
Chapter 1

Preliminaries

This hapter introdues all abstrat onepts needed for the rest of this book.

Generi problem solving atually starts with a problem. In this book problems

will appear in the form of examples. In order to solve a problem in a generi

way, i.e., by generi algorithms, the �rst step is to formalize the problem using

a generi language. A generi language has a mathematially preise syntax

and semantis, beause eventually it is analyzed by a program running on a

omputer. Suh a language is alled a logi. The problem beomes a sentene,

i.e., a formula of the logi. In partiular, semantis in this ontext always means

a notion of truth. The notion of truth is a very expressive instrument to atually

formalize what it means to eventually solve a partiular problem. A solution

to the formula should result in a solution to the problem. Deteting that the

formula is true (false) orresponds to solving the problem.

One the problem is desribed in a logi, the generi language, it needs

rules that reason about the truth of formulas and hene eventually solve the

problem. A logi plus its reasoning rules is alled a alulus. The rules operate

on a symboli representation of a problem state that inludes in partiular the

formula formalizing the problem. Typially, further information is added to the

state representation in order to keep trak of the solution proess. The rules

should enjoy a number of properties in order to be useful. They should be

sound, i.e., whenever they ompute a solution the result is atually a solution

to the initial problem. And whenever they ompute that there is no solution

this should hold as well. The rules should be omplete, i.e., whenever there is a

solution to the problem they ompute it. Finally, they should be terminating.

If they are applied to a starting problem state, they always stop after a �nite

number of steps. Typially, beause no more rule is appliable. Depending on the

omplexity of the problem and the involved logi, not all the desired properties

soundness, ompleteness, termination, an be ahieved, in general. But I will

turn to this later.

The rules of a alulus are typially designed to operate independently and

an therefore be exeuted in a non-deterministi way. The advantage of suh

a presentation is that properties of the rules, e.g., like soundness, an also be

3

4 CHAPTER 1. PRELIMINARIES

shown independently for eah rule. And if a property an be shown for the rule

set, it applies to all potential exeution orderings of the rules. The disadvantage

of suh a presentation is that a random appliation of the rules typially leads to

an ineÆient algorithm. Therefore, a strategy is added to the alulus (rules) and

the strategy plus the rules build an automated reasoning algorithm or shortly an

algorithm. Depending on the type of property and the atual alulus, sometimes

we prove it for the alulus or the respetive algorithm.

An automated reasoning algorithm is still an abstrat, mathematial on-

strut and there is typially a signi�ant gap between suh an algorithm and

an atual omputer program implementing the algorithm. An implementation

often requires a dediated ontrol of the alulus plus the invention of spei�

data strutures and algorithms. The implementation of an algorithm is alled a

system. Eventually the system is applied to real world problems, i.e., an appli-

ation.

Appliation

System + Problem

System

Algorithm + Implementation

Algorithm

Calulus + Strategy

Calulus

Logi + States + Rules

Logi

Syntax + Semantis

C

Typially omputer siene algorithms are formulated in languages

that are lose to atual programming languages suh as C, C++,

or Java

1

. So, in partiular, they rely on deterministi programming

languages with an operational semantis. I overload the notion of a lassial

omputer siene algorithm and an automated reasoning algorithm. An auto-

mated reasoning algorithm is build on a rule set plus a strategy and typially

the strategy does not turn the rules into a deterministi algorithm. There is still

some room left that will eventually be deided for an appliation. The di�erene

in design reets the di�erene in sope. A lassial omputer siene algorithm

solves a very spei� problem, e.g., it sorts a �nite list of numbers. An algo-

rithm is meant to solve a whole lass of problems, e.g., later on I will show that

ordered resolution an solve any polynomial time omputable problem based on

a fragment of �rst-order logi.

As a start, Setion 1.1 studies the overall above approah inluding all men-

tioned properties in full detail on a onrete problem: 4� 4-Sudokus. Although

this is a rather trivial and atually �nite problem and the suggested algorithm is

1

opyright

1.1. SOLVING 4� 4 SUDOKU 5

very naive, it serves niely as a throughout example demonstrating all aspets.

Later on, I will develop far more omplex logis that then an be used to solve

more interesting problems. In partiular, real world problems.

The subsequent setions abstrat from solving Sudokus and develop the un-

derlying onepts needed as a basi toolbox for the rest of this book. Basi

mathematial notions on numbers, sets, relations, and words are de�ned in Se-

tion 1.2. In order to be able to talk about the omplexity of algorithms Se-

tion 1.3 in partiular explains Big O notation and NP-hardness. Setion 1.4 is

devoted to orderings, beause they show up on the meta-level, e.g. as a means

to prove termination. They also serve as a basis for proving properties of rule

sets by indution, Setion 1.5, and also on the logial reasoning level where they

will be atually an e�etive means for de�ning more eÆient rule sets. Finally,

Setion 1.6 introdues the most important onepts of rule based reasoning in

general by an introdution to basi onepts of (abstrat) rewrite systems.

1.1 Solving 4� 4 Sudoku

Consider solving a 4� 4 Sudoku as it is depited on the left in Figure 1.1. The

goal is to �ll in natural numbers from 1 to 4 into the 4�4 square so that in eah

olumn, row and 2�2 box sharing an outer orner with the original square eah

number ours exatly one. Conditions of this kind are alled onstraints as

they restrit �lling the Sudoku with numbers in an arbitrary way. The Sudoku

(Solution) on the right (Figure 1.1) shows the, in this ase, unique solution to

the Sudoku (Start) on the left.

2 1

3 1

1 2

Start

2 1 4 3

3 4 1 2

4 2 3 1

1 3 2 4

Solution

Figure 1.1: A 4� 4 Sudoku and its Solution

Why is this solution unique? It is beause the onstraints of 4� 4 Sudokus

have already fored all other values. To start, the only square for the missing

1 is the square above the 3. All other squares would violate a onstraint. But

then the third olumn is almost �lled so the top square of this olumn must be

a 4, and so on.

In the following, I will build a spei� logi for 4 � 4 Sudokus, inluding

an algorithm in form of a set of rules and a strategy for solving the problem

and atually prove that the algorithm is sound, omplete, and terminating. As

already said, an algorithm is sound if any solution the algorithm delares to

have found is atually a solution. It is omplete if it �nds a solution in ase

6 CHAPTER 1. PRELIMINARIES

one exists. It is terminating if it does not run forever. Sine Sudokus are �nite

ombinatorial puzzles, suh an algorithm exists. The most simple algorithm is

to systematially guess all values for all unde�ned squares of the Sudoku and to

hek whether the guessed values atually onstitute a solution. However, this

amounts to heking 4

16

di�erent assignments of values to the squares. Suh an

approah is even worse than the one I will introdue in the sequel.

I onsider a Sudoku to be a two dimensional array f indexed from 1 to 4 in

eah dimension, starting from the upper left orner. So f(1; 1) is the value of the

square in the upper left orner and in ase of our initial Sudoku. For the start

Sudoku in Figure 1.1 the value of this square is given to be 2 whih I denote

by the equation f(1; 1) � 2. So the logi for Sudokus are �nite onjuntions

(onjuntion denoted by ^) of equations f(x; y) � z, where the variables x, y, z

range over the domain 1, 2, 3, 4. The meaning of a onjuntion is that all values

given by the equations should be simultaneously true in the Sudoku. The overall

left Sudoku (Start in Figure 1.1) is then given by the onjuntion of equations

f(1; 1) � 2 ^ f(1; 2) � 1 ^ f(3; 3) � 3 ^ f(3; 4) � 1 ^ f(4; 1) � 1 ^ f(4; 3) � 2

T

If you are already familiar with lassial logi, you know that the

formulas f(1; 1) � 2^ f(1; 2) � 1 and f(1; 2) � 1^ f(1; 1) � 2 annot

be distinguished semantially. They have always the same truth value,

beause onjuntion (^) is ommutative, and, in addition, assoiative. However,

here, the above onjuntion will beome part of a problem state. The sudoku

logi rules syntatially manipulate problem states. A problem state ontaining

f(1; 1) � 2 ^ f(1; 2) � 1 will be di�erent from one ontaining f(1; 2) � 1 ^

f(1; 1) � 2, beause the former impliitly means that there is no solution to the

sudoku with f(1; 1) � 1, whereas the latter means that there is no solution to

the sudoku with f(1; 1) � 1 in presene of f(1; 2) � 1.

The goal of the algorithm is then to �nd the assignments for the empty

squares with respet to the above mentioned onstraints on the number our-

renes in olumns, rows and boxes. The algorithm onsists of four rules that

eah take a state of the solution proess and transform it into a di�erent one,

loser to a solution. A state is desribed by a triple (N ;D; r) where N on-

tains the equations of the starting Sudoku, for example, the above onjuntion

of equations, D is a onjuntion of additional equations omputed by the al-

gorithm, and r 2 f>;?g desribes whether the atual values for f in N and

D potentially onstitute a solution. If r = > then no onstraint violation has

been deteted and if r = ? a onstraint violation has been deteted but not

yet resolved. The initial problem state is represented by the triple (N ;>;>)

where > also denotes an empty onjuntion and hene truth. The problem state

(N ;>;?) denotes the fail state, i.e., there is no solution for a Sudoku starting

with the assignments ontained in N .

A square f(x; y) where x; y 2 f1; 2; 3; 4g is alled de�ned by N ^D if there is

an equation f(x; y) � z, z 2 f1; 2; 3; 4g in N or D. Otherwise, f(x; y) is alled

unde�ned. For an initial state (N ;>;>) I assume that the same square is not

1.1. SOLVING 4� 4 SUDOKU 7

de�ned several times in N . We say that N ^D

0

is a solution to a Sudoku N , if

all squares are de�ned in N ^D

0

, no square is de�ned more than one in N ^D

0

and the assignments in N ^D

0

do not violate any onstraint. It is a solution to

a problem state (N ;D;>) if all equations from D our in D

0

. In the sequel we

always assume that for any start state (N ;>;>) eah square is de�ned at most

one in N and all variables x; y; z (possibly indexed, primed) range over values

1 to 4. Then the four rules of a �rst (naive) algorithm are

Dedue

(N ;D;>)) (N ;D ^ f(x; y) � 1;>)

provided f(x; y) is unde�ned in N ^D, for any x; y 2 f1; 2; 3; 4g.

Conit

(N ;D;>)) (N ;D;?)

provided for (i) f(x; y) = f(x; z) for f(x; y), f(x; z) de�ned in N ^D for some

x; y; z and y 6= z, or,

(ii) f(y; x) = f(z; x) for f(y; x), f(z; x) de�ned in N ^ D for some x; y; z and

y 6= z, or,

(iii) f(x; y) = f(x

0

; y

0

) for f(x; y), f(x

0

; y

0

) de�ned in N ^D and [x; x

0

2 f1; 2g

or x; x

0

2 f3; 4g℄ and [y; y

0

2 f1; 2g or y; y

0

2 f3; 4g℄ and (x; y) 6= (x

0

; y

0

).

Baktrak

(N ;D

0

^f(x; y) � z^D

00

;?)) (N ;D

0

^f(x; y) � z+1;>)

provided z < 4 andD

00

= > orD

00

ontains only equations of the form f(x

0

; y

0

) �

4.

Fail

(N ;D;?)) (N ;>;?)

provided D 6= > and D ontains only equations of the form f(x; y) � 4.

Rules are applied to a state by �rst mathing the left hand side of the rule

(left side of)) to the state, heking the side onditions desribed below the

rule and if they are ful�lled then replaing the state by the right hand side of

the rule. There is no order among the rules, so they are applied \don't are non-

deterministially". A strategy will �x the ordering and turn into an algorithm.

Furthermore, even a single rule may not be deterministi. For example rule

Dedue does not speify onrete values for x; y so it an be applied to any

unde�ned square f(x; y).

Starting with the state orresponding to the initial Sudoku shown on the left

in Figure 1.1, a one step derivation by rule Dedue is (N ;>;>)! (N ; f(1; 3) �

1;>). Atually the rule Dedue is the only appliable rule to (N ;>;>). Con-

erning the new state (N ; f(1; 3) � 1;>) two rules are appliable: Dedue and

Conit. An appliation of Conit, where side ondition (i) is satis�ed, yields

(N ; f(1; 3) � 1;?) and after an appliation of Baktrak to this state the rule

omputes (N ; f(1; 3) � 2;>). Applying Dedue to (N ; f(1; 3) � 1;>) results,

e.g., in (N ; f(1; 3) � 1:f(1; 4) � 1;>). Figure 1.2 shows this sequene of rule

appliations together with the orresponding Sudokus.

This is one reason why the rule set is ineÆient. Dedue still �res in ase of

an already existing onstraint violation and Dedue does not onsider already

8 CHAPTER 1. PRELIMINARIES

2 1

3 1

1 2

(N = f(1; 1) � 2 ^ f(1; 2) � 1^

f(3; 3) � 3 ^ f(3; 4) � 1^

f(4; 1) � 1 ^ f(4; 3) � 2;>;>)

+ Dedue f(1; 3) � 1

2 1 1

3 1

1 2

(N ; f(1; 3) � 1;>)

+ Conit

2 1 1

3 1

1 2

(N ; f(1; 3) � 1;?)

+ Baktrak f(1; 3) � 2;

2 1 2

3 1

1 2

(N ; f(1; 3) � 2;>)

Figure 1.2: E�et of Applying the Inferene Rules

existing equations when assigning a new value. It simply always assigns \1".

Improving the algorithm along the seond line is subjet to Exerises ??, ??.

Furthermore, note that if in a start state (N ;>;>) the initial assignments in N

already ontain a onstraint violation, then the rule onit diretly produes

the �nal fail state. An appropriate, very simple strategy turns the rule set into

an algorithm and prefers Conit over Dedue.

The Algorithm 1, SimpleSudoku(S), onsists of the four rules together with

a rule appliation strategy. The sope of loops and if-then-else statements is

indiated by indentation. A statement Rule(S) for some Rule means that the

appliation of the rule is tested and if appliable it is applied to the problem

state S. If suh a statement ours in a ifrule ondition, it is applied as before

and returns true i� (if and only if) the rule was appliable. For example, the

statement at line 1

ifrule (Conit(S)) then

return S;

is a shorthand for

if (the rule Conit is appliable to state S) then

1.1. SOLVING 4� 4 SUDOKU 9

Algorithm 1: SimpleSudoku(S)

Input : An initial state S = (N ;>;>).

Output: A �nal state S = (N ;D;>) or S = (N ;>;?)

1 ifrule (Conit(S)) then

2 return S;

3 while (any rule appliable) do

4 ifrule (Conit(S)) then

5 Baktrak(S);

6 Fail(S);

7 else

8 Dedue(S);

9

10 end

11 return S;

apply rule Conit to S;

return S;

where the appliation ondition is separated from the rule appliation.

At line 1 the rule Conit is tested and if appliable it will produe the

�nal state S = (N ;>;?), so the algorithm returns S. The while-loop starting

at line 3 terminates if no rule is appliable anymore. For otherwise, the rule

Conit is tested before Dedue in order to prevent useless Dedue steps. The

rules Baktrak and Fail are only appliable after an appliation of Conit, so

they are guarded by an appliation of Conit. Therefore, SimpleSudoku is a

fair algorithm in the sense that no rule appliation needed to ompute a �nal

state will be prohibited.

If the rules are onsidered in the ontext of the SimpleSudoku algorithm, then

they an be simpli�ed. For example, the ondition for rule Fail that all equations

are of the form f(x; y) � 4 an be dropped, beause in SimpleSudoku the rule

Fail is only tested and potentially applied after having tested Baktraking.

C

It is a design issue how muh rule appliation ontrol is atually put

into the side onditions of the rules and how muh ontrol into the

algorithm. It depends, of ourse, on the problem to be solved but also

on whih level properties an be shown. For SimpleSudoku all properties an be

shown on the alulus, i.e., rule level. In general, showing termination of a rule

set often requires a partiular strategy, i.e., algorithm.

In the sequel, I will prove that the four rules are sound, omplete and ter-

minating. Sound means that whenever the rules ompute some state (N ;D;>)

and it has a solution, then this solution is also a solution for N . Complete means

that whenever there is a solution to the Sudoku, exhaustive appliation of the

four rules will ompute a solution. Note that for ompleteness the omputation

of any solution, not an a priori seleted one, is suÆient. In ase of the Sudoku

10 CHAPTER 1. PRELIMINARIES

rules even strong ompleteness holds: for any solution N ^ D of the Sudoku,

there is a sequene of rule appliations so that (N ;D;>) is a terminating state.

So any a priori seleted solution an be generated. Termination at the rule level

means that independently of the atual sequene of rule appliations to a start

state, there is no in�nite sequene of rule appliations possible. In the sequel,

I will onsider a fourth property important for rule based systems: onuene.

A set of rules is onuent if whenever there are several rules appliable to a

given state, then the di�erent generated states an be rejoined by further rule

appliations. So onuene guarantees unique results on termination. Beause

of the above informal fairness argument for the SimpleSudoku algorithm, all

these properties also hold not only for the rule set but also for the algorithm.

Proposition 1.1.1 (Soundness). The rules Dedue, Conit, Baktrak and

Fail are sound. Starting from an initial state (N ;>;>): (i) for any �nal state

(N ;D;>), the equations in N ^ D are a solution, and, (ii) for any �nal state

(N ;>;?) there is no solution to the initial problem.

Proof. First of all note that no rule manipulates N , the �rst omponent of a

state (N ;D; r). This justi�es the way this proposition is stated. (i) So assume a

�nal state (N ;D;>) so that no rule is appliable. In partiular, this means that

for all x; y 2 f1; 2; 3; 4g the square f(x; y) is de�ned in N ^D as for otherwise

Dedue would be appliable, ontraditing that (N ;D;>) is a �nal state. So

all squares are de�ned by N ^ D. No square is de�ned more than one. What

remains to be shown is that those assignments atually onstitute a solution to

the Sudoku. However, if some assignment in N ^ D results in a repetition of

a number in some olumn, row or 2 � 2 box of the Sudoku, then rule Conit

is appliable, ontraditing that (N ;D;>) is a �nal state. In sum, (N ;D;>) is

a solution to the Sudoku and hene the rules Dedue, Conit, Baktrak and

Fail are sound.

