
Chapter 1

Preliminaries

This 
hapter introdu
es all abstra
t 
on
epts needed for the rest of this book.

Generi
 problem solving a
tually starts with a problem. In this book problems

will appear in the form of examples. In order to solve a problem in a generi


way, i.e., by generi
 algorithms, the �rst step is to formalize the problem using

a generi
 language. A generi
 language has a mathemati
ally pre
ise syntax

and semanti
s, be
ause eventually it is analyzed by a program running on a


omputer. Su
h a language is 
alled a logi
. The problem be
omes a senten
e,

i.e., a formula of the logi
. In parti
ular, semanti
s in this 
ontext always means

a notion of truth. The notion of truth is a very expressive instrument to a
tually

formalize what it means to eventually solve a parti
ular problem. A solution

to the formula should result in a solution to the problem. Dete
ting that the

formula is true (false) 
orresponds to solving the problem.

On
e the problem is des
ribed in a logi
, the generi
 language, it needs

rules that reason about the truth of formulas and hen
e eventually solve the

problem. A logi
 plus its reasoning rules is 
alled a 
al
ulus. The rules operate

on a symboli
 representation of a problem state that in
ludes in parti
ular the

formula formalizing the problem. Typi
ally, further information is added to the

state representation in order to keep tra
k of the solution pro
ess. The rules

should enjoy a number of properties in order to be useful. They should be

sound, i.e., whenever they 
ompute a solution the result is a
tually a solution

to the initial problem. And whenever they 
ompute that there is no solution

this should hold as well. The rules should be 
omplete, i.e., whenever there is a

solution to the problem they 
ompute it. Finally, they should be terminating.

If they are applied to a starting problem state, they always stop after a �nite

number of steps. Typi
ally, be
ause no more rule is appli
able. Depending on the


omplexity of the problem and the involved logi
, not all the desired properties

soundness, 
ompleteness, termination, 
an be a
hieved, in general. But I will

turn to this later.

The rules of a 
al
ulus are typi
ally designed to operate independently and


an therefore be exe
uted in a non-deterministi
 way. The advantage of su
h

a presentation is that properties of the rules, e.g., like soundness, 
an also be
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4 CHAPTER 1. PRELIMINARIES

shown independently for ea
h rule. And if a property 
an be shown for the rule

set, it applies to all potential exe
ution orderings of the rules. The disadvantage

of su
h a presentation is that a random appli
ation of the rules typi
ally leads to

an ineÆ
ient algorithm. Therefore, a strategy is added to the 
al
ulus (rules) and

the strategy plus the rules build an automated reasoning algorithm or shortly an

algorithm. Depending on the type of property and the a
tual 
al
ulus, sometimes

we prove it for the 
al
ulus or the respe
tive algorithm.

An automated reasoning algorithm is still an abstra
t, mathemati
al 
on-

stru
t and there is typi
ally a signi�
ant gap between su
h an algorithm and

an a
tual 
omputer program implementing the algorithm. An implementation

often requires a dedi
ated 
ontrol of the 
al
ulus plus the invention of spe
i�


data stru
tures and algorithms. The implementation of an algorithm is 
alled a

system. Eventually the system is applied to real world problems, i.e., an appli-


ation.

Appli
ation

System + Problem

System

Algorithm + Implementation

Algorithm

Cal
ulus + Strategy

Cal
ulus

Logi
 + States + Rules

Logi


Syntax + Semanti
s

C

Typi
ally 
omputer s
ien
e algorithms are formulated in languages

that are 
lose to a
tual programming languages su
h as C, C++,

or Java

1

. So, in parti
ular, they rely on deterministi
 programming

languages with an operational semanti
s. I overload the notion of a 
lassi
al


omputer s
ien
e algorithm and an automated reasoning algorithm. An auto-

mated reasoning algorithm is build on a rule set plus a strategy and typi
ally

the strategy does not turn the rules into a deterministi
 algorithm. There is still

some room left that will eventually be de
ided for an appli
ation. The di�eren
e

in design re
e
ts the di�eren
e in s
ope. A 
lassi
al 
omputer s
ien
e algorithm

solves a very spe
i�
 problem, e.g., it sorts a �nite list of numbers. An algo-

rithm is meant to solve a whole 
lass of problems, e.g., later on I will show that

ordered resolution 
an solve any polynomial time 
omputable problem based on

a fragment of �rst-order logi
.

