Then, sin
e N

I

6j= C _ :P we know P 2 N

I

. So there is a 
lause

D _ P 2 N where Æ

D_P

= fPg and P is stri
tly maximal in D _ P and

(D _ P ) � (C _ :P ). So Superposition Left derives C _ D where (C _ D) �

(C _:P ). The derived 
lause C_D 
annot be redundant, be
ause for otherwise

either N

�D_P

j= D_P or N

�C_:P

j= C_:P . So C_D 2 N and N

I

6j= C_D,

a 
ontradi
tion against the 
hoi
e that C _ L is the minimal false 
lause.

So the proof a
tually tells us that at any point in time we need only to


onsider either a superposition left inferen
e between a minimal false 
lause and

a produ
tive 
lause or a fa
toring inferen
e on a minimal false 
lause.

2.9 Davis Putnam Logemann Loveland Pro
e-

dure (DPLL)

A DPLL problem state is a pair (M ;N) whereM a sequen
e of partly annotated

literals, and N is a set of 
lauses. In parti
ular, the following states 
an be

distinguished:

(�;N) is the start state for some 
lause set N

(M ;N) is a �nal state, if M j= N

(M ;N) is a �nal state, ifM j= :N and there is no literal L

>

in M

(M ;N) is an intermediate state if M neither is a model for

N nor does it falsify a 
lause in N

The sequen
e M will, by 
onstru
tion, neither 
ontain dupli
ate nor 
om-

plementary literals. So it will always serve as a partial valuation for the 
lause

set N .

Here are the rules
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Propagate (M ;N) )

DPLL

(ML;N)

provided C _ L 2 N , M j= :C, and L is unde�ned in M

De
ide

(M ;N) )

DPLL

(ML

>

;N)

provided L is unde�ned in M

Ba
ktra
k

(M

1

L

>

M

2

;N) )

DPLL

(M

1

:L;N)

provided there is a D 2 N and M j= :D and no K

>

in M

2

Figure 2.11: The DPLL Cal
ulus

Lemma 2.9.1. Let (M ;N) be a state rea
hed by the DPLL algorithm from

the initial state (�;N). If M = M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no

de
ision literals then for all 0 � i � m it holds: N;M

1

; : : : ; L

>

i

j=M

i+1

Proof. Proof by 
omplete indu
tion on the number n of rule appli
ations.

Indu
tion basis: n = 0. No rule has been applied so that M = � and M does

not 
ontain any de
ision literal. Therefore the statement holds.

Indu
tion hypothesis: If (M ;N) is rea
hed via n or less rule appli
ations

where M =M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no de
ision literals then

for all 1 � i � m it holds: N;M

1

; : : : ; L

>

i

j=M

i+1

.

Indu
tion step: n! n+1. Assume (M

0

;N) is rea
hed via n rule appli
ations.

Then by the use of the indu
tion hypothesis it holds for all 1 � i < m that

N;M

1

; : : : ; L

>

i

j= M

i+1

so that it remains to be shown that N;M

1

; : : : ; L

>

m

j=

M

m+1

1. Rule Propagate (M

0

;N))

DPLL

(M

0

L;N): IfM

0

=M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no de
ision literals then by de�nition there is a


lause C _ L 2 N with M

0

j= :C, i.e. C _ L;M

0

j= L and

N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

j= L. Using the indu
tion hypothesis it fol-

lows N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

j=M

m+1

; L.

2. Rule De
ide (M

0

;N))

DPLL

(M

0

L

>

;N): The statement holds be
ause of

M

0

; L

>

j= > and the indu
tion hypothesis.

3. Rule Ba
ktra
k (M

0

1

L

>

M

0

2

;N) )

DPLL

(M

0

1

:L;N): By de�nition M

0

2

has

no de
ision literals and there is a 
lause D 2 N with M

0

1

L

>

M

0

2

j=

:D. With the indu
tion hypothesis M

0

1

L

>

j= M

0

2

holds. It follows

that M

0

1

L

>

j= :D whi
h is equivalent to M

0

1

L

>

; D j= ? and

M

0

1

; D j= :L

>

. Sin
e D 2 N it holds that N;M

0

1

j= :L. Let M

0

1

=

M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

where all M

i

have no de
ision literals then by

indu
tion hypothesis N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

j=M

m+1

;:L.