(ii) So assume that the initial problem (N ;>;>) has a solution. I prove by

ontradition based on an indutive argument that in this ase the rules annot

generate a state (N ;>;?). So let (N ;D;>) be an arbitrary state with D of max-

imal length still having a solution, but (N ;>;?) is reahable from (N ;D;>).

This inludes the initial state if D = >. An appropriate seletion of rule ap-

pliations orretly deides the next square. Sine (N ;D;>) still has a solution

the only appliable rule is Dedue. It generates (N ;D^f(x; y) � 1;>) for some

x; y 2 f1; 2; 3; 4g. If (N ;D ^ f(x; y) � 1;>) still has a solution the proof is

done sine this violates D to be of maximal length. So (N ;D ^ f(x; y) � 1;>)

does not have a solution anymore. But then eventually Conit and Baktrak

are appliable to a state (N ;D ^ f(x; y) � 1 ^ D

0

;?) where D

0

only ontains

equations of the form f(x

0

; y

0

) � 4 resulting in (N ;D ^ f(x; y) � 2;>). Now

repeating the argument we will eventually reah a state (N ;D ^ f(x; y) � k;>)

that has a solution, �nally ontraditing D to be of maximal length.

For the �rst part of the soundness proof, Proposition 1.1.1, neither the rule

Baktrak nor Fail shows up. This is beause an empty rule system is trivially

1.1. SOLVING 4� 4 SUDOKU 11

sound. The rules Baktrak or Fail are indispensable for the seond part of the

proof and for showing ompleteness.

C

The above proof ontains a \handwaving argument", the sentene

\But then eventually Conit and Baktrak are appliable to a state

(N ;D ^ f(x; y) � 1 ^D

0

;?) where D

0

only ontains equations of the

form f(x

0

; y

0

) � 4 resulting in (N ;D ^ f(x; y) � 2;>)." needs a proof on its

own. I will not do the proof here, but for some of the rule sets for deiding

satis�ability of propositional logi, Chapter 2, I will do analogous proofs in full

detail.

Proposition 1.1.2 (Strong Completeness). The rules Dedue, Conit, Bak-

trak and Fail are strongly omplete. For any solution N ^ D of the Sudoku

there is a sequene of rule appliations so that (N ;D;>) is a �nal state.

Proof. A partiular strategy for the rule appliations is needed to indeed gen-

erate (N ;D;>) out of (N ;>;>) for some spei� solution N ^D. Without loss

of generality I assume the assignments in D to be sorted so that assignments

to a number k 2 f1; 2; 3; 4g preede any assignment to some number l > k. So

if, for example, N does not assign all four values 1, then the �rst assignment

in D is of the form f(x; y) � 1 for some x; y. Now I apply the following strat-

egy, subsequently adding all assignments from D to (N ;>;>). The strategy has

ahieved state (N ;D

0

;>) and the next assignment from D to be established is

f(x; y) � k, meaning f(x; y) is not de�ned in N ^ D

0

. Then until l = k the

strategy does the following, starting from l = 1. It applies Dedue adding the

assignment f(x; y) � l. If Conit is appliable to this assignment, it is applied

and then Baktrak, generating the new assignment f(x; y) � l+ 1 and so on.

I need to show that this strategy in fat eventually adds f(x; y) � k to

D

0

. As long as l < k any added assignment f(x; y) � l results in rule Conit

appliable, beause D is ordered and all four values for all l < k are already

established. The eventual assignment f(x; y) � k does not generate a onit

beause D is a solution. For the same reason, the rule Fail is never appliable.

Therefore, the strategy generates (N ;D;>) out of (N ;>;>).

Note the subtle di�erene between the seond part of proving Proposi-

tion 1.1.1 and the above strong ompleteness proof. The former shows that any

solution an be produed by the rules whereas the latter shows that a spei�,

a priori seleted solution an be generated.

Proposition 1.1.3 (Termination). The rules Dedue, Conit, Baktrak and

Fail terminate on any input state (N ;>;>).

Proof. One the rule Fail is appliable, no other rule is appliable on the result

anymore. So there is no need to onsider rule Fail for termination. The idea of

the proof is to assign a measure over the natural numbers to every state so that

eah rule stritly dereases this measure and that the measure annot get below

0. The measure is as follows.

12 CHAPTER 1. PRELIMINARIES

For any given state S = (N ;D; r) with r 2 f>;?g with D = f(x

1

; y

1

) �

k

1

^ : : : ^ f(x

n

; y

n

) � k

n

I assign the measure �(S) by

�(S) = 2

49

� p�

n

X

i=1

k

i

� 2

49�3i

where p = 0 if r = > and p = 1 otherwise.

The measure �(S) is well-de�ned and annot beome negative as n � 16,

p � 1, and 1 � k

i

� 4 for any D. In partiular, the former holds beause the

rule Dedue only adds values for unde�ned squares and the overall number of

squares is bound to 16. What remains to be shown is that eah rule appliation

dereases �. I do this by a ase analysis over the rules.

Dedue:

�((N ;D;>)) = 2

49

�

P

n

i=1

k

i

� 2

49�3i

> 2

49

�

P

n

i=1

k

i

� 2

49�3i

� 1 � 2

49�3(n+1)

= �((N ;D ^ f(x; y) � 1;>))

Conit:

�((N ;D;>)) = 2

49

�

P

n

i=1

k

i

� 2

49�3i

> 2

49

� 1�

P

n

i=1

k

i

� 2

49�3i

= �((N ;D;?))

Baktrak:

�((N ;D

0

^ f(x

l

; y

l

) � k

l

^D

00

;?))

= 2

49

� 1� (

P

l�1

i=1

k

i

� 2

49�3i

)� k

l

� 2

49�3l

�

P

n

i=l+1

k

i

� 2

49�3i

> 2

49

� (

P

l�1

i=1

k

i

� 2

49�3i

)� (k

l

+ 1) � 2

49�3l

= �(N ;D

0

^ f(x

l

; y

l

) � k

l

+ 1;>)

where the strit inequation holds beause 2

49�3l

>

P

n

i=l+1

k

i

� 2

49�3i

+ 1.

As already mentioned, there is another important property for don't are

non-deterministi rule sets: onuene. It means that whenever several sequenes

of rules are appliable to a given state, the respetive results an be rejoined

by further rule appliations to a ommon problem state. A weaker ondition

is loal onuene where only one step of di�erent rule appliations needs to

be rejoined. In Setion 1.6, Lemma 1.6.6, the equivalene of onuene and

loal onuene in ase of a terminating rule system is shown. Assuming this

result, for the Sudoku rule system only one step of so alled overlaps needs to

be onsidered. There are two potential kinds of overlaps for the Sudoku rule

system. First, an appliation of Dedue and Conit to some state. Seond, two

di�erent appliations of Dedue to a state. The below Proposition 1.1.4 shows

that the former ase an in fat be rejoined and Example 1.1.5 shows that the

latter annot. So in sum, the system is not loally onuent and hene not

onuent. This fat has already shown up in the soundness and ompleteness

proofs.

1.1. SOLVING 4� 4 SUDOKU 13

Proposition 1.1.4 (Dedue and Conit are onuent). Given a state

(N ;D;>) out of whih two di�erent states (N ;D

1

;>) and (N ;D

2

;?) an be

generated by Dedue and Conit, respetively, then the two states an be re-

joined to a state (N ;D

0

; �) via further rule appliations.

Proof. Consider an appliation of Dedue and Conit to a state (N ;D;>)

resulting in (N ;D ^ f(x; y) � 1;>) and (N ;D;?), respetively. We will now

show that in fat we an rejoin the two states. Notie that sine Conit is

appliable to (N ;D;>) it is also appliable to (N ;D ^ f(x; y) � 1;>). So the

�rst sequene of rejoin steps is

(N ;D ^ f(x; y) � 1;>)) (N ;D ^ f(x; y) � 1;?)

) (N ;D ^ f(x; y) � 2;>)

)

�

(N ;D ^ f(x; y) � 4;?)

where we subsequently applied Conit and Baktrak to reah the state (N ;D^

f(x; y) � 4;?) and)

�

abbreviates those �nite number of rule appliations.

Finally applying Baktrak (or Fail) to (N ;D;?) and (N ;D ^ f(x; y) � 4;?)

results in the same state.

Example 1.1.5 (Dedue is not onuent). Consider the Sudoku state (f(1; 1) �

1 ^ f(2; 2) � 1;>;>) and two appliations of Dedue generating the respe-

tive suessor states (f(1; 1) � 1 ^ f(2; 2) � 1; f(3; 3) � 1;>) and (f(1; 1) �

1 ^ f(2; 2) � 1; f(3; 4) � 1;>). Obviously, both states an be ompleted to a

solution, but don not have a ommon solution. Therefore, it will not be possible

to rejoin the two states, see Figure 1.3.

1

1

Start

1

1

1

1

1

1

Dedue: f(3; 3) � 1Dedue: f(3; 4) � 1

Figure 1.3: Divergene of Rule Dedue

C

Is it desirable that a rule set for Sudoku is onuent? It depends on

the purpose of the algorithm. In ase of the above rules set for Sudoku,

strong ompleteness and onuene annot both be ahieved, beause

any solution of the Sudoku results in its own, unique, �nal state.

14 CHAPTER 1. PRELIMINARIES

1.2 Basi Mathematial Prerequisites

The set of the natural numbers inluding 0 is denoted by N, N = f0; 1; 2; : : :g,

the set of positive natural numbers without 0 by N

+

, N

+

= f1; 2; : : :g, and the

set of integers by Z. Aordingly Q denotes the rational numbers and R the real

numbers, respetively.

Given a set M , a multi-set S over M is a mapping S : M ! N, where S

spei�es the number of ourrenes of elements m of the base set M within the

multiset S. I use the standard set notations 2, �, �, [, \ with the analogous

meaning for multisets, for example (S

1

[S

2

)(m) = S

1

(m) + S

2

(m). I also write

multi-sets in a set like notation, e.g., the multi-set S = f1; 2; 2; 4g denotes a

multi-set over the set f1; 2; 3; 4g where S(1) = 1, S(2) = 2, S(3) = 0, and

S(4) = 1. A multi-set S over a set M is �nite if fm 2 M j S(m) > 0g is �nite.

For the purpose of this book I only onsider �nite multi-sets.

An n-ary relation R over some set M is a subset of M

n

: R � M

n

. For two

n-ary relations R;Q over some setM , their union ([) or intersetion (\) is again

an n-ary relation, where R [Q := f(m

1

; : : : ;m

n

) 2 M j (m

1

; : : : ;m

n

) 2 R or

(m

1

; : : : ;m

n

) 2 Qg and R \ Q := f(m

1

; : : : ;m

n

) 2 M j (m

1

; : : : ;m

n

) 2 R

and (m

1

; : : : ;m

n

) 2 Qg . A relation Q is a subrelation of a relation R if

Q � R. The harateristi funtion of a relation R or sometimes alled pred-

iate indiates membership. In addition of writing (m

1

; : : : ;m

n

) 2 R I also

write R(m

1

; : : : ;m

n

). So the prediate R(m

1

; : : : ;m

n

) holds or is true if in fat

(m

1

; : : : ;m

n

) belongs to the relation R.

Given a nonempty alphabet � the set �

�

of �nite words over � is de�ned

by the (i) empty word � 2 �

�

, (ii) for eah letter a 2 � also a 2 �

�

and, �nally,

(iii) if u; v 2 �

�

so uv 2 �

�

where uv denotes the onatenation of u and v. The

length juj of a word u 2 �

�

is de�ned by (i) j�j := 0, (ii) jaj := 1 for any a 2 �

and (iii) juvj := juj+ jvj for any u; v 2 �

�

.

1.3 Basi Computer Siene Prerequisites

1.3.1 Data Strutures

1.3.2 While Languages over Rules

When presenting pseudoode for algorithms in textbooks typially so alled

while languages are used (e.g., see [15℄). I assume familiarity with suh lan-

guages and speialize it here to rules. So let Rule be a rule de�ned on some

state S. Then

Rule(S);

is a shorthand for

if Rule is appliable to S then apply it one to S;

1.3. BASIC COMPUTER SCIENCE PREREQUISITES 15

where in partiular nothing happens if Rule is not appliable to S. There may

be several potential appliations ofRule to S. In this ase any of these is hosen.

The statement

whilerule(Rule(S)) do Body ;

is a shorthand for

while (Rule is appliable to S) do

apply Rule one to S;

exeute Body ;

where the sope of the while loop is shown by indentation. The ondition of

the whilerule statement may also be a disjuntion of rule statements. In this

ase the disjuntion is exeuted in a non-deterministi, lazy way. We use k to

indiate the disjuntion. Furthermore, a single rule statement may be followed

by a negation, indiated by !. In this ase the rule is tested for appliation,

if it is appliable it is applied and the ondition beomes false. If the rule is

not appliable the ondition beomes true. Exept for these extensions, boolean

ombinations over rule statements are not part of the language. Finally, the

statement

ifrule(Rule(S)) then Body ;

is a shorthand for

if (Rule is appliable to S) then

apply Rule one to S;

exeute one Body ;

In Setion 1.1 I have already used the language for desribing an algorithm

solving sudokus, Algorithm 1, SimpleSudoku(S).

1.3.3 Complexity

This book is about algorithms solving problems presented in logi. Suh an al-

gorithm is typially represented by a �nite set of rules, manipulating a problem

state that ontains the logial representation plus bookkeeping information. For

example, for solving 4 � 4-Sudokus, see Setion 1.1, we represented the board

by a �nite onjuntion of equations. The problem state was given by the repre-

sentation of the board plus assignments for remaining empty squares, plus an

indiation whether two oniting assignments have been deteted. The rules

then take a start problem state and eventually transform it into a solved form.

In order to ompare the performane of this rule set with a di�erent one or to

give an overall performane guarantee of the rule set, the lassial way in om-

puter siene is to onsider the (worst ase) running time until termination. A

onsequene of the Sudoku termination proof, Lemma 1.1.3, is that at most 2

49

rule appliations are needed. Generalizing this result, for a given n�n-Sudoku,

the running time would by of \order" n

n

2

, beause in the worst ase we need to

16 CHAPTER 1. PRELIMINARIES

guess n di�erent numbers for eah square and there are n

2

squares of the board.

The so alled big O notation overs the term \order" formally.

De�nition 1.3.1 (Big O). Let f(n) and g(n) be funtions from the naturals

into the nonnegative reals. Then

O(f(n)) = fg(n) j 9 > 0 9n

0

2 N

+

8n � n

0

g(n) � � f(n)g

Thus, the running time of the Sudoku algorithm for an n � n-Sudoku is

O(n

n

2

), if the number of rule appliations are taken to be the onstant time

units. This sounds somewhat surprising beause it means that the algorithm

will already fail for reasonably small n, if implemented in pratie. For example,

for the well-established 9 � 9-Sudoku puzzles the algorithm will in the worst

ase need about 9

81

� 2 � 10

77

rule appliations to �gure out whether a given

Sudoku has a solution. This way, assuming a fast omputer that an perform

1 Million rule appliations per seond it will take longer to solve a single Sudoku

than the urrently estimated age of the universe. Nevertheless, human beings

typially solve a 9� 9-Sudoku in some minutes. So what is wrong here? First of

all, as I already said, the algorithm presented in Setion 1.1 is ompletely naive.

This algorithm will de�nitely not solve 9�9-Sudokus in reasonable time. It an

be turned into an algorithm that will work niely in pratie, see Exerise (??).

Nevertheless, problems suh as Sudokus are diÆult to solve, in general. Testing

whether a partiular assignment is a solution an be done eÆiently, in ase of

Sudokus in time O(n

2

). For the purpose of this book, I say a problem an be

eÆiently solved if there is an algorithm solving the problem and a polynomial

p(n) so that the exeution time on inputs of size n is O(p(n)). Although it is

eÆient for Sudokus to validate whether an assignment is a solution, there are

exponentially many possible assignments to hek in order to �gure out whether

there exists a solution. So if we are allowed to make guesses, then Sudokus an

be solved eÆiently. This property desribes the lass of NP (Nondeterministi

Polynomial) problems in general that I will introdue now.

A deision problem is a subset L � �

�

for some �xed �nite alphabet �.

The funtion hr(L; x) denotes the harateristi funtion for some deision

problem L and is de�ned by hr(L; u) = 1 if u 2 L and hr(L; u) = 0 otherwise.

A deision problem is solvable in polynomial-time i� its harateristi funtion

an be omputed in polynomial-time. The lass P denotes all polynomial-time

deision problems.

De�nition 1.3.2 (NP). A deision problem L is in NP i� there is a prediate

Q(x; y) and a polynomial p(n) so that for all u 2 �

�

we have (i) u 2 L i� there

is an v 2 �

�

with jvj � p(juj) and Q(u; v) holds, and (ii) the prediate Q is in

P.

A deision problem L is polynomial time reduible to a deision problem L

0

if there is a funtion g 2 P so that for all u 2 �

�

we have u 2 L i� g(u) 2 L

0

.

For example, if L is reduible to L

0

and L

0

2 P then L 2 P. A deision problem

is NP-hard if every problem in NP is polynomial time reduible to it. A deision

1.3. BASIC COMPUTER SCIENCE PREREQUISITES 17

problem is NP-omplete if it is NP-hard and in NP. Atually, the �rst NP-

omplete problem [7℄ has been propositional satis�ability (SAT). Chapter 2 is

ompletely devoted to solving SAT.

1.3.4 Word Grammars

When G�odel presented his undeidability proof on the basis of arithmeti, many

people still believed that the onstrution is so arti�ial that suh problems will

never arise in pratie. This didn't hange with Turing's invention of the Turing

mahine and the undeidable halting problem of suh a mahine. However, then

Post presented his orrespondene problem in 1946 [18℄ it beame obvious that

undeidability is not an arti�ial onept.

De�nition 1.3.3 (Finite Word). Given a nonempty alphabet � the set �

�

of

�nite words over � is de�ned by

1. the empty word � 2 �

�

2. for eah letter a 2 � also a 2 �

�

3. if u; v 2 �

�

so uv 2 �

�

where uv denotes the onatenation of u and v.