As a start, Se
tion 1.1 studies the overall above approa
h in
luding all men-

tioned properties in full detail on a 
on
rete problem: 4� 4-Sudokus. Although

this is a rather trivial and a
tually �nite problem and the suggested algorithm is

1


opyright



1.1. SOLVING 4� 4 SUDOKU 5

very naive, it serves ni
ely as a throughout example demonstrating all aspe
ts.

Later on, I will develop far more 
omplex logi
s that then 
an be used to solve

more interesting problems. In parti
ular, real world problems.

The subsequent se
tions abstra
t from solving Sudokus and develop the un-

derlying 
on
epts needed as a basi
 toolbox for the rest of this book. Basi


mathemati
al notions on numbers, sets, relations, and words are de�ned in Se
-

tion 1.2. In order to be able to talk about the 
omplexity of algorithms Se
-

tion 1.3 in parti
ular explains Big O notation and NP-hardness. Se
tion 1.4 is

devoted to orderings, be
ause they show up on the meta-level, e.g. as a means

to prove termination. They also serve as a basis for proving properties of rule

sets by indu
tion, Se
tion 1.5, and also on the logi
al reasoning level where they

will be a
tually an e�e
tive means for de�ning more eÆ
ient rule sets. Finally,

Se
tion 1.6 introdu
es the most important 
on
epts of rule based reasoning in

general by an introdu
tion to basi
 
on
epts of (abstra
t) rewrite systems.

1.1 Solving 4� 4 Sudoku

Consider solving a 4� 4 Sudoku as it is depi
ted on the left in Figure 1.1. The

goal is to �ll in natural numbers from 1 to 4 into the 4�4 square so that in ea
h


olumn, row and 2�2 box sharing an outer 
orner with the original square ea
h

number o

urs exa
tly on
e. Conditions of this kind are 
alled 
onstraints as

they restri
t �lling the Sudoku with numbers in an arbitrary way. The Sudoku

(Solution) on the right (Figure 1.1) shows the, in this 
ase, unique solution to

the Sudoku (Start) on the left.

2 1

3 1

1 2

Start

2 1 4 3

3 4 1 2

4 2 3 1

1 3 2 4

Solution

Figure 1.1: A 4� 4 Sudoku and its Solution

Why is this solution unique? It is be
ause the 
onstraints of 4� 4 Sudokus

have already for
ed all other values. To start, the only square for the missing

1 is the square above the 3. All other squares would violate a 
onstraint. But

then the third 
olumn is almost �lled so the top square of this 
olumn must be

a 4, and so on.

In the following, I will build a spe
i�
 logi
 for 4 � 4 Sudokus, in
luding

an algorithm in form of a set of rules and a strategy for solving the problem

and a
tually prove that the algorithm is sound, 
omplete, and terminating. As

already said, an algorithm is sound if any solution the algorithm de
lares to

have found is a
tually a solution. It is 
omplete if it �nds a solution in 
ase
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one exists. It is terminating if it does not run forever. Sin
e Sudokus are �nite


ombinatorial puzzles, su
h an algorithm exists. The most simple algorithm is

to systemati
ally guess all values for all unde�ned squares of the Sudoku and to


he
k whether the guessed values a
tually 
onstitute a solution. However, this

amounts to 
he
king 4

16

di�erent assignments of values to the squares. Su
h an

approa
h is even worse than the one I will introdu
e in the sequel.