Proposition 2.9.2. For a state (M ;N) that is rea
hed from the initial state

(�;N) where M 
ontains k de
ision literals L

1

: : : L

k

with k � 0 and for ea
h

valuation A with A j= N;L

1

; : : : ; L

k

it holds that A(L

i

) = 1 for all L

i

2M .
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Proof. LetM =M

1

L

>

1

: : : L

>

k

M

k+1

where allM

i

have no de
ision literals. With

Lemma 2.9.1 for all i it holds that N;M

1

L

>

1

: : : L

>

i�1

j=M

i

, i.e. for all i, literals

K 2 M

i

and ea
h valuation A with A j= N;L

1

; : : : ; L

k

it holds that A(K) =

1.

Lemma 2.9.3. If M 
ontains only propagated literals and M = L

1

: : : L

n

and

there is a D 2 N with M j= :D where D = K

1

: : :K

m

then N is unsatis�able.

Proof. Sin
e M j= :D it holds that :K

i

2 M for all 1 � i � m. With Propo-

sition 2.9.2 for ea
h valuation A with A j= N it holds that A(L

j

) = 1 for all

1 � j � n. Thus in parti
ular it holds that A(:K

i

) = 1 for all 1 � i � m.

Therefore D is always false under any valuation A and N is always unsatis�-

able.

Proposition 2.9.4 (DPLL Soundness). The rules Propagate, De
ide, and

Ba
ktra
k are sound, i.e. whenever the algorithm terminates in state (M ;N)

starting from the initial state (�;N) then it holds: M j= N i� N is satis�able

Proof. ()) if M j= N then obviously N is satis�able.

(() Proof by 
ontradi
tion. Assume N is satis�able and the algorithm termi-

nates in state (M ;N) starting from the initial state (�;N). Furthermore, assume

M j= N does not hold, i.e. either there is at least one literal that is not de�ned

in M or there is a 
lause D 2 N with M j= :D.

For the �rst 
ase the rule De
ide is appli
able. This 
ontradi
ts that the

algorithm terminated.

For the se
ond 
ase either M only 
ontains propagated literals then N is

unsatis�able with Lemma 2.9.3. This is a 
ontradi
tion to the assumption that

N is satis�able. IfM does not only 
ontain propagated literals there must be at

least one de
ision literal in M . Then the rule Ba
ktra
k is appli
able but this


ontrati
ts that the algorithm terminated.

Therefore M j= N and the rules Propagate, De
ide, and Ba
ktra
k are sound.

Proposition 2.9.5 (DPLL Completeness). The rules Propagate, De
ide, and

Ba
ktra
k are 
omplete: for any valuation M with M j= N , there is a sequen
e

of rule appli
ation generating (M;N) as a �nal state.

Proof. Let M = L

1

L

2

: : : L

k

. Sin
e it is a valuation there are no dupli
ates in

M and k appli
ations of rule De
ide yield (L

>

1

L

>

2

: : : L

>

k

; N) out of (�;N). This

is a �nal state be
ause ba
ktra
k is not appli
able sin
e M j= N and Propagate

and De
ide are no further appli
able sin
e M is a valuation.

Proposition 2.9.6 (DPLL Termination). The rules Propagate, De
ide, and

Ba
ktra
k terminate on any input state (�;N).
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Proof. Let n be the number of propositional variables in N . As usual, termina-

tion is shown by assigning a well-founded measure and proving that it de
reases

with ea
h rule appli
ation. The domain for the measure � are n-tuples over

f1; 2; 3g.

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; : : : ; 3)

where m

i

= 2 if L

i

is annotated with > and m

i

= 1 otherwise. So �((�;N)) =

(3; : : : ; 3). The well-founded ordering is the lexi
ographi
 extension of < to n-

tuples. What remains to be shown is that ea
h rule appli
ation de
reases �. I

do this by a 
ase analysis over the rules.