De�nition 1.3.4 (Length of a Finite Word). The length juj of a word u 2 �

�

is de�ned by

1. j�j := 0,

2. jaj := 1 for any a 2 � and

3. juvj := juj+ jvj for any u; v 2 �

�

.

De�nition 1.3.5 (Word Embedding). Given two words u, v, then u is embedded

in v written u v v if for u = a

1

: : : a

n

there are words v

0

; : : : ; v

n

suh that

v = v

0

a

1

v

1

a

2

: : : a

n

v

n

.

Reformulating the above de�nition, a word u is embedded in v if u an

be obtained from v by erasing letters. For example, higman is embedded in

highmountain.

De�nition 1.3.6 (PCP). Given two �nite lists of words (u

1

; : : : ; u

n

) and

(v

1

; : : : ; v

n

) the Post Correspondene Problem (PCP) is to �nd a �nite index

list (i

1

; : : : ; i

k

), 1 � i

j

� n, so that u

i

1

u

i

2

: : : u

i

k

= v

i

1

v

i

2

: : : v

i

k

.

Take for example the two lists (a; b; bb) and (ab; ab; b) over alphabet � =

fa; bg. Then the index list (1; 3) is a solution to the PCP with ommon word

abb.

Theorem 1.3.7 (Post 1942). PCP is undeidable.

Lemma 1.3.8 (Higman's Lemma 1952). For any in�nite sequene of words

u

1

; u

2

; : : : over a �nite alphabet there are two words u

k

; u

k+l

suh that u

k

v

u

k+l

.

18 CHAPTER 1. PRELIMINARIES

Proof. By ontradition. Assume an in�nite sequene u

1

; u

2

; : : : suh that for

any two words u

k

; u

k+l

they are not embedded, i.e., u

k

6v u

k+l

. Furthermore, I

assume that the sequene is minimal at any word with respet to length, i.e.,

onsidering any u

k

, there is no in�nite sequene with the above property that

shares the words up to u

k�1

and then ontinues with a word of smaller length

than u

k

. Next, the alphabet is �nite, so there must be a letter, say a that o-

urs in�nitely often as the �rst letter of the words of the sequene. The words

starting with a form an in�nite subsequene au

0

k

1

; au

0

k

2

; : : : where u

k

i

= au

0

k

i

.

This in�nite subsequene itself has the non-embedding property, beause it is

a subsequene of the originial sequene. Now onsider the in�nite sequene

u

1

; u

2

; : : : ; u

k

1

�1

; u

0

k

1

; u

0

k

2

; : : :. Also this sequene has the non-embedding prop-

erty: if some u

i

v u

0

k

j

then u

i

v au

0

k

j

ontraditing that the starting sequene is

non-embedding. But then the onstruted sequene ontradits the minimality

assumption with respet to length, �nishing the proof.

De�nition 1.3.9 (Context-Free Grammar). A ontext-free grammar G =

(N;T; P; S) onsists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols T

3. a set P of rules A) w where A 2 N and w 2 (N [T)

�

4. a start symbol S where S 2 N

For rules A) w

1

, A) w

2

we write A) w

1

j w

2

.

Given a ontext free grammarG and two words u; v 2 (N[T)

�

I write u) v

if u = u

1

Au

2

and v = u

1

wu

2

and there is a rule A) w in G. The language

generated by G is L(G) = fw 2 T

�

j S)

�

wg, where)

�

is the reexive and

transitive losure of).

A ontext free grammar G is in Chomsky Normal Form [6℄ if all rules are if

the form A) B

1

B

2

with B

i

2 N or A) w with w 2 T

�

. It is said to be in

Greibah Normal Form [12℄ if all rules are of the form A) aw with a 2 T and

w 2 N

�

.

1.4 Orderings

An ordering R is a binary relation on some set M . Depending on partiular

properties suh as

(reexivity) 8x 2M R(x; x)

(irreexivity) 8x 2M :R(x; x)

(antisymmetry) 8x; y 2M (R(x; y) ^ R(y; x)! x = y)

(transitivity) 8x; y; z 2M (R(x; y) ^ R(y; z)! R(x; z))

(totality) 8x; y 2M (R(x; y) _ R(y; x))

1.4. ORDERINGS 19

there are di�erent types of orderings. The relation = is the identity relation

onM . The quanti�er 8 reads \for all", and the boolean onnetives ^, _, and!

read \and", \or", and \implies", respetively. For example, the above formula

stating reexivity 8x 2M R(x; x) is a shorthand for \for all x 2M the relation

R(x; x) holds".

C

Atually, the de�nition of the above properties is informal in the sense

that I rely on the meaning of ertain symbols suh as 2 or !. While

the former is assumed to be known from shool math, the latter is

\explained" above. So, stritly speaking this book is neither self ontained,

nor overall formal. For the onrete logis developed in subsequent hapters, I

will formally de�ne ! but here, where it is used to state properties needed to

eventually de�ne the notion of an ordering, it remains informal. Although it is

possible to develop the overall ontent of this book in a ompletely formal style,

suh an approah is typially impossible to read and omprehend. Sine this

book is about teahing a general framework to eventually generate automated

reasoning proedures this would not be the right way to go. In partiular, being

informal starts already with the use of natural language. In order to support

this \mixed" style, examples and exerises deepen the understanding and rule

out potential misoneptions.

Now, based on the above de�ned properties of a relation, the usual notions

with respet to orderings are stated below.

De�nition 1.4.1 (Orderings). A partial ordering � (or simply ordering) on

a set M , denoted (M;�), is a reexive, antisymmetri, and transitive binary

relation on M . It is a total ordering if it also satis�es the totality property. A

strit ordering � is a transitive and irreexive binary relation on M . A strit

ordering is well-founded, if there is no in�nite desending hain m

0

� m

1

�

m

2

� : : : where m

i

2M .

Given a strit partial order � on some set M , its respetive partial order �

is onstruted by taking the transitive losure of (� [=). If the partial order

� extension of some strit partial order � is total, then we all also � total. As

an alternative, a strit partial order � is total of it satis�es the strit totality

axiom 8x; y 2 M (x 6= y ! (R(x; y) _ R(y; x))). Given some ordering � the

respetive ordering � is de�ned by a � b i� b � a.

Example 1.4.2. The well-known relation � on N, where k � l if there is a j

so that k + j = l for k; l; j 2 N, is a total ordering on the naturals. Its strit

subrelation < is well-founded on the naturals. However, < is not well-founded

on Z.

De�nition 1.4.3 (Minimal and Smallest Elements). Given a strit ordering

(M;�), an element m 2M is alled minimal, if there is no element m

0

2M so

that m � m

0

. An element m 2 M is alled smallest, if m

0

� m for all m

0

2 M

di�erent from m.

20 CHAPTER 1. PRELIMINARIES

Note the subtle di�erene between minimal and smallest. There may be

several minimal elements in a setM but only one smallest element. Furthermore,

in order for an element being smallest in M it needs to be omparable to all

other elements from M .

Example 1.4.4. In N the number 0 is smallest and minimal with respet to <.

For the set M = fq 2 Q j q � 5g the ordering < on M is total, has the minimal

element 5 but is not well-founded.

If < is the anestor relation on the members of a human family, then <

typially will have several minimal elements, the urrently youngest hildren of

the family, but no smallest element, as long as there is a ouple with more than

one hild. Furthermore, < is not total, but well-founded.

Well-founded orderings an be ombined to more omplex well-founded or-

derings by lexiographi or multiset extensions.

De�nition 1.4.5 (Lexiographi and Multi-Set Ordering Extensions). Let

(M

1

;�

1

) and (M

2

;�

2

) be two strit orderings. Their lexiographi ombination

�

lex

= (�

1

;�

2

) on M

1

�M

2

is de�ned as (m

1

;m

2

) � (m

0

1

;m

0

2

) i� m

1

�

1

m

0

1

or

m

1

= m

0

1

and m

2

�

2

m

0

2

.

Let (M;�) be a strit ordering. The multi-set extension �

mul

to multi-sets

over M is de�ned by S

1

�

mul

S

2

i� S

1

6= S

2

and 8m 2 M [S

2

(m) > S

1

(m) !

9m

0

2M (m

0

� m ^ S

1

(m

0

) > S

2

(m

0

))℄.

The de�nition of the lexiographi ordering extensions an be exapanded to

n-tuples in the obvious way. So it is also the basis for the standard lexiographi

ordering on words as used, e.g., in ditionaries. In this ase theM

i

are alphabets,

say a-z, where a � b � : : : � z. Then aording to the above de�nition tiger �

tree.

Example 1.4.6 (Multi Set Ordering). Consider the multiset extension of (N; >

). Then f2g >

mul

f1; 1; 1g beause there is no element in f1; 1; 1g that is larger

than 2. As a border ase, f2; 1g >

mul

f2g beause there is no element that has

more ourrenes in f2g ompared to f2; 1g. The other way round, 1 has more

ourrenes in f2; 1g than in f2g and there is no larger element to ompensate

for it, so f2g 6>

mul

f2; 1g.

Proposition 1.4.7 (Properties of Lexiographi and Multi-Set Ordering Ex-

tensions). Let (M;�), (M

1

;�

1

), and (M

2

;�

2

) be orderings. Then

1. �

lex

is an ordering on M

1

�M

2

.

2. if (M

1

;�

1

) and (M

2

;�

2

) are well-founded so is �

lex

.

3. if (M

1

;�

1

) and (M

2

;�

2

) are total so is �

lex

.

4. �

mul

is an ordering on multi-sets over M .

5. if (M;�) is well-founded so is �

mul

.

6. if (M;�) is total so is �

mul

.

1.5. INDUCTION 21

TThe lexiographi ordering on words is not well-founded if words of

arbitrary length are onsidered. Starting from the standard ordering

on the alphabet, e.g., the following in�nite desending sequene an be on-

struted: b � ab � aab � : : :. It beomes well-founded if it is lexiographially

ombined with the length oordering, see Exerise ??.

Lemma 1.4.8 (K�onig's Lemma). Every �nitely branhing tree with in�nitely

many nodes ontains an in�nite path.

1.5 Indution

More or less all sets of objets in omputer siene or logi are de�ned indu-

tively. Typially, this is done in a bottom-up way, where starting with some

de�nite set, it is losed under a given set of operations.

Example 1.5.1 (Indutive Sets). In the following, some examples for indu-

tively de�ned sets are presented:

1. The set of all Sudoku problem states, see Setion 1.1, onsists of the set of

start states (N ;>;>) for onsistent assignments N plus all states that an

be derived from the start states by the rules Dedue, Conit, Baktrak,

and Fail. This is a �nite set.

2. The set N of the natural numbers, onsists of 0 plus all numbers that an

be omputed from 0 by adding 1. This is an in�nite set.

3. The set of all strings �

�

over a �nite alphabet �. All letters of � are

ontained in �

�

and if u and v are words out of �

�

so is the word uv, see

Setion 1.2. This is an in�nite set.

All the previous examples have in ommon that there is an underlying well-

founded ordering on the sets indued by the onstrution. The minimal elements

for the Sudoku are the problem states (N ;>;>), for the natural numbers it is

0 and for the set of strings it is the empty word. Now if we want to prove

a property of an indutive set it is suÆient to prove it (i) for the minimal

element(s) and (ii) assuming the property for an arbitrary set of elements, to

prove that it holds for all elements that an be onstruted \in one step" out

those elements. This is the priniple of Noetherian Indution.

Theorem 1.5.2 (Noetherian Indution). Let (M;�) be a well-founded order-

ing, and let Q be a prediate over elements ofM . If for allm 2M the impliation

if Q(m

0

), for all m

0

2M so that m � m

0

, (indution hypothesis)

then Q(m). (indution step)

is satis�ed, then the property Q(m) holds for all m 2M .

22 CHAPTER 1. PRELIMINARIES

Proof. Let X = fm 2 M j Q(m) does not holdg. Suppose, X 6= ;. Sine (M;�

) is well-founded, X has a minimal element m

1

. Hene for all m

0

2M with

m

0

� m

1

the property Q(m

0

) holds. On the other hand, the impliation whih

is presupposed for this theorem holds in partiular also for m

1

, hene Q(m

1

)

must be true so that m

1

annot be in X - a ontradition.

Note that although the above impliation sounds like a one step proof teh-

nique it is atually not. There are two ases. The �rst ase onerns all elements

that are minimal with respet to � in M and for those the prediate Q needs

to hold without any further assumption. The seond ase is then the indution

step showing that by assuming Q for all elements stritly smaller than some m,

we an prove it for m.

Now for ontext free grammars. *** Motivate Further *** Let G =

(N;T; P; S) be a ontext-free grammar (possibly in�nite) and let q be a property

of T

�

(the words over the alphabet T of terminal symbols of G).

q holds for all words w 2 L(G), whenever one an prove the following two

properties:

1. (base ases)

q(w

0

) holds for eah w

0

2 T

�

so that X ::= w

0

is a rule in P .

2. (step ases)

If X ::= w

0

X

0

w

1

: : : w

n

X

n

w

n+1

is in P with X

i

2 N , w

i

2 T

�

, n � 0,

then for all w

0

i

2 L(G;X

i

), whenever q(w

0

i

) holds for 0 � i � n, then also

q(w

0

w

0

0

w

1

: : : w

n

w

0

n

w

n+1

) holds.

Here L(G;X

i

) � T

�

denotes the language generated by the grammar G from

the nonterminal X

i

.

Let G = (N;T; P; S) be an unambiguous (why?) ontext-free grammar. A

funtion f is well-de�ned on L(G) (that is, unambiguously de�ned) whenever

these 2 properties are satis�ed:

1. (base ases)

f is well-de�ned on the words w

0

2 T

�

for eah rule X ::= w

0

in P .

2. (step ases)

IfX ::= w

0

X

0

w

1

: : : w

n

X

n

w

n+1

is a rule in P then f(w

0

w

0

0

w

1

: : : w

n

w

0

n

w

n+1

)

is well-de�ned, assuming that eah of the f(w

0

i

) is well-de�ned.

1.6 Rewrite Systems

The �nal ingredient to atually start the journey through di�erent logial sys-

tems is rewrite systems. Here I de�ne the needed omputer siene bakground

for de�ning algorithms in the form of rule sets. In Setion 1.1 the rewrite rules

Dedue, Conit, Baktrak, and Fail de�ned an algorithm for solving 4 � 4

Sudokus. The rules operate on the set of Sudoku problem states, starting with

a set of initial states (N ;>;>) and �nishing either in a solution state (N ;D;>)

1.6. REWRITE SYSTEMS 23

or a fail state (N ;>;?). The latter are alled normal forms (see below) with

respet to the above rules, beause no more rule is appliable to solution state

(N ;D;>) or a fail state (N ;>;?).

De�nition 1.6.1 (Rewrite System). A rewrite system is a pair (M;!), where

M is a non-empty set and ! � M �M is a binary relation on M . Figure 1.4

de�nes the needed notions for !.

!

0

= f (a; a) j a 2M g identity

!

i+1

= !

i

Æ! i+ 1-fold omposition

!

+

=

S

i>0

!

i

transitive losure

!

�

=

S

i�0

!

i

= !

+

[!

0

reexive transitive losure

!

=

= ![!

0

reexive losure

!

�1

= = f (b;) j ! b g inverse

$ = ![symmetri losure

$

+

= ($)

+

transitive symmetri losure

$

�

= ($)

�

re. trans. symmetri losure

Figure 1.4: Notation on !

For a rewrite system (M;!) onsider a sequene of elements a

i

that are

pairwise onneted by the symmetri losure, i.e., a

1

$ a

2

$ a

3

: : : $ a

n

. We

say that a

i

is a peak in suh a sequene, if atually a

i�1

 a

i

! a

i+1

.

C

Atually, in De�nition 1.6.1 I overload the symbol! that has already

denoted logial impliation, see Setion 1.4, with a rewrite relation.

This overloading will remain throughout this book. The rule symbol

) is only used on the meta level in this book, e.g., to de�ne the Sudoku algo-

rithm on problem states, Setion 1.1. Nevertheless, this meta rule systems are

also rewrite systems in the above sense. The rewrite symbol ! is used on the

formula level inside a problem state. This will beome lear when I turn to more

omplex logis starting from Chapter 2.

De�nition 1.6.2 (Reduible). Let (M;!) be a rewrite system. An element

a 2 M is reduible, if there is a b 2 M so that a ! b. An element a 2 M is in

normal form (irreduible), if it is not reduible. An element 2 M is a normal

form of b, if b !

�

 and is in normal form, notated = b# (if the normal

form of b is unique). Two elements b and are joinable, if there is an a so that

b!

�

a

�

 , notated b # .

De�nition 1.6.3 (Properties of !). A relation ! is alled

Churh-Rosser if b$

�

 implies b #

onuent if b

�

 a!

�

 implies b #

loally onuent if b a! implies b #

terminating if there is no in�nite desending hain b

0

! b

1

: : :

normalizing if every b 2 A has a normal form

onvergent if it is onuent and terminating

24 CHAPTER 1. PRELIMINARIES

Lemma 1.6.4. If ! is terminating, then it is normalizing.

T

The reverse impliation of Lemma 1.6.4 does not hold. Assuming this

is a frequent mistake. Consider M = fa; b; g and the relation a! b,

b! a, and b! . Then (M;!) is obviously not terminating, beause

we an yle between a and b. However, (M;!) is normalizing. The normal form

is for all elements of M . Similarly, there are rewrite systems that are loally

onuent, but not onuent, see Figure ??. *** to be done *** In the ontext

of termination the property holds, see Lemma 1.6.6.

Theorem 1.6.5. The following properties are equivalent for any rewrite system

(S;!):

(i) ! has the Churh-Rosser property.

(ii) ! is onuent.

Proof. (i)) (ii): trivial.

(ii)) (i): by indution on the number of peaks in the derivation b$

�

.

Lemma 1.6.6 (Newman's Lemma [?℄: Conuene versus Loal Conuene).

Let (M;!) be a terminating rewrite system. Then the following properties are

equivalent:

(i) ! is onuent

(ii) ! is loally onuent

Proof. (i)) (ii): trivial.

(ii)) (i): Sine ! is terminating, it is a well-founded ordering (see Ex-

erise ??). This justi�es a proof by Noetherian indution where the property

Q(a) is \a is onuent". Applying Noetherian indution, onuene holds for

all a

0

2M with a!