I 
onsider a Sudoku to be a two dimensional array f indexed from 1 to 4 in

ea
h dimension, starting from the upper left 
orner. So f(1; 1) is the value of the

square in the upper left 
orner and in 
ase of our initial Sudoku. For the start

Sudoku in Figure 1.1 the value of this square is given to be 2 whi
h I denote

by the equation f(1; 1) � 2. So the logi
 for Sudokus are �nite 
onjun
tions

(
onjun
tion denoted by ^) of equations f(x; y) � z, where the variables x, y, z

range over the domain 1, 2, 3, 4. The meaning of a 
onjun
tion is that all values

given by the equations should be simultaneously true in the Sudoku. The overall

left Sudoku (Start in Figure 1.1) is then given by the 
onjun
tion of equations

f(1; 1) � 2 ^ f(1; 2) � 1 ^ f(3; 3) � 3 ^ f(3; 4) � 1 ^ f(4; 1) � 1 ^ f(4; 3) � 2

T

If you are already familiar with 
lassi
al logi
, you know that the

formulas f(1; 1) � 2^ f(1; 2) � 1 and f(1; 2) � 1^ f(1; 1) � 2 
annot

be distinguished semanti
ally. They have always the same truth value,

be
ause 
onjun
tion (^) is 
ommutative, and, in addition, asso
iative. However,

here, the above 
onjun
tion will be
ome part of a problem state. The sudoku

logi
 rules synta
ti
ally manipulate problem states. A problem state 
ontaining

f(1; 1) � 2 ^ f(1; 2) � 1 will be di�erent from one 
ontaining f(1; 2) � 1 ^

f(1; 1) � 2, be
ause the former impli
itly means that there is no solution to the

sudoku with f(1; 1) � 1, whereas the latter means that there is no solution to

the sudoku with f(1; 1) � 1 in presen
e of f(1; 2) � 1.

The goal of the algorithm is then to �nd the assignments for the empty

squares with respe
t to the above mentioned 
onstraints on the number o

ur-

ren
es in 
olumns, rows and boxes. The algorithm 
onsists of four rules that

ea
h take a state of the solution pro
ess and transform it into a di�erent one,


loser to a solution. A state is des
ribed by a triple (N ;D; r) where N 
on-

tains the equations of the starting Sudoku, for example, the above 
onjun
tion

of equations, D is a 
onjun
tion of additional equations 
omputed by the al-

gorithm, and r 2 f>;?g des
ribes whether the a
tual values for f in N and

D potentially 
onstitute a solution. If r = > then no 
onstraint violation has

been dete
ted and if r = ? a 
onstraint violation has been dete
ted but not

yet resolved. The initial problem state is represented by the triple (N ;>;>)

where > also denotes an empty 
onjun
tion and hen
e truth. The problem state

(N ;>;?) denotes the fail state, i.e., there is no solution for a Sudoku starting

with the assignments 
ontained in N .

A square f(x; y) where x; y 2 f1; 2; 3; 4g is 
alled de�ned by N ^D if there is

an equation f(x; y) � z, z 2 f1; 2; 3; 4g in N or D. Otherwise, f(x; y) is 
alled

unde�ned. For an initial state (N ;>;>) I assume that the same square is not
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de�ned several times in N . We say that N ^D

0

is a solution to a Sudoku N , if

all squares are de�ned in N ^D

0

, no square is de�ned more than on
e in N ^D

0

and the assignments in N ^D

0

do not violate any 
onstraint. It is a solution to

a problem state (N ;D;>) if all equations from D o

ur in D

0

. In the sequel we

always assume that for any start state (N ;>;>) ea
h square is de�ned at most

on
e in N and all variables x; y; z (possibly indexed, primed) range over values

1 to 4. Then the four rules of a �rst (naive) algorithm are

Dedu
e

(N ;D;>) ) (N ;D ^ f(x; y) � 1;>)

provided f(x; y) is unde�ned in N ^D, for any x; y 2 f1; 2; 3; 4g.