Propagate:

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; 3; : : : ; 3)

> (m

1

; : : : ;m

k

; 1; 3; : : : ; 3)

= �((L

1

: : : L

k

L;N))

De
ide:

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; 3; : : : ; 3)

> (m

1

; : : : ;m

k

; 2; 3; : : : ; 3)

= �((L

1

: : : L

k

L

>

;N))

Ba
ktra
k:

�((L

1

: : : L

j

L

>

L

j+1

: : : L

k

;N)) = (m

1

; : : : ;m

j

; 2;m

j+1

; : : : ;m

k

; 3; : : : ; 3)

> (m

1

; : : : ;m

j

; 1; 3; : : : ; 3)

= �((L

1

: : : L

j

:L;N))

2.10 Con
i
t Driven Clause Learning (CDCL)

A CDCL problem state is a �ve-tuple (M ;N ;U ; k;C) where M a sequen
e of

annotated literals, N and U are sets of 
lauses, k 2 N, and C is a non-empty


lause or > or ?. In parti
ular, the following states 
an be distinguished:

(�;N ; ;; 0;>) is the start state for some 
lause set N

(M ;N ;U ; k;>) is a �nal state, if M j= N and all literals from N are

de�ned in M

(M ;N ;U ; k;?) is a �nal state, where N has no model

(M ;N ;U ; k;>) is an intermediate model sear
h state if M 6j= N

(M ;N ;U ; k;D) is a ba
ktra
king state if D 62 f>;?g

A literal L is of level k with respe
t to a problem state (M ;N ;U ; j;C) if L or

:L o

urs in M and the �rst de
ision literal left from L (:L)in M is annotated

with k or if there is no su
h literal 0. A 
lause D is of level k with respe
t to a
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problem state (M ;N ;U ; j;C) if k is the maximal level of a literal in D. Re
all

C is a non-empty 
lause or > or ?. The rules are

Propagate (M ;N ;U ; k;>) )

CDCL

(ML

C_L

;N ;U ; k;>)

provided C _ L 2 (N [ U), M j= :C, and L is unde�ned in M

De
ide

(M ;N ;U ; k;>) )

CDCL

(ML

k+1

;N ;U ; k + 1;>)

provided L is unde�ned in M

Con
i
t

(M ;N ;U ; k;>) )

CDCL

(M ;N ;U ; k;D)

provided D 2 (N [ U) and M j= :D

Skip (ML

C_L

;N ;U ; k;D) )

CDCL

(M ;N ;U ; k;D)

provided D 62 f>;?g and :L does not o

ur in D

Resolve

(ML

C_L

;N ;U ; k;D _ :L) )

CDCL

(M ;N ;U ; k;D _ C)

provided D 
ontains a literal of level k or k = 0

For rule Resolve we assume that dupli
ate literals in D _ C are always re-

moved.

Ba
ktra
k

(M

1

K

i+1

M

2

;N ;U ; k;D _ L) )

CDCL

(M

1

L

D_L

;N ;U [ fD _

Lg; i;>)

provided L is of maximal level k in D _ L and D is of level i, where i < k.

Restart

(M ;N ;U ; k;>) )

CDCL

(�;N ;U ; 0;>)

provided M 6j= N

Forget (M ;N ;U [ fCg; k;>) )

CDCL

(M ;N ;U ; k;>)

provided M 6j= N

Here ? denotes the empty 
lause, hen
e fail. The level of the empty 
lause

? is 0. The 
lause D_L added in rule Ba
ktra
k to U is 
alled a learned 
lause.

The CDCL algorithm stops with a modelM if neither Propagate nor De
ide nor

Con
i
t are appli
able to a state (M ;N ;U ; k;>), hen
e M j= N and all literals

of N are de�ned inM . The only possibility to generate a state (M ;N ;U ; k;?) is

by the rule Resolve. So in 
ase of dete
ting unsatis�ability the CDCL algorithm

a
tually generates a resolution proof as a 
erti�
ate. I will dis
uss this aspe
t

in more detail in Se
tion 2.12. In the spe
ial 
ase of a unit 
lause L, the rule

Propagate a
tually annotates the literal L with itself.

Obviously, the CDCL rule set does not terminate in general for a number of

reasons. For example, starting with (�;N ; ;; 0;>) a simple 
ombination Propa-

gate, De
ide and eventually Restart yields the start state again. Even after a

su

essful appli
ation of Ba
ktra
k, exhaustive appli
ation of Forget followed

by Restart again produ
es the start state. So why these rules? A
tually, any

modern SAT solver is based on this rule set and the underlying me
hanisms. I

will motivate the rules later on and how they are a
tually used in an eÆ
ient

way.