+

a

0

and needs to be shown for a. Consider the onuene

property for a: b

�

 a!

�

. If b = a or = a the proof is done. For otherwise,

the situation an be expanded to b

�

 b

0

 a !

0

!

�

. By loal onuene

there is an a

0

with b

0

!

�

a

0 �

0

. Now a

0

, b, are stritly smaller than a, they

are onuent and hene an be rewritten so a single a

00

, �nishing the proof.

Lemma 1.6.7. If ! is onuent, then every element has at most one normal

form.

Proof. Suppose that some element a 2 A has normal forms b and , then b

�

a !

�

. If ! is onuent, then b !

�

d

�

 for some d 2 A. Sine b and are

normal forms, both derivations must be empty, hene b!

0

d

0

 , so b, , and

d must be idential.

Corollary 1.6.8. If ! is normalizing and onuent, then every element b has

a unique normal form.

Proposition 1.6.9. If ! is normalizing and onuent, then b$

�

 if and only

if b# = #.

Proof. Either using Theorem 1.6.5 or diretly by indution on the length of the

derivation of b$

�

.

1.6. REWRITE SYSTEMS 25

Histori and Bibliographi Remarks

For ontext free languages see [2℄.

26 CHAPTER 1. PRELIMINARIES

Chapter 2

Propositional Logi

2.1 Syntax

Consider a �nite, non-empty signature � of propositional variables, the \alpha-

bet" of propositional logi. In addition to the alphabet \propositional onne-

tives" are further building bloks omposing the sentenes (formulas) of the

language and auxiliary symbols suh as parentheses enable disambiguation.

De�nition 2.1.1 (Propositional Formula). The set PROP(�) of propositional

formulas over a signature � is indutively de�ned by:

PROP(�) Comment

? onnetive ? denotes \false"

> onnetive > denotes \true"

P for any propositional variable P 2 �

(:�) onnetive : denotes \negation"

(� ^) onnetive ^ denotes \onjuntion"

(� _) onnetive _ denotes \disjuntion"

(�!) onnetive ! denotes \impliation"

(�$) onnetive $ denotes \equivalene"

where �; 2 PROP(�).

The above de�nition is an abbreviation for setting PROP(�) to be the

language of a ontext free grammar PROP(�) = L((N;T; P; S)) (see De�ni-

tion 1.3.9) where N = f�; g, T = � [f(;)g [f?;>;:;^;_;!;$g with start

symbol rules S) ? j > j (:�) j (� ^) j (� _) j (� !) j (� $) and

S) P for every P 2 �, �) ? j > j (:�) j (�^) j (�_) j (�!) j (�$),

) ? j > j (:�) j (� ^) j (� _) j (� !) j (� $), and �) P ,) P

for every P 2 �.

As a notational onvention we assume that : binds strongest and we omit

outermost parenthesis. So :P _ Q is atually a shorthand for ((:P) _ Q). For

all other logial onnetives we will expliitly put parenthesis when needed.

27

28 CHAPTER 2. PROPOSITIONAL LOGIC

From the semantis we will see that ^ and _ are assoiative and ommutative.

Therefore instead of ((P ^Q) ^ R) we simply write P ^Q ^ R.

De�nition 2.1.2 (Atom, Literal). A propositional formula P is alled an atom.

It is also alled a (positive) literal and its negation :P is alled a (negative)

literal. If L is a literal, then :L = P if L = :P and :L = :P if L = P ,

j:P j = P and jP j = P . Literals are denoted by letters L;K. The literals P and

:P are alled omplementary.

Automated reasoning is very muh formula manipulation. In order to pre-

isely represent the manipulation of a formula, we introdue positions.

De�nition 2.1.3 (Position). A position is a word over N. The set of positions

of a formula � is indutively de�ned by

pos(�) := f�g if � 2 f>;?g or � 2 �

pos(:�) := f�g [f1p j p 2 pos(�)g

pos(� Æ) := f�g [f1p j p 2 pos(�)g [f2p j p 2 pos()g

where Æ 2 f^;_;!;$g.

The pre�x order � on positions is de�ned by p � q if there is some p

0

suh

that pp

0

= q. Note that the pre�x order is partial, e.g., the positions 12 and 21

are not omparable, they are \parallel", see below. By < we denote the strit

part of �, i.e., p < q if p � q but not q � p. By k we denote inomparable

positions, i.e., p k q if neither p � q, nor q � p. Then we say that p is above q if

p � q, p is stritly above q if p < q, and p and q are parallel if p k q.

The size of a formula � is given by the ardinality of pos(�): j�j := j pos(�)j.

The subformula of � at position p 2 pos(�) is reursively de�ned by �j

�

:= �,

:�j

1p

:= �j

p

, and (�

1

Æ �

2

)j

ip

:= �

i

j

p

where i 2 f1; 2g, Æ 2 f^;_;!;$g.

Finally, the replaement of a subformula at position p 2 pos(�) by a formula

 is reursively de�ned by �[℄

�

:= and (�

1

Æ �

2

)[℄

1p

:= (�

1

[℄

p

Æ �

2

),

(�

1

Æ �

2

)[℄

2p

:= (�

1

Æ �

2

[℄

p

), where Æ 2 f^;_;!;$g.

Example 2.1.4. The set of positions for the formula � = (P ^ Q) ! (P _Q)

is pos(�) = f�; 1; 11; 12; 2; 21; 22g. The subformula at position 22 is Q, �j

22

= Q

and replaing this formula by P $ Q results in �[P $ Q℄

22

= (P ^ Q) !

(P _ (P $ Q)).

A further prerequisite for eÆient formula manipulation is notion of the

polarity of a subformula of � at position p. The polarity onsiders the number

of \negations" starting from � at � down to p. It is 1 for an even number along the

path, �1 for an odd number and 0 if there is at least one equivalene onnetive

along the path.

De�nition 2.1.5 (Polarity). The polarity of a subformula of � at position

p 2 pos(�) is indutively de�ned by

2.2. SEMANTICS 29

pol(�; �) := 1

pol(:�; 1p) := � pol(�; p)

pol(�

1

Æ �

2

; ip) := pol(�

i

; p) if Æ 2 f^;_g

pol(�

1

! �

2

; 1p) := � pol(�

1

; p)

pol(�

1

! �

2

; 2p) := pol(�

2

; p)

pol(�

1

$ �

2

; ip) := 0

Example 2.1.6. We reuse the formula � = (A^B) ! (A_B) of Example 2.1.4.

Then pol(�; 1) = pol(�; 11) = �1 and pol(�; 2) = pol(�; 22) = 1. For the

formula �

0

= (A ^ B)$ (A _ B) we get pol(�

0

; �) = 1 and pol(�

0

; p) = 0 for all

other p 2 pos(�

0

), p 6= �.

2.2 Semantis

In lassial logi there are two truth values \true" and \false" whih we shall

denote, respetively, by 1 and 0. There are many-valued logis [21℄ having more

than two truth values and in fat, as we will see later on, for the de�nition of

some propositional logi aluli, we will need an impliit third truth value alled

\unde�ned".

De�nition 2.2.1 ((Partial) Valuation). A �-valuation is a map

A : �! f0; 1g:

where f0; 1g is the set of truth values. A partial �-valuation is a map A

0

: �

0

!

f0; 1g where �

0

� �.

De�nition 2.2.2 (Semantis). A �-valuation A is indutively extended from

propositional variables to propositional formulas �; 2 PROP(�) by

A(?) := 0

A(>) := 1

A(:�) := 1�A(�)

A(� ^) := min(fA(�);A()g)

A(� _) := max(fA(�);A()g)

A(�!) := max(f(1�A(�));A()g)

A(�$) := if A(�) = A() then 1 else 0

If A(�) = 1 for some �-valuation A of a formula � then � is satis�able and

we write A j= �. If A(�) = 1 for all �-valuations A of a formula � then � is

valid and we write j= �. If there is no �-valuations A for a formula � where

A(�) = 1 we say � is unsatis�able. A formula � entails , written � j= , if for

all �-valuations A whenever A j= � then A j= .

Aordingly, a formula � is satis�able, valid, unsatis�able, respetively, with

respet to a partial valuation A

0

with domain �

0

, if for any valuation A with

A(P) = A

0

(P) for all P 2 �

0

the formula � is satis�able, valid, unsatis�able,

respetively, with respet to a A.

30 CHAPTER 2. PROPOSITIONAL LOGIC

I all the fat that some formula � is satis�able, unsatis�able, or valid, the

status of �. Note that if � is valid it is also satis�able, but not the other way

round.

Valuations an be niely represented by sets or sequenes of literals that do

not ontain omplementary literals nor dupliates. If A is a (partial) valuation

of domain � then it an be represented by the set fP j P 2 � and A(P) =

1g [f:P j P 2 � and A(P) = 0g. For example, for the valuation A = fP;:Qg

the truth value of P _ Q is A(P _ Q) = 1, for P _ R it is A(P _ R) = 1, for

:P ^ R it is A(:P ^ R) = 0, and the status of :P _ R annot be established

by A. In partiular, A is a partial valuation for � = fP;Q;Rg.

Example 2.2.3. The formula � _ :� is valid, independently of �. Aording

to De�nition 2.2.2 we need to prove that for all �-valuations A of � we have

A(� _ :�) = 1. So let A be an arbitrary valuation. There are two ases to

onsider. If A(�) = 1 then A(� _ :�) = 1 beause the valuation funtion takes

the maximum if distributed over _. If A(�) = 0 then A(:�) = 1 and again by

the before argument A(� _ :�) = 1. This �nishes the proof that j= � _ :�.

Proposition 2.2.4. � j= i� j= �!

Proof. ()) Suppose that � entails and let A be an arbitrary �-valuation.

We need to show A j= � ! . If A(�) = 1, then A() = 1, beause � entails

 , and therefore A j= � ! . For otherwise, if A(�) = 0, then A(� !) =

max(f(1�A(�));A()g) = max(f(1;A()g) = 1, independently of the value of

A(). In both ases A j= �! .

(() By ontraposition. Suppose that � does not entail . Then there exists a

�-valuation A suh that A j= �, A(�) = 1 but A 6j= , A() = 0. By de�nition,

A(� !) = max(f(1 � A(�));A()g) = max(f(1 � 1); 0g) = 0, hene � !

does not hold in A.

Proposition 2.2.5. The equivalenes of Figure 2.1 are valid for all formulas

�; ; �.

From Figure 2.1 we onlude that the propositional language introdued

in De�nition 2.1.1 is redundant in the sense that ertain onnetives an be

expressed by others. For example, the equivalene Eliminate ! expresses im-

pliation by means of disjuntion and negation. So for any propositional for-

mula � there exists an equivalent formula �

0

suh that �

0

does not ontain the

impliation onnetive. In order to prove this proposition we need the below

replaement lemma.

T

Note that the formulas � ^ and ^ � are equivalent. Nevertheless,

realling the problem state de�nition for Sudokus in Setion 1.1 the

two states (N ; f(2; 3) = 1 ^ f(2; 4) = 4;>) and (N ; f(2; 4) = 4 ^

f(2; 3) = 1;>) are signi�antly di�erent. For example, it an be that the �rst

state an lead to a solution by the rules of the algorithm where the latter

annot, beause the latter impliitly means that the square (2; 4) has already

2.2. SEMANTICS 31

(I) (� ^ �)$ � Idempoteny ^

(� _ �)$ � Idempoteny _

(II) (� ^)$ (^ �) Commutativity ^

(� _)$ (_ �) Commutativity _

(III) (� ^ (^ �))$ ((� ^) ^ �) Assoiativity ^

(� _ (_ �))$ ((� _) _ �) Assoiativity _

(IV) (� ^ (_ �))$ (� ^) _ (� ^ �) Distributivity ^_

(� _ (^ �))$ (� _) ^ (� _ �) Distributivity _^

(V) (� ^ (� _))$ � Absorption ^_

(� _ (� ^))$ � Absorption _^

(VI) :(� _)$ (:� ^ :) De Morgan :_

:(� ^)$ (:� _ :) De Morgan :^

(VII) (� ^ :�)$? Introdution ?

(� _ :�)$ > Introdution >

:> $? Propagate :>

:? $ > Propagate :?

(� ^ >)$ � Absorption >^

(� _ ?)$ � Absorption ?_

(::�) $ � Absorption ::

(�! ?)$:� Eliminate ! ?

(? ! �)$ > Eliminate ? !

(�! >)$ > Eliminate ! >

(> ! �)$ � Eliminate > !

(�$?)$:� Eliminate ? $

(�$ >)$ � Eliminate > $

(� _ >)$ > Propagate >

(� ^ ?)$? Propagate ?

(VIII) (�!)$ (:� _) Eliminate !

(IX) (�$)$ (�!) ^ (! �) Eliminate1 $

(�$)$ (� ^) _ (:� ^ :) Eliminate2 $

Figure 2.1: Valid Propositional Equivalenes

32 CHAPTER 2. PROPOSITIONAL LOGIC

been heked for all values smaller than 4. This reveals the important point that

arguing by logial equivalene in the ontext of a rule set manipulating formulas

an lead to wrong results.

Lemma 2.2.6 (Formula Replaement). Let � be a propositional formula on-

taining a subformula at position p, i.e., �j

p

= . Furthermore, assume

j= $ �. Then j= �$ �[�℄

p

.

Proof. By indution on jpj and strutural indution on �. For the base step let

p = � and A be an arbitrary valuation.

A(�) = A() (by de�nition of replaement)

= A(�) (beause A j= $ �)

= A(�[�℄

�

) (by de�nition of replaement)

For the indution step the lemma holds for all positions p and has to be

shown for all positions ip. By strutural indution on � I show the ases where

� = :�

1

and � = �

1

! �

2

in detail. All other ases are analogous.

If � = :�

1

then showing the lemma amounts to proving j= :�

1

$:�

1

[�℄

1p

.

Let A be an arbitrary valuation.

A(:�

1

) = 1�A(�

1

) (expanding semantis)

= 1�A(�

1

[�℄

p

) (by indution hypothesis)

= A(:�[�℄

1p

) (applying semantis)

If � = �

1

! �

2

then showing the lemma amounts to proving the two ases

j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

1p

and j= (�

1

! �

2

) $ (�

1

! �

2

)[�℄

2p

. Both

ases are similar so I show only the �rst ase. Let A be an arbitrary valuation.

A(�

1

! �

2

) = max(f(1�A(�

1

));A(�

2

)g) (expanding semantis)

= max(f(1�A(�

1

[�℄

p

));A(�

2

)g) (by indution hypothesis)

= A((�

1

! �

2

)[�℄

1p

) (applying semantis)

Lemma 2.2.7 (Polarity Dependent Replaement). Consider a formula �, po-

sition p 2 pos(�), pol(�; p) = 1 and (partial) valuation A with A(�) = 1. If for

some formula , A() = 1 then A(�[℄

p

) = 1. Symmetrially, if pol(�; p) = �1

and A() = 0 then A(�[℄

p

) = 1.

Proof. By indution on the length of p.

Note that the ase for the above lemma where pol(�; p) = 0 is atually

Lemma 2.2.6.

2.3. ABSTRACT PROPERTIES OF CALCULI 33

CThe equivalenes of Figure 2.1 show that the propositional language

introdued in De�nition 2.1.1 is redundant in the sense that ertain

onnetives an be expressed by others. For example, the equivalene Elimi-

nate ! expresses impliation by means of disjuntion and negation. So for any

propositional formula � there exists an equivalent formula �

0

suh that �

0

does

not ontain the impliation onnetive. In order to prove this proposition the

above replaement lemma is key.

2.3 Abstrat Properties of Caluli

A proof proedure an be sound, omplete, strongly omplete, refutationally

omplete or terminating. Terminating means that it terminates on any input

formula. Now depending on whether the alulus investigates validity (unsatis-

�ability) or satis�ability the before notions have a di�erent meaning.

Validity Satis�ability

Sound Whenever the alulus

outputs a proof the

formula is valid.

Whenever the alulus

outputs a model the

formula has a model.

Complete If the formula is valid the

alulus outputs a proof.

If the formula is satis�-

able, the alulus outputs

a model.

Strongly

Complete

For any proof of the for-

mula, there is a sequene

of rule appliations that

generates this proof.

For any model of the for-

mula, there is a sequene

of rule appliations that

generates this model.

There are some assumptions underlying these informal de�nitions. First, the

alulus atually produes a proof in ase of investigating validity, and in ase of

investigating satis�ability it produes a model. This in fat requires the notion

of a proof and a model. Then soundness means in both ases that the alulus

has no bugs. The results it produes are orret. Completeness means that if

there is a proof (model) for a formula, the alulus will eventually �nd it. Strong

ompleteness requires in addition that any proof (model) an be found by the

alulus. A variant of omplete alulus is a refutationally omplete alulus: a

alulus is refutationally omplete, if for any unsatis�able formula it outputs

a proof of ontradition. Many automated theorem proedures like resolution

(see Setion 2.7), or tableau (see Setion 2.5) are atually only refutationally

omplete.

C

Note that soundness and ompleteness are not losely related to ter-

mination. A sound and omplete (strongly) omplete alulus needs

not to be terminating. For example, while investigating validity of an

invalid formula, a sound and omplete alulus for validity may not terminate.

34 CHAPTER 2. PROPOSITIONAL LOGIC

P Q P ^Q (P ^Q)! P

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 1

Figure 2.2: Truth Table for (P ^Q)! P

A sound and terminating proedure needs not to be omplete. It an simply

terminate, \giving up", without produing a proof (model).

2.4 Truth Tables

The �rst alulus I onsider are truth tables. For example, onsider proving va-

lidity of the formula � = (A^B)! A. Aording to De�nition 2.2.2 this is the

ase if atually for all valuations A over � = fA;Bg we have A(�) = 1. The

extension of A to formulas is de�ned indutively over the onnetives, so if the

result of A on the arguments of a onnetive is known, it an be straightfor-

wardly omputed for the overall formula. That's the idea behind truth tables.