Con
i
t

(N ;D;>) ) (N ;D;?)

provided for (i) f(x; y) = f(x; z) for f(x; y), f(x; z) de�ned in N ^D for some

x; y; z and y 6= z, or,

(ii) f(y; x) = f(z; x) for f(y; x), f(z; x) de�ned in N ^ D for some x; y; z and

y 6= z, or,

(iii) f(x; y) = f(x

0

; y

0

) for f(x; y), f(x

0

; y

0

) de�ned in N ^D and [x; x

0

2 f1; 2g

or x; x

0

2 f3; 4g℄ and [y; y

0

2 f1; 2g or y; y

0

2 f3; 4g℄ and (x; y) 6= (x

0

; y

0

).

Ba
ktra
k

(N ;D

0

^f(x; y) � z^D

00

;?) ) (N ;D

0

^f(x; y) � z+1;>)

provided z < 4 andD

00

= > orD

00


ontains only equations of the form f(x

0

; y

0

) �

4.

Fail

(N ;D;?) ) (N ;>;?)

provided D 6= > and D 
ontains only equations of the form f(x; y) � 4.

Rules are applied to a state by �rst mat
hing the left hand side of the rule

(left side of )) to the state, 
he
king the side 
onditions des
ribed below the

rule and if they are ful�lled then repla
ing the state by the right hand side of

the rule. There is no order among the rules, so they are applied \don't 
are non-

deterministi
ally". A strategy will �x the ordering and turn into an algorithm.

Furthermore, even a single rule may not be deterministi
. For example rule

Dedu
e does not spe
ify 
on
rete values for x; y so it 
an be applied to any

unde�ned square f(x; y).

Starting with the state 
orresponding to the initial Sudoku shown on the left

in Figure 1.1, a one step derivation by rule Dedu
e is (N ;>;>)! (N ; f(1; 3) �

1;>). A
tually the rule Dedu
e is the only appli
able rule to (N ;>;>). Con-


erning the new state (N ; f(1; 3) � 1;>) two rules are appli
able: Dedu
e and

Con
i
t. An appli
ation of Con
i
t, where side 
ondition (i) is satis�ed, yields

(N ; f(1; 3) � 1;?) and after an appli
ation of Ba
ktra
k to this state the rule


omputes (N ; f(1; 3) � 2;>). Applying Dedu
e to (N ; f(1; 3) � 1;>) results,

e.g., in (N ; f(1; 3) � 1:f(1; 4) � 1;>). Figure 1.2 shows this sequen
e of rule

appli
ations together with the 
orresponding Sudokus.

This is one reason why the rule set is ineÆ
ient. Dedu
e still �res in 
ase of

an already existing 
onstraint violation and Dedu
e does not 
onsider already
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2 1

3 1

1 2

(N = f(1; 1) � 2 ^ f(1; 2) � 1^

f(3; 3) � 3 ^ f(3; 4) � 1^

f(4; 1) � 1 ^ f(4; 3) � 2;>;>)

+ Dedu
e f(1; 3) � 1

2 1 1

3 1

1 2

(N ; f(1; 3) � 1;>)

+ Con
i
t

2 1 1

3 1

1 2

(N ; f(1; 3) � 1;?)

+ Ba
ktra
k f(1; 3) � 2;

2 1 2

3 1

1 2

(N ; f(1; 3) � 2;>)

Figure 1.2: E�e
t of Applying the Inferen
e Rules

existing equations when assigning a new value. It simply always assigns \1".

Improving the algorithm along the se
ond line is subje
t to Exer
ises 1.1, 1.2.

Furthermore, note that if in a start state (N ;>;>) the initial assignments in N

already 
ontain a 
onstraint violation, then the rule 
on
i
t dire
tly produ
es

the �nal fail state. An appropriate, very simple strategy turns the rule set into

an algorithm and prefers Con
i
t over Dedu
e.

The Algorithm 1, SimpleSudoku(S), 
onsists of the four rules together with

a rule appli
ation strategy. The s
ope of loops and if-then-else statements is

indi
ated by indentation. A statement Rule(S) for some Rule means that the

appli
ation of the rule is tested and if appli
able it is applied to the problem

state S. If su
h a statement o

urs in a ifrule 
ondition, it is applied as before

and returns true i� (if and only if) the rule was appli
able. For example, the

statement at line 1

ifrule (Con
i
t(S)) then

return S;

is a shorthand for

if ( the rule Con
i
t is appli
able to state S ) then
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Algorithm 1: SimpleSudoku(S)

Input : An initial state S = (N ;>;>).

Output: A �nal state S = (N ;D;>) or S = (N ;>;?)

1 ifrule (Con
i
t(S)) then

2 return S;

3 while (any rule appli
able) do

4 ifrule (Con
i
t(S)) then

5 Ba
ktra
k(S);

6 Fail(S);

7 else

8 Dedu
e(S);

9 end

10 return S;

apply rule Con
i
t to S;

return S;

where the appli
ation 
ondition is separated from the rule appli
ation.

At line 1 the rule Con
i
t is tested and if appli
able it will produ
e the

�nal state S = (N ;>;?), so the algorithm returns S. The while-loop starting

at line 3 terminates if no rule is appli
able anymore. For otherwise, the rule

Con
i
t is tested before Dedu
e in order to prevent useless Dedu
e steps. The

rules Ba
ktra
k and Fail are only appli
able after an appli
ation of Con
i
t, so

they are guarded by an appli
ation of Con
i
t. Therefore, SimpleSudoku is a

fair algorithm in the sense that no rule appli
ation needed to 
ompute a �nal

state will be prohibited.

If the rules are 
onsidered in the 
ontext of the SimpleSudoku algorithm, then

they 
an be simpli�ed. For example, the 
ondition for rule Fail that all equations

are of the form f(x; y) � 4 
an be dropped, be
ause in SimpleSudoku the rule

Fail is only tested and potentially applied after having tested Ba
ktra
king.

C

It is a design issue how mu
h rule appli
ation 
ontrol is a
tually put

into the side 
onditions of the rules and how mu
h 
ontrol into the

algorithm. It depends, of 
ourse, on the problem to be solved but also

on whi
h level properties 
an be shown. For SimpleSudoku all properties 
an be

shown on the 
al
ulus, i.e., rule level. In general, showing termination of a rule

set often requires a parti
ular strategy, i.e., algorithm.

In the sequel, I will prove that the four rules are sound, 
omplete and ter-

minating. Sound means that whenever the rules 
ompute some state (N ;D;>)

and it has a solution, then this solution is also a solution for N . Complete means

that whenever there is a solution to the Sudoku, exhaustive appli
ation of the

four rules will 
ompute a solution. Note that for 
ompleteness the 
omputation

of any solution, not an a priori sele
ted one, is suÆ
ient. In 
ase of the Sudoku

rules even strong 
ompleteness holds: for any solution N ^ D of the Sudoku,
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there is a sequen
e of rule appli
ations so that (N ;D;>) is a terminating state.

So any a priori sele
ted solution 
an be generated. Termination at the rule level

means that independently of the a
tual sequen
e of rule appli
ations to a start

state, there is no in�nite sequen
e of rule appli
ations possible. In the sequel,

I will 
onsider a fourth property important for rule based systems: 
on
uen
e.

A set of rules is 
on
uent if whenever there are several rules appli
able to a

given state, then the di�erent generated states 
an be rejoined by further rule

appli
ations. So 
on
uen
e guarantees unique results on termination. Be
ause

of the above informal fairness argument for the SimpleSudoku algorithm, all

these properties also hold not only for the rule set but also for the algorithm.

Proposition 1.1.1 (Soundness). The rules Dedu
e, Con
i
t, Ba
ktra
k and

Fail are sound. Starting from an initial state (N ;>;>): (i) for any �nal state

(N ;D;>), the equations in N ^ D are a solution, and, (ii) for any �nal state

(N ;>;?) there is no solution to the initial problem.