We simply make all valuations A on � expliit and then extend it onnetive by

onnetive bottom-up to the overall formula. Stated otherwise, in order to es-

tablish the truth value for a formula � we establish it subformula by subformula

of � aording to �. If p; q 2 pos(�) and p � q then we �rst ompute the truth

value for �j

q

. The truth table for (P ^Q)! P is then depited in Figure 2.2

De�nition 2.4.1 (Truth Table). Let � be a propositional formula over variables

P

1

; : : : ; P

n

, p

i

2 pos(�), 1 � i � k and p

k

= �. Then a truth table for � is a

table with n+ k olumns and 2

n

+ 1 rows of the form

P

1

: : : P

n

�j

p

1

: : : �j

p

k

0 : : : 0 A

1

(�j

p

1

) : : : A

1

(�j

p

k

)

.

.

.

1 : : : 1 A

2

n

(�j

p

1

) : : : A

2

n

(�j

p

k

)

suh that the A

i

are exatly the 2

n

di�erent valuations for P

1

; : : : ; P

n

and either

p

i

k p

i+j

or p

i

� p

i+j

, for all i; j � 0, i+ j � k and whenever �j

p

i

has a proper

subformula that is not an atom, there is exatly one j < i with �j

p

j

= .

Now given a truth table for some formula �, � is satis�able, if there is at

least one 1 in the � olumn. It is valid, if there is no 0 in the � olumn. It is

unsatis�able, if there is no 1 in the � olumn. So truth tables are a simple and

\easy" way to establish the status of a formula. They need not to be ompletely

omputed in order to establish the status of a formula. For example, as soon as

the olumn of � in a truth table ontains a 1 and a 0, then � is satis�able but

neither valid nor unsatis�able.

2.4. TRUTH TABLES 35

P Q R P _Q P _R (P _Q)$ (P _ R)

0 0 0 0 0 1

0 1 0 1 0 0

1 0 0 1 1 1

1 1 0 1 1 1

0 0 1 0 1 0

0 1 1 1 1 1

1 0 1 1 1 1

1 1 1 1 1 1

Figure 2.3: Truth Table for (P _Q)$ (P _ R)

The formula (P _ Q) $ (P _ R) is satis�able but not valid. Figure 2.3

ontains a truth table for the formula.

Of ourse, there are ases where a truth table for some formula � an have

less olumns than the number of variables ourring in � plus the number of

subformulas in �. For example, for the formula � = (P _ Q) ^ (R ! (P _ Q))

only one olumn with formula (P _Q) is needed for both subformulas �j

1

and

�j

22

. In general, there is only for eah di�erent subformula a olumn is needed.

Deteting subformula equivalene is bene�ial. For the above example, this was

simply syntati, i.e., the two subformulas �j

1

and �j

22

. But what about a

slight variation of the formula �

0

= (P _Q)^ (R ! (Q_P))? Stritly speaking,

now the two subformulas �

0

j

1

and �

0

j

22

are di�erent, but sine disjuntion is

ommutative, they are equivalent. One or two olumns in the truth table for the

two subformulas? Again, saving a olumn is bene�ial but in general, deteting

equivalene of two subformulas may beome as diÆult as heking whether the

overall formula is valid. A ompromise, often performed in pratie, are normal

forms that guarantee that ertain ourrenes of equivalent subformulas an

be found in polynomial time. For our example, we an simply assume some

ordering on the propositional variables and assume that for a disjuntion of two

propositional variables, the smaller variable always omes �rst. So if P < Q

then the normal form of P _Q and Q _ P is in fat P _Q.

C

In pratie, nobody uses truth tables as a reasoning proedure. Worst

ase, omputing a truth table for heking the status of a formula �

requires O(2

n

) steps, where n is the number of di�erent propositional

variables in �. But this is atually not the reason why the proedure is impra-

tial, beause the worst ase behavior of all other proedures for propositional

logi known today is also of exponential omplexity. So why are truth tables

not a good proedure? The answer is: beause they do not adapt to the inher-

ent struture of a formula. The reasoning mehanism of a truth table for two

formulas � and sharing the same propositional variables is exatly the same:

we enumerate all valuations. However, if � is, e.g., of the form � = P ^ �

0

and

we are interested in the satis�ability of �, then � an only beome true for a

valuation A with A(P) = 1. Hene, 2

n�1

rows of �'s truth table are superu-

36 CHAPTER 2. PROPOSITIONAL LOGIC

� Left Desendant Right Desendant

::� � �

�

1

^ �

2

�

1

�

2

�

1

$ �

2

�

1

! �

2

�

2

! �

1

:(�

1

_ �

2

) :�

1

:�

2

:(�

1

! �

2

) �

1

:�

2

� Left Desendant Right Desendant

�

1

_ �

2

�

1

�

2

�

1

! �

2

:�

1

�

2

:(�

1

^ �

2

) :�

1

:�

2

:(�

1

$ �

2

) :(�

1

! �

2

) :(�

2

! �

1

)

Figure 2.4: �- and �-Formulas

ous. All proedures I will introdue in the sequel, automatially detet this (and

further) spei� strutures of a formula and use it to speed up the reasoning

proess.

2.5 Semanti Tableaux

Like resolution, semanti tableaux were developed in the sixties, independently

by Lis [14℄ and Smullyan [19℄ on the basis of work by Gentzen in the 30s [11℄

and of Beth [3℄ in the 50s. For an at that time state of the art overview onsider

Fitting's book [10℄.

In ontrast to the aluli introdued in subsequent setions, semanti tableau

does not rely on a normal form of input formulas but atually applies to any

propositional formula. The formulas are divided into �- and �-formulas, where

intuitively an � formula represents a (hidden) onjuntion and a � formula a

(hidden) disjuntion.

De�nition 2.5.1 (�-, �-Formulas). A formula � is alled an �-formula if � is

a formula ::�

1

, �

1

^ �

2

, �

1

$ �

2

, :(�

1

_ �

2

), or :(�

1

! �

2

). A formula � is

alled an �-formula if � is a formula �

1

_�

2

, �

1

! �

2

, :(�

1

^�

2

), or :(�

1

$ �

2

).

A ommon property of �-, �-formulas is that they an be deomposed into

diret desendants representing (modulo negation) subformulas of the respetive

formulas. Then an �-formula is valid i� all its desendants are valid and a �-

formula is valid if one of its desendants is valid. Therefore, the literature uses

both the notions semanti tableaux and analyti tableaux.

De�nition 2.5.2 (Diret Desendant). Given an �- or �-formula �, Figure 2.4

shows its diret desendants.

Dupliating � for the �-desendants of ::� is a trik for onformity. Any

propositional formula is either an �-formula or a �-formula or a literal.

2.5. SEMANTIC TABLEAUX 37

Proposition 2.5.3. For any valuation A: (i) if � is an �-formula then A(�) = 1

i� A(�

1

) = 1 and A(�

2

) = 1 for its desendants �

1

, �

2

. (ii) if � is a �-formula

then A(�) = 1 i� A(�

1

) = 1 or A(�

2

) = 1 for its desendants �

1

, �

2

.

The tableaux alulus operates on states that are sets of sequenes of for-

mulas. Semantially, the set represents a disjuntion of sequenes that are in-

terpreted as onjuntions of the respetive formulas. A sequene of formulas

(�

1

; : : : ; �

n

) is alled losed if there are two formulas �

i

and �

j

in the sequene

where �

i

= :�

j

or :�

i

= �

j

. A state is losed if all its formula sequenes are

losed. A state atually represents a tree and this tree is alled a tableau in

the literature. So if a state is losed, the respetive tree, the tableau is losed

too. The tableaux alulus is a alulus showing unsatis�ability. Suh aluli are

alled refutational aluli. Later on soundness and ompleteness of the alulus

imply that a formula � is valid i� the rules of tableaux produe a losed state

starting with N = f(:�)g.

A formula � ourring in some sequene is alled open if in ase � is an

�-formula not both diret desendants are already part of the sequene and if

it is a �-formula none of its desendants is part of the sequene.

�-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

T

N℄f(�

1

; : : : ; ; : : : ; �

n

;

1

;

2

)g

provided is an open �-formula,

1

,

2

its diret desendants and the sequene

is not losed.

�-Expansion N℄f(�

1

; : : : ; ; : : : ; �

n

)g)

T

N℄f(�

1

; : : : ; ; : : : ; �

n

;

1

)g℄

f(�

1

; : : : ; ; : : : ; �

n

;

2

)g

provided is an open �-formula,

1

,

2

its diret desendants and the sequene

is not losed.

Consider the question of validity of the formula (P ^:(Q_:R)) ! (Q^R).

Applying the tableau rules generates the following derivation:

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄)g

�-Expansion)

�

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R)g

�-Expansion)

T

f(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:Q);

(:[(P ^ :(Q _ :R))! (Q ^ R)℄;

P ^ :(Q _ :R);:(Q ^ R); P;:(Q _ :R);:Q;::R;R;:R)g

The state after �-expansion is �nal, i.e., no more rule an be applied. The

�rst sequene is not losed, whereas the seond sequene is beause it ontains R

and :R. A tree representation, where ommon formulas of sequenes are shared,

an be found in Figure 2.5.

Theorem 2.5.4 (Semanti Tableaux is Sound). If for a formula � the tableaux

alulus omputes f(:�)g)

�

T

N and N is a losed, then � is valid.

38 CHAPTER 2. PROPOSITIONAL LOGIC

:[(P ^ :(Q _ :R))! (Q ^ R)℄

P ^ :(Q _ :R)

:(Q ^R)

P

:(Q _ :R)

:Q

::R

R

:Q :R

Figure 2.5: A Tableau for (P ^ :(Q _ :R))! (Q ^ R)

Proof. It is suÆient to show the following: (i) if N is losed then the disjuntion

of the onjuntion of all sequene formulas is unsatis�able (ii) all two tableaux

rules preserve satis�ability.

Part (i) is obvious: if N is losed all its sequenes are losed. A sequene is

losed if it ontains a formula and its negation. The onjuntion of two suh

formulas is unsatis�able.

Part (ii) is shown by indution on the length of a derivation and then by a

ase analysis for the two rules. �-Expansion: for any valuation A if A() = 1

then A(

1

) = A(

2

) = 1. �-Expansion: for any valuation A if A() = 1 then

A(

1

) = 1 or A(

2

) = 1 (see Proposition 2.5.3).

Theorem 2.5.5 (Semanti Tableaux Terminates). Starting from a start state

f(�)g for some formula �,)

+

T

is well-founded.

Proof. Take the two-folded multi-set extension of the lexiographi extension

of > on the naturals on triples (n; k; l). The measure � is �rst de�ned on for-

mulas by �(�) := (n; k; l) where n is the number of equivalene symbols in �,

k is the sum of all disjuntion, onjuntion, impliation symbols in � and l is

j�j. On sequenes (�

1

; : : : ; �

n

) the measure is de�ned to deliver a multiset by

�((�

1

; : : : ; �

n

)) := ft

1

; : : : ; t

n

g where t

i

= �(�

i

) if � is open in the sequene

and t

i

= (0; 0; 0) otherwise. Finally, � is extended to states by omputing the

multiset �(N) := f�(s) j s 2 Ng.

Note, that �-, as well as �-expansion stritly extend sequenes. One a for-

mula is losed in a sequene by applying an expansion rule, it remains losed

forever in the sequene.

An �-expansion on a formula

1

^

2

on the sequene (�

1

; : : : ;

1

^

2

; : : : ; �

n

)

results in (�

1

; : : : ;

1

^

2

; : : : ; �

n

;

1

;

2

). It needs to be shown �((�

1

; : : : ;

1

^

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;

1

^

2

; : : : ; �

n

;

1

;

2

)). In the seond sequene

�(

1

^

2

) = (0; 0; 0) beause the formula is losed. For the triple (n; k; l)

assigned by � to

1

^

2

in the �rst sequene, it holds (n; k; l) >

lex

�(

1

),

2.6. NORMAL FORMS 39

(n; k; l) >

lex

�(

2

) and (n; k; l) >

lex

(0; 0; 0), the former beause the

i

are

subformulas and the latter beause l 6= 0. This proves the ase.

A �-expansion on a formula

1

_

2

on the sequene (�

1

; : : : ;

1

_

2

; : : : ; �

n

)

results in (�

1

; : : : ;

1

_

2

; : : : ; �

n

;

1

), (�

1

; : : : ;

1

_

2

; : : : ; �

n

;

2

). It needs to

be shown �((�

1

; : : : ;

1

_

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;

1

_

2

; : : : ; �

n

;

1

)) and

�((�

1

; : : : ;

1

_

2

; : : : ; �

n

)) >

mul

�((�

1

; : : : ;

1

_

2

; : : : ; �

n

;

2

)). In the derived

sequenes �(

1

_

2

) = (0; 0; 0) beause the formula is losed. For the triple

(n; k; l) assigned by � to

1

_

2

in the starting sequene, it holds (n; k; l) >

lex

�(

1

), (n; k; l) >

lex

�(

2

) and (n; k; l) >

lex

(0; 0; 0), the former beause the

i

are subformulas and the latter beause l 6= 0. This proves the ase.

Theorem 2.5.6 (Semanti Tableaux is Complete). If � is valid, semanti

tableaux omputes a losed state out of f(:�)g.

Proof. If � is valid then :� is unsatis�able. Now assume after termination the

resulting state and hene at least one sequene is not losed. For this sequene

onsider a valuation A onsisting of the literals in the sequene. By assumption

there are no opposite literals, so A is well-de�ned. I prove by ontradition that

A is a model for the sequene. Assume not. Then there is a minimal formula

in the sequene, with respet to the ordering on triples onsidered in the proof

of Theorem 2.5.5, that is not satis�ed by A. By de�nition of A the formula

annot be a literal. So it is an �-formula or a �-formula. In all ases at least one

desendant formula is ontained in the sequene, is smaller than the original

formula, false in A (Proposition 2.5.3) and hene ontradits the assumption.

Therefore, A satis�es the sequene ontraditing that :� is unsatis�able.

Corollary 2.5.7 (Semanti Tableaux generates Models). Let � be a formula,

f(�)g)

�

T

N and s 2 N be a sequene that is not losed and neither �-expansion

nor �-expansion are appliable to s. Then the literals in s form a valuation that

is a model for �.

Proof. A onsequene of the proof of Theorem 2.5.6

Consider the example tableau shown in Figure 2.5. The open �rst branh

orresponds to the valuation A = fP;R;:Qg whih is a model of the formula

:[(P ^ :(Q _ :R))! (Q ^ R)℄.

2.6 Normal Forms

In order to hek the status of a formula � via truth tables, the truth table

ontains a olumn for the subformulas of � and all valuations for its variables.

Any shape of � is �ne in order to generate the respetive truth table. The

superposition alulus (Setion 2.8) and the CDCL (Conit Driven Clause

Learning) alulus (Setion 2.10) both operate on a normal form, i.e., the shape

of � is restrited. Both aluli aept only onjuntions of disjuntions of literals,

a partiular normal form. It is alled Clause Normal Form or simply CNF. The

purpose of this setion is to show that an arbitrary formula � an be e�etively

transformed into an equivalent formula in CNF.

40 CHAPTER 2. PROPOSITIONAL LOGIC

2.6.1 Conjuntive and Disjuntive Normal Forms

De�nition 2.6.1 (CNF, DNF). A formula is in onjuntive normal form (CNF)

or lause normal form if it is a onjuntion of disjuntions of literals, or in other

words, a onjuntion of lauses.

A formula is in disjuntive normal form (DNF), if it is a disjuntion of

onjuntions of literals.

So a CNF has the form

V

i

W

j

L

j

and a DNF the form

W

i

V

j

L

j

where L

j

are literals. A disjuntion of literals L

1

_ : : : _ L

n

is alled a lause. In the

sequel the logial notation with _ is overloaded with a multiset notation. Both

the disjuntion L

1

_ : : : _ L

n

and the multiset fL

1

; : : : ; L

n

g are lauses. For

lauses the letters C, D, possibly indexed are used. Furthermore, a onjuntion

of lauses is onsidered as a set of lauses. Then, for a set of lauses, the empty

set denotes >. For a lause, the empty multiset denotes ; and at the same time

?.

T

Although CNF and DNF are de�ned in almost any text book on au-

tomated reasoning, the de�nitions in the literature di�er with respet

to the \border" ases: (i) are omplementary literals permitted in a

lause? (ii) are dupliated literals permitted in a lause? (iii) are empty dis-

juntions/onjuntions permitted? For the above De�nition 2.6.1 the answer is

\yes" to all three questions. A lause ontaining omplementary literals is valid,

as in P _ Q _ :P . Dupliate literals may our, as in P _ Q _ P . The empty

disjuntion is ? and the empty onjuntion >, i.e., the empty disjuntion is

always false while the empty onjuntion is always true.

Cheking the validity of CNF formulas or the unsatis�ability of DNF formu-

las is easy: (i) a formula in CNF is valid, if and only if eah of its disjuntions

ontains a pair of omplementary literals P and :P , (ii) onversely, a formula

in DNF is unsatis�able, if and only if eah of its onjuntions ontains a pair of

omplementary literals P and :P .

C

On the other hand, heking the unsatis�ability of CNF formulas or

the validity of DNF formulas is oNP-omplete. For any propositional

formula � there is an equivalent formula in CNF and DNF and I will

prove this below by atually providing an e�etive proedure for the transforma-

tion. However, also beause of the above omment on validity and satis�ability

heking for CNF and DNF formulas, respetively, the transformation is ostly.

In general, a CNF or DNF of a formula � is exponentially larger than � as

long as the normal forms need to be logially equivalent. If this is not needed,

then by the introdution of fresh propositional variables, CNF or DNF normal

forms for � an be omputed in linear time in the size of �. More onretely,

given a formula � instead of heking validity the unsatis�ability of :� an be

onsidered. Then the linear time CNF normal form algorithm (see Setion ??)

omputes a satis�ability preserving formula, i.e., the linear time CNF of :� is

unsatis�able i� :� is.

2.6. NORMAL FORMS 41

ElimEquiv �[(�$)℄

p

)

BCNF

�[(�!) ^ (! �)℄

p

ElimImp �[(�!)℄

p

)

BCNF

�[(:� _)℄

p

PushNeg1 �[:(� _)℄

p

)

BCNF

�[(:� ^ :)℄

p

PushNeg2 �[:(� ^)℄

p

)

BCNF

�[(:� _ :)℄

p

PushNeg3 �[::�℄

p

)

BCNF

�[�℄

p

PushDisj �[(�

1

^ �

2

) _ ℄

p

)

BCNF

�[(�

1

_) ^ (�

2

_)℄

p

PushConj �[(�

1

_ �

2

) ^ ℄

p

)

BDNF

�[(�

1

^) _ (�

2

^)℄

p

ElimTB1

�[(� ^ >)℄

p

)

BCNF

�[�℄

p

ElimTB2

�[(� ^ ?)℄

p

)

BCNF

�[?℄

p

ElimTB3

�[(� _ >)℄

p

)

BCNF

�[>℄

p

ElimTB4

�[(� _ ?)℄

p

)

BCNF

�[�℄

p

ElimTB5

�[:?℄

p

)

BCNF

�[>℄

p

ElimTB6

�[:>℄

p

)

BCNF

�[?℄

p

Figure 2.6: Basi CNF/DNF Transformation Rules

Proposition 2.6.2. For every formula there is an equivalent formula in CNF

and also an equivalent formula in DNF.

Proof. See the rewrite systems)

BCNF

, and)

ACNF

below and the lemmata on

their properties.

2.6.2 Basi CNF/DNF Transformation

The below algorithm bnf is a basi algorithm for transforming any propositional

formula into CNF, or DNF if rule PushDisj is replaed by PushConj.

Algorithm 2: bnf(�)

Input : A propositional formula �.

Output: A propositional formula equivalent to � in CNF.

1 whilerule (ElimEquiv(�)) do ;

2 whilerule (ElimImp(�)) do ;

3 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

4 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

5 whilerule (PushDisj(�)) do ;

6 return �;

In the sequel I study only the CNF version of the algorithm. All properties

hold in an analogous way for the DNF version. To start an informal analysis of

the algorithm, onsider the following example CNF transformation.

42 CHAPTER 2. PROPOSITIONAL LOGIC

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

BCNF

:([(P _Q)! (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [(P ! (Q ^ >))! (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(P ! (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (P ! (Q ^ >))℄ ^ [:(:P _ (Q ^ >)) _ (P _Q)℄)

)

Step 2

BCNF

:([:(P _Q) _ (:P _ (Q ^>))℄ ^ [:(:P _ (Q ^>)) _ (P _Q)℄)

)

Step 3

BCNF

:([:(P _Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [:(:P _Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

Step 4

BCNF

:([(:P ^ :Q) _ (:P _Q)℄ ^ [(::P ^ :Q) _ (P _Q)℄)

)

�;Step 4

BCNF

[(::P _::Q)^ (::P ^:Q)℄_ [(:::P _::Q)^ (:P ^:Q)℄

)

�;Step 4

BCNF

[(P _Q) ^ (P ^ :Q)℄ _ [(:P _Q) ^ (:P ^ :Q)℄

)

�;Step 5

BCNF

(P _Q_:P _Q)^ (P _Q_:P)^ (P _Q_:Q)^ (P _:P _

Q) ^ (P _ :P) ^ (P _ :Q) ^ (:Q _ :P _Q) ^ (:Q _ :P) ^ (:Q _ :Q)

Figure 2.7: Example Basi CNF Transformation

Example 2.6.3. Consider the formula :((P _ Q) $ (P ! (Q ^ >))) and the

appliation of)

BCNF

depited in Figure 2.7. Already for this simple formula

the CNF transformation via)

BCNF

beomes quite messy. Note that the CNF

result in Figure 2.7 is still highly redundant. If I remove all disjuntions that

are trivially true, beause they ontain a propositional literal and its negation,

the result beomes

(P _ :Q) _ (:Q _ :P) ^ (:Q _ :Q)

now elimination of dupliate literals beauti�es the third lause and the overall

formula into

(P _ :Q) _ (:Q _ :P) ^ :Q.

Now let's inspet this formula a little loser. Any valuation satisfying the formula

must set A(Q) = 0, beause of the third lause. But then the �rst two lauses

are already satis�ed. The formula 6= Q subsumes the formulas P _ :Q and

:Q _ :P in this sense. The notion of subsumption will be disussed in detail

for lauses in Setion 2.7.

So it is eventually equivalent to

:Q.

The orretness of the result is obvious by looking at the original formula and

doing a ase analysis. For any valuation A with A(Q) = 1 the two parts of the

equivalene beome true, independently of P , so the overall formula is false.

For A(Q) = 0, for any value of P , the truth values of the two sides of the

equivalene are di�erent, so the equivalene beomes false and hene the overall

formula true.

After proving)

BCNF

orret and terminating, in the sueeding setion I

will present an algorithm)

ACNF

that atually generates :Q out of :((P _Q)$

(P ! (Q ^>))) and does this without generating the mess of formulas)

BCNF

2.6. NORMAL FORMS 43

does. Please reall that the above rules apply modulo ommutativity of _, ^,

e.g., the rule ElimTB1 is both appliable to the formulas � ^ > and > ^ �.

I

Figure 2.1 ontains more potential for simpli�ation. For example, the

idempoteny equivalenes (� ^ �) $ �, (� _ �) $ � an be turned

into simpli�ation rules by applying them left to right. However, the

way they are stated they an only be applied in ase of idential subformulas.

The formula (P _Q)^ (Q_P) does this way not redue to (Q_P). A solution

is to onsider identity modulo ommutativity. But then identity modulo om-

mutativity and assoiativity (AC) as in ((P _ Q) _ R) ^ (Q _ (R _ P) is still

not deteted. On the other hand, in pratie, heking identity modulo AC is

often too expensive. An elegant way out of this situation is to implement AC

onnetives like _ or ^ with exible arity, to normalize nested ourrenes of

the onnetives, and �nally to sort the arguments using some total ordering.

Applying this to ((P _ Q) _ R) ^ (Q _ (R _ P) with ordering R > P > Q the

result is (Q _ P _ R) ^ (Q _ P _ R). Now omplete AC simpli�ation is bak

at the ost of heking for idential subformulas. Note that in an appropriate

implementation, the normalization and ordering proess is only done one at

the start and then normalization and argument ordering is kept as an invariant.

2.6.3 Advaned CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 an be improved in

various ways: (i) more aggressive formula simpli�ation, (ii) renaming, (iii) po-

larity dependant transformations. The before studied Example 2.6.3 serves al-

ready as a nie motivation for (i) and (iii). Firstly, removing > from the formula

:((P _ Q) $ (P ! (Q ^ >))) �rst and not in the middle of the algorithm ob-

viously shortens the overall proess. Seondly, if the equivalene is replaed

polarity dependant, i.e., using the equivalene (�$)$ (� ^) _ (:� ^ :)

and not the one used in rule ElimEquiv applied before, a lot of redundany gen-

erated by)

BCNF

is prevented. In general, if [�

1

$ �

2

℄

p

and pol(; p) = �1

then for CNF transformation do [(�

1

^�

2

)_ (:�

1

^:�

2

)℄

p

and if pol(; p) = 1

do [(�

1

! �

2

) ^ (�

2

! �

1

)℄

p

Item (ii) an be motivated by a formula

P

1

$ (P

2

$ (P

3

$ (: : : (P

n�1

$ P

n

) : : :)))

where Algorithm 2 generates a CNF with 2

n

lauses out of this formula. The

way out of this problem is the introdution of additional fresh propositional

variables that rename subformulas. The prie to pay is that a renamed formula

is not equivalent to the original formula due to the extra propositional variables,

but satis�ability preserving. A renamed formula for the above formula is

(P

1

$ (P

2

$ Q

1

)) ^ (Q

1

$ (P

3

$ Q

2

)) ^ : : :

where the Q

i

are additional, fresh propositional variables. The number of lauses

of the CNF of this formula is 4(n�1) where eah onjunt (Q

i

$ (P

j

$ Q

i+1

))

ontributes four lauses.

44 CHAPTER 2. PROPOSITIONAL LOGIC

Proposition 2.6.4. Let P be a propositional variable not ourring in [�℄

p

.

1. If pol(; p) = 1, then [�℄

p

is satis�able if and only if [P ℄

p

^ (P ! �) is

satis�able.

2. If pol(; p) = �1, then [�℄

p

is satis�able if and only if [P ℄

p

^ (� ! P)

is satis�able.

3. If pol(; p) = 0, then [�℄

p

is satis�able if and only if [P ℄

p

^ (P $ �) is

satis�able.

Proof. Exerise.

So depending on the formula , the position p where the variable P is in-

trodued de�nition of P is given by

def(; p; P) :=

8

<

:

(P ! j

p

) if pol(; p) = 1

(j

p

! P) if pol(; p) = �1

(P $ j

p

) if pol(; p) = 0

For renaming there are several hoies whih subformula to hoose. Ob-

viously, sine a formula has only linearly many subformulas, renaming every

subformula works [20, 17℄. Basially this is what I show below. In the following

setion a renaming variant is introdued that produes smallest CNFs.

SimpleRenaming �)

SimpRen

�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n

℄

p

n

^ def(�; p

1

; P

1

) ^

: : : ^ def(�[P

1

℄

p

1

[P

2

℄

p

2

: : : [P

n�1

℄

p

n�1

; p

n

; P

n

)

provided fp

1

; : : : ; p

n

g � pos(�) and for all i; i+ j either p

i

k p

i+j

or p

i

> p

i+j

and the P

i

are di�erent and new to �

Atually, the rule SimpleRenaming does not provide an e�etive way to

ompute the set fp

1

; : : : ; p

n

g of positions in � to be renamed. Where are several

hoies. Following Plaisted and Greenbaum [17℄, the set ontains all positions

from � that do not point to a propositional variable or a negation symbol. In

addition, renaming position � does not make sense beause it would generate the

formula P ^ (P ! �) whih results in more lauses than just �. Choosing the

set of Plaisted and Greenbaum prevents the explosion in the number of lauses

during CNF transformation. But not all renamings are needed to this end.

A smaller set of positions from �, let's all it the set of obvious positions, is

still preventing the explosion and given by the rules: (i) if �j

p

is an equivalene

and there is a position q < p suh that �j

q

is either an equivalene or disjuntive

in � then p is an obvious position (ii) if �j

pq

is a onjuntive formula in �, �j

p

is a disjuntive formula in � and for all positions r with p < r < pq the formula

�j

r

is not a onjuntive formula then pq is an obvious position. A formula �j

p

is onjuntive in � if �j

p

is a onjuntion and pol(�; p) 2 f0; 1g or �j

p

is a

disjuntion or impliation and pol(�; p) 2 f0;�1g. Analogously, a formula �j

p

is disjuntive in � if �j

p

is a disjuntion or impliation and pol(�; p) 2 f0; 1g or

�j

p

is a onjuntion and pol(�; p) 2 f0;�1g.

2.6. NORMAL FORMS 45

!

[1=�℄

:

[�1=1℄

_

[1=11℄

:

[1=111℄

P

[�1=1111℄

^

[1=112℄

Q

[1=1121℄

R

[1=1122℄

_

[1=2℄

P

[1=21℄

$

[0=22℄

:

[0=221℄

Q

[0=2211℄

:

[0=222℄

R

[0=2221℄

Figure 2.8: Tree representation of [:(:P _ (Q^R))℄! [P _ (:Q$:R)℄ where

eah node is annotated with its [polarity/position℄.

Consider as an example the formula

[:(:P _ (Q ^ R))℄! [P _ (:Q$:R)℄

. Its tree representation as well as the polarity and position of eah node is

shown in Figure 2.8.

The before mentioned polarity dependent transformations for equivalenes

are realized by the following two rules:

ElimEquiv1 �[(�$)℄

p

)

ACNF

�[(�!) ^ (! �)℄

p

provided pol(�; p) 2 f0; 1g

ElimEquiv2 �[(�$)℄

p

)

ACNF

�[(� ^) _ (:� ^ :)℄

p

provided pol(�; p) = �1

Proposition 2.6.5 (Renaming Preservers Models). Let � be a formula and �

0

a renamed CNF of � omputed by anf. Then any (partial) model A of �

0

is

also a model for �.

Proof. By an indutive argument it is suÆient to onsider one renaming appli-

ation, i.e., �

0

= �[P ℄

p

^def(�; p; P). There are three ases depending on the po-

larity. (i) if pol(�; p) = 1 then �

0

= �[P ℄

p

^P ! �j

p

. IfA(P) = 1 then A(�j

p

) = 1

and hene A(�) = 1. The interesting ase is A(P) = 0 and A(�j

p

) = 1. But

then beause pol(�; p) = 1 also A(�) = 1 by Lemma 2.2.7. (ii) if pol(�; p) = �1

the ase is symmetri to the previous one. Finally, (iii) if pol(�; p) = 0 for any

A satisfying �

0

it holds A(�j

p

) = A(P) and hene A(�) = 1.

46 CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 3: anf(�)

Input : A formula �.

Output: A formula in CNF satis�ability preserving to �.

1 whilerule (ElimTB1(�),: : :,ElimTB6(�)) do ;

2 SimpleRenaming(�) on obvious positions;

3 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

4 whilerule (ElimImp(�)) do ;

5 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

6 whilerule (PushDisj(�)) do ;

7 return �;

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

ACNF

:((P _Q)$ (P ! Q))

)

Step 3

ACNF

:(((P _Q) ^ (P ! Q)) _ (:(P _Q) ^ :(P ! Q)))

)

�;Step 4

ACNF

:(((P _Q) ^ (:P _Q)) _ (:(P _Q) ^ :(:P _Q)))

)

�;Step 5

ACNF

((:P ^ :Q) _ (P ^ :Q)) ^ ((P _Q) _ (:P _Q))

)

�;Step 6

ACNF

(:P _P)^(:P _:Q)^(:Q_P)^(:Q_:Q)^(P _Q_:P _Q)

Figure 2.9: Example Advaned CNF Transformation

2.6.4 Computing Small CNFs

In the previous hapter obvious positions are a suggestion for smaller CNFs

with respet to the renaming positions suggested by Plaisted and Greenbaum.

In this setion I develop a set of renaming posisions that is in fat minimal with

respet to the resulting CNF. A subformula is renamed if the eventual number

of generated lauses by bnf dereases after renaming [5, 16℄. If formulas are

heked top-down for this ondition, and pro�table formulas in the above sense

are renamed, the resulting CNF is optimal in the number of lauses [5℄. The

below funtion a omputes the number of lauses generated by the algorithm

bnf, as long as the formula does not ontain > or ?.

C

A state of the art CNF algorithm �rst tries to simplify a formula be-

fore doing the atual CNF transformation. Eliminating > or ? using

the ElimTB is a standard part of any suh simpli�ation proedure.

Further simpli�ations are disussed in Setion 2.13.

2.6. NORMAL FORMS 47

 a() b()

�

1

^ �

2

a(�

1

) + a(�

2

) b(�

1

) b(�

2

)

�

1

_ �

2

a(�

1

) a(�

2

) b(�

1

) + b(�

2

)

�

1

! �

2

b(�

1

) a(�

2

) a(�

1

) + b(�

2

)

�

1

$ �

2

a(�

1

) b(�

2

) + b(�

1

) a(�

2

) a(�

1

) a(�

2

) + b(�

1

) b(�

2

)

:�

1

b(�

1

) a(�

1

)

P 1 1

Let � be a formula that does not ontain ?, or >, then a(�) omputes ex-

atly the number of lauses generated by bnf(�). The proof is left as an exerise,

but as an example onsider the ase where � = L

1

: : : L

n

is a disjuntion of liter-

als. In this ase bnf does not hange � at all ad produes exatly the lause �.

Expanding the de�nition of a(�) produes a(�) = a(L

1

) a(L

2

) : : : a(L

n

) = 1

beause if some L

i

is a propositional variable, then a(L

i

) = 1. If some L

j

is

negative, i.e., L

j

= :P then a(L

j

) = a(:P) = b(P) = 1.

A renaming yields fewer lauses, if the di�erene between the number of

lauses generated without and with a renaming is positive. Consider the renam-

ing of a subformula at position p within a formula with fresh variable P . The

ondition to be heked is

a() � a([P ℄

p

) + a(def(; p; P)):

The inequality above is not strit. If some formula � = j

p

is replaed inside

 where a() = a([P ℄

p

) + a(def(; p; P)) then this equation turns into a

strit inequality as soon as we do another replaement inside �. In this ase

a(def(; p; P)) will stritly derease. Therefore, when searhing for a minimal

CNF it is mandatory to onsider the above inequality non-strit.

Example 2.6.6. For a formula P

1

$ P

2

renaming does not pay o�. If P

2

is

replaed by some fresh variable Q the result is P

1

$ Q ^ Q $ P

2

where the

original formula generates 2 lauses and the formula after replaement generates

4 lauses.

The break even point for nested equivalenes is the formula P

1

$ (P

2

$

(P

3

$ P

4

)) where replaement at position 22 using the fresh variable Q results

in P

1

$ (P

2

$ Q) ^ Q $ (P

3

$ P

4

). Both formulas eventually generate

8 lauses. So this is an example for the above inequality to be non-strit.

The obvious problem with this ondition is that the funtion a annot be

eÆiently omputed in general, for it grows exponentially in the size of the in-

put formula. Moreover, a straightforward, naive top-down implementation of a

following the above table results in an algorithm with exponential time om-

plexity, due to the dupliation of reursive alls. The exponential omplexity

an be avoided using a dynami programming idea: simply store intermediate

results for subformulas. Nevertheless, beause a grows exponentially, omput-

ing a requires arbitrary preision integer arithmeti. It turns out that this an

48 CHAPTER 2. PROPOSITIONAL LOGIC

hardly be a�orded in pratie. The rest of this setion is therefore onerned

with a solution to this problem, i.e., I show that it is not neessary to ompute

a at all for deiding the above inequation.