Proof. First of all note that no rule manipulates N , the �rst 
omponent of a

state (N ;D; r). This justi�es the way this proposition is stated. (i) So assume a

�nal state (N ;D;>) so that no rule is appli
able. In parti
ular, this means that

for all x; y 2 f1; 2; 3; 4g the square f(x; y) is de�ned in N ^D as for otherwise

Dedu
e would be appli
able, 
ontradi
ting that (N ;D;>) is a �nal state. So

all squares are de�ned by N ^ D. No square is de�ned more than on
e. What

remains to be shown is that those assignments a
tually 
onstitute a solution to

the Sudoku. However, if some assignment in N ^ D results in a repetition of

a number in some 
olumn, row or 2 � 2 box of the Sudoku, then rule Con
i
t

is appli
able, 
ontradi
ting that (N ;D;>) is a �nal state. In sum, (N ;D;>) is

a solution to the Sudoku and hen
e the rules Dedu
e, Con
i
t, Ba
ktra
k and

Fail are sound.

(ii) So assume that the initial problem (N ;>;>) has a solution. I prove by


ontradi
tion based on an indu
tive argument that in this 
ase the rules 
annot

generate a state (N ;>;?). So let (N ;D;>) be an arbitrary state with D of max-

imal length still having a solution, but (N ;>;?) is rea
hable from (N ;D;>).

This in
ludes the initial state if D = >. An appropriate sele
tion of rule ap-

pli
ations 
orre
tly de
ides the next square. Sin
e (N ;D;>) still has a solution

the only appli
able rule is Dedu
e. It generates (N ;D^f(x; y) � 1;>) for some

x; y 2 f1; 2; 3; 4g. If (N ;D ^ f(x; y) � 1;>) still has a solution the proof is

done sin
e this violates D to be of maximal length. So (N ;D ^ f(x; y) � 1;>)

does not have a solution anymore. But then eventually Con
i
t and Ba
ktra
k

are appli
able to a state (N ;D ^ f(x; y) � 1 ^ D

0

;?) where D

0

only 
ontains

equations of the form f(x

0

; y

0

) � 4 resulting in (N ;D ^ f(x; y) � 2;>). Now

repeating the argument we will eventually rea
h a state (N ;D ^ f(x; y) � k;>)

that has a solution, �nally 
ontradi
ting D to be of maximal length.

For the �rst part of the soundness proof, Proposition 1.1.1, neither the rule

Ba
ktra
k nor Fail shows up. This is be
ause an empty rule system is trivially

sound. The rules Ba
ktra
k or Fail are indispensable for the se
ond part of the

proof and for showing 
ompleteness.
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CThe above proof 
ontains a \handwaving argument", the senten
e

\But then eventually Con
i
t and Ba
ktra
k are appli
able to a state

(N ;D ^ f(x; y) � 1 ^ D

0

;?) where D

0

only 
ontains equations of the form

f(x

0

; y

0

) � 4 resulting in (N ;D ^ f(x; y) � 2;>)." needs a proof on its own. I

will not do the proof here, but for some of the rule sets for de
iding satis�ability

of propositional logi
, Chapter 2, I will do analogous proofs in full detail.

Proposition 1.1.2 (Strong Completeness). The rules Dedu
e, Con
i
t, Ba
k-

tra
k and Fail are strongly 
omplete. For any solution N ^ D of the Sudoku

there is a sequen
e of rule appli
ations so that (N ;D;>) is a �nal state.

Proof. A parti
ular strategy for the rule appli
ations is needed to indeed gen-

erate (N ;D;>) out of (N ;>;>) for some spe
i�
 solution N ^D. Without loss

of generality I assume the assignments in D to be sorted so that assignments

to a number k 2 f1; 2; 3; 4g pre
ede any assignment to some number l > k. So

if, for example, N does not assign all four values 1, then the �rst assignment

in D is of the form f(x; y) � 1 for some x; y. Now I apply the following strat-

egy, subsequently adding all assignments from D to (N ;>;>). The strategy has

a
hieved state (N ;D

0

;>) and the next assignment from D to be established is

f(x; y) � k, meaning f(x; y) is not de�ned in N ^ D

0

. Then until l = k the

strategy does the following, starting from l = 1. It applies Dedu
e adding the

assignment f(x; y) � l. If Con
i
t is appli
able to this assignment, it is applied

and then Ba
ktra
k, generating the new assignment f(x; y) � l+ 1 and so on.