Obviously, the formulas and [P ℄

p

di�er only at position p, the other parts

of the formulas remain idential. We make use of this fat by an abstration of

those parts of that do not inuene the hanged position. To this end we

introdue the notion of a oeÆient as shown in Table 2.1.

p j

q

a

p

b

p

q:i �

1

^ �

2

a

q

b

q

Q

j 6=i

b(�

j

)

q:i �

1

_ �

2

a

q

Q

j 6=i

a(�

j

) b

q

q:1 �

1

! �

2

b

q

a

q

a(�

2

)

q:2 �

1

! �

2

a

q

b(�

1

) b

q

q:1 �

1

$ �

2

a

q

b(�

2

) + b

q

a(�

2

) a

q

a(�

2

) + b

q

b(�

2

)

q:2 �

1

$ �

2

a

q

b(�

1

) + b

q

a(�

1

) a

q

a(�

1

) + b

q

b(�

1

)

q:1 :�

1

b

q

a

q

� 1 0

Table 2.1: Calulating the CoeÆients

The oeÆients determine how often a partiular subformula and its negation

are dupliated in the ourse of a basi CNF translation. The oeÆient a

p

is the

fator of a(j

p

) in the reursive omputation whereas the fator b

p

is the fator

of b(j

p

). The �rst olumn of Table 2.1 shows the form of p, the seond olumn

the form of diretly above position p (itself if p = �). The next two olumns

demonstrate the orresponding reursive bottom-up alulations for a

p

and b

p

,

respetively. Applied to our starting example formula = �

1

_ 8x�

2

where we

renamed position 2:1, i.e., the subformula �

2

, the oeÆients are a

2:1

= a(�

1

)

(Table 2.1, eighth, seond and last row, �rst olumn) and b

2:1

= 0 (eighth, seond

and last row, seond olumn). Note that a

p

(b

p

) is always 0 if pol(; p) = �1

(pol(; p) = 1).

Using the notion of a oeÆient, the previously stated ondition an be

reformulated as

a

p

a(�) + b

p

b(�) � a

p

+ b

p

+ a(def(; p; P))

where we still assume that � = j

p

and P is a fresh propositional variable.

Note that, sine � is replaed by P in at position p, the oeÆients a

p

, b

p

are

multiplied by 1 in the renamed version, beause a(P) = b(P) = 1. Depending

on the polarity of j

p

the inequality is equivalent to one of the three inequalities:

a

p

a(�)� a

p

+ a(�) if pol(; p) = 1

b

p

b(�)� b

p

+ b(�) if pol(; p) = �1

a

p

a(�) + b

p

b(�)� a

p

+ b

p

+ a(�) + b(�) if pol(; p) = 0

2.6. NORMAL FORMS 49

By simple arithmetial transformations, we an group all ourrenes of fators

a

p

, b

p

and all ourrenes of a(�) and b(�), respetively:

(a

p

� 1)(a(�)� 1)� 1 if pol(; p) = 1

(b

p

� 1)(b(�)� 1)� 1 if pol(; p) = �1

(a

p

� 1)(a(�) � 1) + (b

p

� 1)(b(�)� 1)� 2 if pol(; p) = 0

Let us abbreviate the produt (a

p

�1)(a(�)�1) with p

a

and (b

p

�1)(b(�)�1)

with p

b

. Sine neither p

a

nor p

b

an beome negative, in any of the ases where

they appear, the �rst inequality holds if p

a

� 1, the seond inequality holds if

p

b

� 1 and the third inequality holds if (i) p

a

� 2 or (ii) p

b

� 2 or (iii) p

a

� 1

and p

b

� 1. In order to hek these onditions, it suÆes to test whether the

oeÆients a

p

, b

p

and the number of lauses a(�), b(�) are stritly greater

than 1, 2 or 3, respetively. This an always be heked in linear time with

respet to the size of . The ondition a(�) > 1 holds i� there exists a position

p suh that �[�

1

$ �

2

℄

p

or �[�

1

^ �

2

℄

p

and pol(�; p) = 1 or �[�

1

Æ �

2

℄

p

with

pol(�; p) = �1 and Æ 2 f_;!g. The omputations for the boolean onditions

a(�) > 2 and a(�) > 3 are depited in Table 2.2. The omputation of the

onditions for b works aordingly, see Table 2.3.

As for the fators, Table 2.4 shows how to ompute a

p

> 1 and, following

Table 2.1, this an be extended to the other ases for the a fator and the

orresponding onditions for the b fator.

Hene we turned a test that required the omputation of exponentially grow-

ing funtions into a boolean ondition that does not require any arithmeti

alulation at all.

Theorem 2.6.7 (Formula Renaming). Formula Renaming preserves satis�a-

bility and an be omputed in polynomial time.

In order to further redue the number of eventually generated lauses it may

still be useful to rename a formula, even if the above onsiderations do not apply.

For example, renaming the formula P

1

_ (Q

1

^Q

2

) at position 2 results in three

lauses, whereas a standard CNF translation of the original formula yields two

lauses. This alulation also applies if this situation is repeated, as in

[P

1

_ (Q

1

^Q

2

)℄ ^ [P

2

_ (Q

1

^Q

2

)℄ ^ : : : [P

n

_ (Q

1

^Q

2

)℄

where our renaming riterion does not apply. But now a simultaneous renaming

of all ourrenes (Q

1

^ Q

2

) may pay o�. It results in n + 2 lauses whereas

the standard CNF translation yields 2n lauses. Hene, it is useful to searh for

multiple ourrenes of the same subformula. The problem here is to �nd an

appropriate \equality" or \instane" relation between subformulae. In our ex-

ample syntati equality was suÆient to detet all suh ourrenes. In general,

a mathing proess { probably with respet to the ommutativity, assoiativity

of some logial operators or even logial impliation { may be needed to obtain a

suitable renaming result. So we run here into a tradeo� between ompat CNFs

and omputational omplexity to ahieve these CNFs.

50 CHAPTER 2. PROPOSITIONAL LOGIC

 a() > 1

�

1

^ �

2

true

�

1

_ �

2

a(�

1

) > 1 or a(�

2

) > 1

�

1

! �

2

b(�

1

) > 1 or a(�

2

) > 1

�

1

$ �

2

true

:�

b(�) > 1

 a() > 2

�

1

^ �

2

a(�

1

) > 1 or a(�

2

) > 1

�

1

_ �

2

a(�

i

) > 2 or [a(�

1

) > 1 and a(�

2

) > 1℄

�

1

! �

2

b(�

1

) > 2 or a(�

2

) > 2 or [b(�

1

) > 1 and a(�

2

) > 1℄

�

1

$ �

2

at least one out of �

1

; �

2

is not a literal

:�

b(�) > 2

 a() > 3

�

1

^ �

2

a(�

i

) > 2

�

1

_ �

2

a(�

i

) > 3 or [a(�

i

) > 2 and a(�

j

) > 1; i 6= j℄

�

1

! �

2

b(�

1

) > 2 or a(�

2

) > 2 or [b(�

1

) > 1 and a(�

2

) > 1℄

�

1

$ �

2

a(�

i

) > 3 or b(�

i

) > 3 or �

2

is not a literal

:�

b(�) > 3

Table 2.2: The Boolean Conditions for a

For the formulation of the optimized CNF algorithm I rely on the equiv-

alenes from ategories (I), (V) and (VII) from Figure 2.1. They are used to

transform the formula. The equivalenes are always applied from left to right.

So \applying" suh an equivalene means turning it into a rule. For example,

the equivalene (� _ (� ^))$ � from ategory (V) generates the rule

�[� _ (� ^)℄

p

)

OCNF

�[�℄

p

Applying this rule with respet to ommutativity of _ means, for example, that

both the formulas (�_ (�^)) and ((�^)_�) an be transformed by the rule

to � where in both ases p = �. Rules are always applied modulo assoiativity

and ommutativity of ^, _.

The proedure is depited in Algorithm 4. Although omputing a for Step 2

is not pratial in general, beause the funtion is exponentially growing, the

test a([�℄

p

) > a([P ℄

p

^def(; p; P)) an be omputed in onstant time after

2.7. PROPOSITIONAL RESOLUTION 51

 b() > 1

�

1

^ �

2

b(�

1

) > 1 or b(�

2

) > 1

�

1

_ �

2

true

�

1

! �

2

true

�

1

$ �

2

true

:�

a(�) > 1

 b() > 2

�

1

_ �

2

b(�

1

) > 1 or b(�

2

) > 1

�

1

^ �

2

b(�

i

) > 2 or b(�

1

) > 1 and b(�

2

) > 1

:�

a(�) > 2

 b() > 3

�

1

_ �

2

b(�

i

) > 2

�

1

^ �

2

b(�

i

) > 3 or [b(�

i

) > 2 and b(�

j

) > 1; i 6= j℄

:�

a(�) > 3

Table 2.3: The Boolean Conditions for b

a linear time proessing phase.

Applying Algorithm 4 to the formula :((P _ Q) $ (P ! (Q ^ >))) of

Example 2.6.3 results in the transformation depited in Figure 2.10. Looking

at the result it is already very lose to :Q, as it ontains the lause (:Q _

:Q). Removing dupliate literals in lauses and removing lauses ontaining

omplementary literals from the result yields

(:P _ :Q) ^ (:Q _ P) ^ :Q

whih is even loser to just :Q. The �rst two lauses an atually be removed

beause they are subsumed by :Q, i.e., onsidered as multisets, :Q is a subset

of these lauses. Subsumption will be introdued in the next setion. Logially,

they an be removed beause :Q has to be true for any satisfying assignment

of the formula and then the �rst two lauses are satis�ed anyway.

2.7 Propositional Resolution

A alulus is a set of inferene and redution rules for a given logi (here

PROP(�)). We only onsider aluli operating on a set of lauses N . Infer-

ene rules add new lauses to N whereas redution rules remove lauses from

52 CHAPTER 2. PROPOSITIONAL LOGIC

Algorithm 4: onf(�)

Input : A formula �.

Output: A formula in CNF satis�ability preserving to �.

1 whilerule (ElimRedI(�),ElimRedV(�),ElimRedVII(�)) do ;

2 SimpleRenaming(�) on bene�ial positions;

3 whilerule (ElimEquiv1(�),ElimEquiv2(�)) do ;

4 whilerule (ElimImp(�)) do ;

5 whilerule (PushNeg1(�),: : :,PushNeg3(�)) do ;

6 whilerule (PushDisj(�)) do ;

7 return �;

:((P _Q)$ (P ! (Q ^ >)))

)

Step 1

OCNF

:([(P _Q)$ (P ! Q)℄)

)

Step 3

OCNF

:([(P _Q) ^ (P ! Q)℄ _ [:(P _Q) ^ :(P ! Q)℄)

)

Step 2

OCNF

:([(P _Q) ^ (:P _Q)℄ _ [:(P _Q) ^ :(:P _Q)℄)

)

�;Step 3

OCNF

(:[(P _Q) ^ (:P _Q)℄ ^ :[:(P _Q) ^ :(:P _Q)℄)

)

�;Step 3

OCNF

[:(P _Q) _ :(:P _Q)℄ ^ [(P _Q) _ (:P _Q)℄

)

�;Step 3

OCNF

[(:P ^ :Q) _ (P ^ :Q)℄ ^ [(P _Q) _ (:P _Q)℄

)

�;Step 4

OCNF

[(:P _P)^(:P_:Q)^(:Q_P)^(:Q_:Q)℄^[P_Q_:P_Q℄

Figure 2.10: Example Optimized CNF Transformation

2.7. PROPOSITIONAL RESOLUTION 53

p j

p

a

p

> 1

q:i �

1

^ �

2

a

p

> 1

q:i �

1

_ �

2

a

p

> 1 or a(�

i

) > 1 for some i

Table 2.4: The Boolean Conditions for a

N or replae lauses by \simpler" ones.

We are only interested in unsatis�ability, i.e., the onsidered aluli test

whether a lause set N is unsatis�able. This is in partiular motivated by the

renaming step of CNF transformation, see Setion 2.6.3. So, in order to hek

validity of a formula � we hek unsatis�ability of the lauses generated from

:�.

For lauses we swith between the notation as a disjuntion, e.g., P _Q_P _

:R, and the notation as a multiset, e.g., fP;Q; P;:Rg. This makes no di�erene

as we onsider _ in the ontext of lauses always modulo AC. Note that ?, the

empty disjuntion, orresponds to ;, the empty multiset. Clauses are typially

denoted by letters C, D, possibly with subsript.

The resolution alulus onsists of the inferene rules Resolution and Fa-

toring. So, if we onsider lause sets N as states, ℄ is disjoint union, we get the

inferene rules

Resolution

(N℄fC

1

_P;C

2

_:Pg))

RES

(N[fC

1

_P;C

2

_:Pg[fC

1

_C

2

g)

Fatoring (N ℄ fC _ L _ Lg))

RES

(N [fC _ L _ Lg [fC _ Lg)

Theorem 2.7.1. The resolution alulus is sound and omplete:

N is unsatis�able i� N)

�

RES

f?g

Proof. (() Soundness means for all rules that N j= N

0

where N

0

is the lause

set obtained from N after applying Resolution or Fatoring. For Resolution it

is suÆient to show that C

1

_ P;C

2

_ :P j= C

1

_ C

2

. This is obvious by a ase

analysis of valuations satisfying C

1

_P;C

2

_:P : of P is true in suh a valuation

so must be C

2

, hene C

1

_ C

2

. If P is false in some valuation then C

1

must

be true and so C

1

_ C

2

. Soundness for Fatoring is obvious this way beause it

simply removes a dupliate literal in the respetive lause.

()) The traditional method of proving resolution ompleteness are semanti

trees. A semanti tree is a binary tree where the edges a labeled with literals

suh that: (i) edges of hildren of the same parent are labeled with L and :L,

and (ii) any node has either no or two hildren, and (iii) for any path from

the root to a leave, eah propositional variable ours at most one. Therefore,

eah path orresponds to a partial valuation. Now for an unsatis�able lause

54 CHAPTER 2. PROPOSITIONAL LOGIC

set N there is a semanti tree suh that for eah leave of the tree there is a

lause in N that is false with respet to the partial valuation at that leave.

Let this tree be minimal in the sense that there is no smaller tree with less

nodes having this property. Now onsider two sister leaves of the same parent

of this tree, where the edges are labeled with L and :L, respetively. Let C

1

and C

2

be the two false lauses at the respetive leaves. Obviously, C

1

= C

0

1

_L

and C

2

= C

0

2

_ :L as for otherwise the tree would not be minimal. If C

1

(or

C

2

) ontains further ourrenes of L (or C

2

of :L), then the rule Fatoring is

applied to eventually remove all additional ourrenes. Therefore, I an assume

L 62 C

0

1

and :L 62 C

0

2

. A resolution step between these two lauses on L yields

C

0

1

_ C

0

2

whih is false at the parent of the two leaves, beause the resolvent

neither ontains L nor :L. Furthermore, the resulting tree from utting the

two leaves is minimal for N [fC

0

1

_ C

0

2

g and stritly smaller. By an indutive

argument this proves ompleteness.

Example 2.7.2 (Resolution Completeness). Consider the lause set

P _Q; :P _Q; P _ :Q; :P _ :Q _ S; :P _ :Q _ :S

and the orresponding semanti tree ...

The redution rules are

Subsumption (N ℄ fC

1

; C

2

g))

RES

(N [fC

1

g)

provided C

1

� C

2

Tautology

Deletion

(N ℄ fC _ P _ :Pg))

RES

(N)

Condensation

(N ℄ fC

1

_ L _ Lg))

RES

(N [fC

1

_ Lg)

Note the di�erent nature of inferene rules and redution rules. Resolution

and Fatorization only add lauses to the set whereas Subsumption, Tautology

Deletion and Condensation delete lauses or replae lauses by \simpler" ones.

In the next setion, Setion 2.8, I will show that \simpler" means.

C

At �rst, it looks strange to have the same rule both as a redution

rules and as an inferene rule, i.e., Fatorization and Condensation.

On the propositional level there is obviously no di�erene and it is

possible to get rid of one of the two. In Setion ?? the resolution alulus is

extended to �rst-order logi. In �rst-order logi Fatorization and Condensation

are atually di�erent. They are separated here to eventually obtain the same

set of resolution alulus rules for propositional and �rst-order logi.

Proposition 2.7.3. The redution rules Subsumption, Tautology Deletion and

Condensation are sound.

2.8. PROPOSITIONAL SUPERPOSITION 55

Proof. This is obvious for Tautology Deletion and Condensation. For Subsump-

tion we have to show that C

1

j= C

2

, beause this guarantees that if N[fC

1

g has

a model, N ℄ fC

1

; C

2

g has a model too. So assume A(C

1

) = 1 for an arbitrary

A. Then there is some literal L 2 C

1

with A(L) = 1. Sine C

1

� C

2

, also L 2 C

2

and therefore A(C

2

) = 1.

Theorem 2.7.4 (Resolution Termination). If redundany rules are preferred

over inferene rules and no inferene rule is applied twie to the same lause(s),

then)

+

RES

is well-founded.

Proof. For some given lause set N the redundany rules Subsumption, Tautol-

ogy Deletion and Condensation always terminate beause they all redue the

number of literals ourring in N . Furthermore, a lause set N where the re-

dundany rules have been exhaustively applied does not ontain any tautology,

no lause with dupliate literals and, in partiular, no dupliate lauses. The

number of suh lauses an be overestimated by 3

n

where n is the number of

propositional variables in N . Hene, there are at most 2

3

n

di�erent, �nite lause

sets with respet to lause sets where the redundany rules have been applied.

Obviously, for eah of suh lause sets there are only �nitely many di�erent

Resolution and Fatoring steps.

C

Of ourse, what needs to be shown is that the strategy employed in

Theorem 2.7.4 is still omplete. This is not ompletely trivial and gets

very nasty using semanti trees as the proof method of hoie. So let's

wait until superposition is established where this result beomes a partiular

ase of superposition ompleteness.

2.8 Propositional Superposition

Superposition was originally developed for �rst-order logi [1℄. Here I introdue

its projetion to propositional logi. Compared to the resolution alulus su-

perposition adds (i) ordering and seletion restritions on inferenes, (ii) an

abstrat redundany notion, (iii) the notion of a partial model for inferene

guidane, and (iv) a saturation onept.

De�nition 2.8.1 (Clause Ordering). Let � be a total strit ordering on �.

Then � an be lifted to a total ordering on literals by ���

L

and P �

L

:P and

:P �

L

Q, :P �

L

:Q for all P � Q. The ordering �

L

an be lifted to a total

ordering on lauses �

C

by onsidering the multiset extension of �

L

for lauses.

Proposition 2.8.2 (Properties of the Clause Ordering). (i) The orderings on

literals and lauses are total and well-founded.

(ii) Let C and D be lauses with P = jmax(C)j, Q = jmax(D)j, where max(C)

denotes the maximal literal in C.

1. If Q �

L

P then D �

C

C.

56 CHAPTER 2. PROPOSITIONAL LOGIC

2. If P = Q, P ours negatively in C but only positively in D, then D �

C

C.

Eventually, I overload � with �

L

and �

C

. So if � is applied to literals it

denotes �

L

, if it is applied to lauses, it denotes �

C

. Note that � is a total

ordering on literals and lauses as well. Eventually we will restrit inferenes to

maximal literals with respet to �. For a lause set N , I de�ne N

�C

= fD 2

N j D � Cg.

De�nition 2.8.3 (Abstrat Redundany). A lause C is redundant with respet

to a lause set N if N

�C

j= C.

Tautologies are redundant. Subsumed lauses are redundant if � is strit.

Dupliate lauses are anyway eliminated quietly beause the alulus operates

on sets of lauses.

C

Note that for �nite N , and any C 2 N redundany N

�C

j= C an

be deided but is as hard as testing unsatis�ability for a lause set

N . So the goal is to invent redundany notions that an be eÆiently

deided and that are useful.

De�nition 2.8.4 (Seletion Funtion). The seletion funtion sel maps lauses

to one of its negative literals or ?. If sel(C) = :P then :P is alled seleted in

C. If sel(C) = ? then no literal in C is seleted.

De�nition 2.8.5 (Partial Model Constrution). Given a lause set N and an

ordering � we an onstrut a (partial) model N

I

for N indutively as follows:

N

C

:=

S

D�C

Æ

D

Æ

D

:=

8

>

<

>

:

fPg if D = D

0

_ P; P stritly maximal, no literal

seleted in D and N

D

6j= D

; otherwise

N

I

:=

S

C2N

Æ

C

Clauses C with Æ

C

6= ; are alled produtive.

Proposition 2.8.6. Some properties of the partial model onstrution.

1. For every D with (C _ :P) � D we have Æ

D

6= fPg.

2. If Æ

C

= fPg then N

C

[Æ

C

j= C.

3. If N

C

j= D and D � C then for all C

0

with C � C

0

we have N

C

0

j= D

and in partiular N

I

j= D.

4. There is no lause C with P _ P � C suh that Æ

C

= fPg.

2.8. PROPOSITIONAL SUPERPOSITION 57

TPlease properly distinguish: N is a set of lauses interpreted as the

onjuntion of all lauses. N

�C

is of set of lauses from N stritly

smaller than C with respet to �. N

I

, N

C

are sets of atoms, often alled Her-

brand Interpretations. N

I

is the overall (partial) model for N , whereas N

C

is

generated from all lauses from N stritly smaller than C. Validity is de�ned

by N

I

j= P if P 2 N

I

and N

I

j= :P if P 62 N

I

, aordingly for N

C

.

Given some lause setN the partial modelN

I

an be extended to a valuation

A by de�ning A(N

I

) := N

I

[f:P j P 62 N

I

g. So we an also de�ne for some

Herbrand interpretation N

I

(N

C

) that N

I

j= � i� A(N

I

)(�) = 1.

Superposition Left (N ℄ fC

1

_ P;C

2

_:Pg))

SUP

(N [fC

1

_ P;C

2

_

:Pg [fC

1

_ C

2

g)

where (i) P is stritly maximal in C

1

_ P (ii) no literal in C

1

_ P is seleted

(iii) :P is maximal or seleted in C

2

_ :P

Fatoring (N℄fC_P _Pg))

SUP

(N[fC_P _Pg[fC_Pg)

where (i) P is maximal in C _ P _ P (ii) no literal is seleted in C _ P _ P

Note that the superposition fatoring rule di�ers from the resolution fator-

ing rule in that it only applies to positive literals.

De�nition 2.8.7 (Saturation). A set N of lauses is alled saturated up to

redundany, if any inferene from non-redundant lauses in N yields a redundant

lause with respet to N .

Examples for spei� redundany rules that an be eÆiently deided are

Subsumption (N ℄ fC

1

; C

2

g))

SUP

(N [fC

1

g)

provided C

1

� C

2

Tautology Dele-

tion

(N ℄ fC _ P _ :Pg))

SUP

(N)

Condensation

(N ℄ fC

1

_ L _ Lg))

SUP

(N [fC

1

_ Lg)

Subsumption

Resolution

(N ℄ fC

1

_ L;C

2

_ :Lg))

SUP

(N [fC

1

_ L;C

2

g)

where C

1

� C

2

Proposition 2.8.8. All lauses removed by Subsumption, Tautology Deletion,

Condensation and Subsumption Resolution are redundant with respet to the

kept or added lauses.

Theorem 2.8.9. If N is saturated up to redundany and ? =2 N then N is

satis�able and N

I

j= N .

58 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. The proof is by ontradition. So I assume: (i) for any lause D derived

by Superposition Left or Fatoring from N that D is redundant, i.e., N

�D

j= D,

(ii) ? =2 N and (iii) N

I

6j= N . Then there is a minimal, with respet to �, lause

C_L 2 N suh that N

I

6j= C_L and L is a seleted literal in C_L or no literal

in C _ L is seleted in L is maximal. This lause must exist beause ? =2 N .

The lause C _ L is not redundant. For otherwise, N

�C_L

j= C _ L and

hene N

I

j= C _ L, beause N

I

j= N

�C_L

, a ontradition.

I distinguish the ase L is a positive and no literal seleted in C _L or L is a

negative literal. Firstly, assume L is positive, i.e., L = P for some propositional

variable P . Now if P is stritly maximal in C _ P then atually Æ

C_P

= fPg

and hene N

I

j= C _P , a ontradition. So P is not stritly maximal. But then

atually C _ P has the form C

0

1

_ P _ P and Fatoring derives C

0

1

_ P where

(C

0

1

_ P) � (C

0

1

_ P _ P). Now C

0

1

_ P is not redundant, stritly smaller than

C_L, we have C

0

1

_P 2 N and N

I

6j= C

0

1

_P , a ontradition against the hoie

that C _ L is minimal.

Seondly, let us assume L is negative, i.e., L = :P for some propositional

variable P . Then, sine N

I

6j= C _ :P we know P 2 N

I

. So there is a lause

D _ P 2 N where Æ

D_P

= fPg and P is stritly maximal in D _ P and

(D _ P) � (C _ :P). So Superposition Left derives C _ D where (C _ D) �

(C _:P). The derived lause C_D annot be redundant, beause for otherwise

either N

�D_P

j= D_P or N

�C_:P

j= C_:P . So C_D 2 N and N

I

6j= C_D,

a ontradition against the hoie that C _ L is the minimal false lause.

So the proof atually tells us that at any point in time we need only to

onsider either a superposition left inferene between a minimal false lause and

a produtive lause or a fatoring inferene on a minimal false lause.

2.9 Davis Putnam Logemann Loveland Proe-

dure (DPLL)

A DPLL problem state is a pair (M ;N) whereM a sequene of partly annotated

literals, and N is a set of lauses. In partiular, the following states an be

distinguished:

(�;N) is the start state for some lause set N

(M ;N) is a �nal state, if M j= N

(M ;N) is a �nal state, ifM j= :N and there is no literal L

>

in M

(M ;N) is an intermediate state if M neither is a model for

N nor does it falsify a lause in N

The sequene M will, by onstrution, neither ontain dupliate nor om-

plementary literals. So it will always serve as a partial valuation for the lause

set N .

Here are the rules

2.9. DAVIS PUTNAM LOGEMANN LOVELAND PROCEDURE (DPLL) 59

Propagate (M ;N))

DPLL

(ML;N)

provided C _ L 2 N , M j= :C, and L is unde�ned in M

Deide

(M ;N))

DPLL

(ML

>

;N)

provided L is unde�ned in M

Baktrak

(M

1

L

>

M

2

;N))

DPLL

(M

1

:L;N)

provided there is a D 2 N and M j= :D and no K

>

in M

2

Figure 2.11: The DPLL Calulus

Lemma 2.9.1. Let (M ;N) be a state reahed by the DPLL algorithm from

the initial state (�;N). If M = M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no

deision literals then for all 0 � i � m it holds: N;M

1

; : : : ; L

>

i

j=M

i+1

Proof. Proof by omplete indution on the number n of rule appliations.

Indution basis: n = 0. No rule has been applied so that M = � and M does

not ontain any deision literal. Therefore the statement holds.

Indution hypothesis: If (M ;N) is reahed via n or less rule appliations

where M =M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no deision literals then

for all 1 � i � m it holds: N;M

1

; : : : ; L

>

i

j=M

i+1

.

Indution step: n! n+1. Assume (M

0

;N) is reahed via n rule appliations.

Then by the use of the indution hypothesis it holds for all 1 � i < m that

N;M

1

; : : : ; L

>

i

j= M

i+1

so that it remains to be shown that N;M

1

; : : : ; L

>

m

j=

M

m+1

1. Rule Propagate (M

0

;N))

DPLL

(M

0

L;N): IfM

0

=M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

and all M

i

have no deision literals then by de�nition there is a

lause C _ L 2 N with M

0

j= :C, i.e. C _ L;M

0

j= L and

N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

j= L. Using the indution hypothesis it fol-

lows N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

j=M

m+1

; L.

2. Rule Deide (M

0

;N))

DPLL

(M

0

L

>

;N): The statement holds beause of

M

0

; L

>

j= > and the indution hypothesis.

3. Rule Baktrak (M

0

1

L

>

M

0

2

;N))

DPLL

(M

0

1

:L;N): By de�nition M

0

2

has

no deision literals and there is a lause D 2 N with M

0

1

L

>

M

0

2

j=

:D. With the indution hypothesis M

0

1

L

>

j= M

0

2

holds. It follows

that M

0

1

L

>

j= :D whih is equivalent to M

0

1

L

>

; D j= ? and

M

0

1

; D j= :L

>

. Sine D 2 N it holds that N;M

0

1

j= :L. Let M

0

1

=

M

1

L

>

1

M

2

L

>

2

: : : L

>

m

M

m+1

where all M

i

have no deision literals then by

indution hypothesis N;M

1

L

>

1

M

2

L

>

2

: : : L

>

m

j=M

m+1

;:L.

Proposition 2.9.2. For a state (M ;N) that is reahed from the initial state

(�;N) where M ontains k deision literals L

1

: : : L

k

with k � 0 and for eah

valuation A with A j= N;L

1

; : : : ; L

k

it holds that A(L

i

) = 1 for all L

i

2M .

60 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. LetM =M

1

L

>

1

: : : L

>

k

M

k+1

where allM

i

have no deision literals. With

Lemma 2.9.1 for all i it holds that N;M

1

L

>

1

: : : L

>

i�1

j=M

i

, i.e. for all i, literals

K 2 M

i

and eah valuation A with A j= N;L

1

; : : : ; L

k

it holds that A(K) =

1.

Lemma 2.9.3. If M ontains only propagated literals and M = L

1

: : : L

n

and

there is a D 2 N with M j= :D where D = K

1

: : :K

m

then N is unsatis�able.

Proof. Sine M j= :D it holds that :K

i

2 M for all 1 � i � m. With Propo-

sition 2.9.2 for eah valuation A with A j= N it holds that A(L

j

) = 1 for all

1 � j � n. Thus in partiular it holds that A(:K

i

) = 1 for all 1 � i � m.

Therefore D is always false under any valuation A and N is always unsatis�-

able.

Proposition 2.9.4 (DPLL Soundness). The rules Propagate, Deide, and

Baktrak are sound, i.e. whenever the algorithm terminates in state (M ;N)

starting from the initial state (�;N) then it holds: M j= N i� N is satis�able

Proof. ()) if M j= N then obviously N is satis�able.

(() Proof by ontradition. Assume N is satis�able and the algorithm termi-

nates in state (M ;N) starting from the initial state (�;N). Furthermore, assume

M j= N does not hold, i.e. either there is at least one literal that is not de�ned

in M or there is a lause D 2 N with M j= :D.

For the �rst ase the rule Deide is appliable. This ontradits that the

algorithm terminated.

For the seond ase either M only ontains propagated literals then N is

unsatis�able with Lemma 2.9.3. This is a ontradition to the assumption that

N is satis�able. IfM does not only ontain propagated literals there must be at

least one deision literal in M . Then the rule Baktrak is appliable but this

ontratits that the algorithm terminated.

Therefore M j= N and the rules Propagate, Deide, and Baktrak are sound.

Proposition 2.9.5 (DPLL Completeness). The rules Propagate, Deide, and

Baktrak are omplete: for any valuation M with M j= N , there is a sequene

of rule appliation generating (M;N) as a �nal state.

Proof. Let M = L

1

L

2

: : : L

k

. Sine it is a valuation there are no dupliates in

M and k appliations of rule Deide yield (L

>

1

L

>

2

: : : L

>

k

; N) out of (�;N). This

is a �nal state beause baktrak is not appliable sine M j= N and Propagate

and Deide are no further appliable sine M is a valuation.

Proposition 2.9.6 (DPLL Termination). The rules Propagate, Deide, and

Baktrak terminate on any input state (�;N).

2.10. CONFLICT DRIVEN CLAUSE LEARNING (CDCL) 61

Proof. Let n be the number of propositional variables in N . As usual, termina-

tion is shown by assigning a well-founded measure and proving that it dereases

with eah rule appliation. The domain for the measure � are n-tuples over

f1; 2; 3g.

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; : : : ; 3)

where m

i

= 2 if L

i

is annotated with > and m

i

= 1 otherwise. So �((�;N)) =

(3; : : : ; 3). The well-founded ordering is the lexiographi extension of < to n-

tuples. What remains to be shown is that eah rule appliation dereases �. I

do this by a ase analysis over the rules.

Propagate:

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; 3; : : : ; 3)

> (m

1

; : : : ;m

k

; 1; 3; : : : ; 3)

= �((L

1

: : : L

k

L;N))

Deide:

�((L

1

: : : L

k

;N)) = (m

1

; : : : ;m

k

; 3; 3; : : : ; 3)

> (m

1

; : : : ;m

k

; 2; 3; : : : ; 3)

= �((L

1

: : : L

k

L

>

;N))

Baktrak:

�((L

1

: : : L

j

L

>

L

j+1

: : : L

k

;N)) = (m

1

; : : : ;m

j

; 2;m

j+1

; : : : ;m

k

; 3; : : : ; 3)

> (m

1

; : : : ;m

j

; 1; 3; : : : ; 3)

= �((L

1

: : : L

j

:L;N))

2.10 Conit Driven Clause Learning (CDCL)

A CDCL problem state is a �ve-tuple (M ;N ;U ; k;C) where M a sequene of

annotated literals, N and U are sets of lauses, k 2 N, and C is a non-empty

lause or > or ?. In partiular, the following states an be distinguished:

(�;N ; ;; 0;>) is the start state for some lause set N

(M ;N ;U ; k;>) is a �nal state, if M j= N and all literals from N are

de�ned in M

(M ;N ;U ; k;?) is a �nal state, where N has no model

(M ;N ;U ; k;>) is an intermediate model searh state if M 6j= N

(M ;N ;U ; k;D) is a baktraking state if D 62 f>;?g

A literal L is of level k with respet to a problem state (M ;N ;U ; j;C) if L or

:L ours in M and the �rst deision literal left from L (:L)in M is annotated

with k or if there is no suh literal 0. A lause D is of level k with respet to a

62 CHAPTER 2. PROPOSITIONAL LOGIC

problem state (M ;N ;U ; j;C) if k is the maximal level of a literal in D. Reall

C is a non-empty lause or > or ?. The rules are

Propagate (M ;N ;U ; k;>))

CDCL

(ML

C_L

;N ;U ; k;>)

provided C _ L 2 (N [U), M j= :C, and L is unde�ned in M

Deide

(M ;N ;U ; k;>))

CDCL

(ML

k+1

;N ;U ; k + 1;>)

provided L is unde�ned in M

Conit

(M ;N ;U ; k;>))

CDCL

(M ;N ;U ; k;D)

provided D 2 (N [U) and M j= :D

Skip (ML

C_L

;N ;U ; k;D))

CDCL

(M ;N ;U ; k;D)

provided D 62 f>;?g and :L does not our in D

Resolve

(ML

C_L

;N ;U ; k;D _ :L))

CDCL

(M ;N ;U ; k;D _ C)

provided D ontains a literal of level k or k = 0

For rule Resolve we assume that dupliate literals in D _ C are always re-

moved.

Baktrak

(M

1

K

i+1

M

2

;N ;U ; k;D _ L))

CDCL

(M

1

L

D_L

;N ;U [fD _

Lg; i;>)

provided L is of maximal level k in D _ L and D is of level i, where i < k.

Restart

(M ;N ;U ; k;>))

CDCL

(�;N ;U ; 0;>)

provided M 6j= N

Forget (M ;N ;U [fCg; k;>))

CDCL

(M ;N ;U ; k;>)

provided M 6j= N

Here ? denotes the empty lause, hene fail. The level of the empty lause

? is 0. The lause D_L added in rule Baktrak to U is alled a learned lause.

The CDCL algorithm stops with a modelM if neither Propagate nor Deide nor

Conit are appliable to a state (M ;N ;U ; k;>), hene M j= N and all literals

of N are de�ned inM . The only possibility to generate a state (M ;N ;U ; k;?) is

by the rule Resolve. So in ase of deteting unsatis�ability the CDCL algorithm

atually generates a resolution proof as a erti�ate. I will disuss this aspet

in more detail in Setion 2.12. In the speial ase of a unit lause L, the rule

Propagate atually annotates the literal L with itself.

Obviously, the CDCL rule set does not terminate in general for a number of

reasons. For example, starting with (�;N ; ;; 0;>) a simple ombination Propa-

gate, Deide and eventually Restart yields the start state again. Even after a

suessful appliation of Baktrak, exhaustive appliation of Forget followed

by Restart again produes the start state. So why these rules? Atually, any

modern SAT solver is based on this rule set and the underlying mehanisms. I

will motivate the rules later on and how they are atually used in an eÆient

way.