I need to show that this strategy in fa
t eventually adds f(x; y) � k to

D

0

. As long as l < k any added assignment f(x; y) � l results in rule Con
i
t

appli
able, be
ause D is ordered and all four values for all l < k are already

established. The eventual assignment f(x; y) � k does not generate a 
on
i
t

be
ause D is a solution. For the same reason, the rule Fail is never appli
able.

Therefore, the strategy generates (N ;D;>) out of (N ;>;>).

Note the subtle di�eren
e between the se
ond part of proving Proposi-

tion 1.1.1 and the above strong 
ompleteness proof. The former shows that any

solution 
an be produ
ed by the rules whereas the latter shows that a spe
i�
,

a priori sele
ted solution 
an be generated.

Proposition 1.1.3 (Termination). The rules Dedu
e, Con
i
t, Ba
ktra
k and

Fail terminate on any input state (N ;>;>).

Proof. On
e the rule Fail is appli
able, no other rule is appli
able on the result

anymore. So there is no need to 
onsider rule Fail for termination. The idea of

the proof is to assign a measure over the natural numbers to every state so that

ea
h rule stri
tly de
reases this measure and that the measure 
annot get below

0. The measure is as follows.

For any given state S = (N ;D; r) with r 2 f>;?g with D = f(x

1

; y

1

) �

k

1

^ : : : ^ f(x

n

; y

n

) � k

n

I assign the measure �(S) by

�(S) = 2

49

� p�

n

X

i=1

k

i

� 2

49�3i
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where p = 0 if r = > and p = 1 otherwise.

The measure �(S) is well-de�ned and 
annot be
ome negative as n � 16,

p � 1, and 1 � k

i

� 4 for any D. In parti
ular, the former holds be
ause the

rule Dedu
e only adds values for unde�ned squares and the overall number of

squares is bound to 16. What remains to be shown is that ea
h rule appli
ation

de
reases �. I do this by a 
ase analysis over the rules.

Dedu
e:

�((N ;D;>)) = 2

49

�

P

n

i=1

k

i

� 2

49�3i

> 2

49

�

P

n

i=1

k

i

� 2

49�3i

� 1 � 2

49�3(n+1)

= �((N ;D ^ f(x; y) � 1;>))

Con
i
t:

�((N ;D;>)) = 2

49

�

P

n

i=1

k

i

� 2

49�3i

> 2

49

� 1�

P

n

i=1

k

i

� 2

49�3i

= �((N ;D;?))

Ba
ktra
k:

�((N ;D

0

^ f(x

l

; y

l

) � k

l

^D

00

;?))

= 2

49

� 1� (

P

l�1

i=1

k

i

� 2

49�3i

)� k

l

� 2

49�3l

�

P

n

i=l+1

k

i

� 2

49�3i

> 2

49

� (

P

l�1

i=1

k

i

� 2

49�3i

)� (k

l

+ 1) � 2

49�3l

= �(N ;D

0

^ f(x

l

; y

l

) � k

l

+ 1;>)

where the stri
t inequation holds be
ause 2

49�3l

>

P

n

i=l+1

k

i

� 2

49�3i

+ 1.

As already mentioned, there is another important property for don't 
are

non-deterministi
 rule sets: 
on
uen
e. It means that whenever several sequen
es

of rules are appli
able to a given state, the respe
tive results 
an be rejoined

by further rule appli
ations to a 
ommon problem state. A weaker 
ondition

is lo
al 
on
uen
e where only one step of di�erent rule appli
ations needs to

be rejoined. In Se
tion 1.6, Lemma 1.6.6, the equivalen
e of 
on
uen
e and

lo
al 
on
uen
e in 
ase of a terminating rule system is shown. Assuming this

result, for the Sudoku rule system only one step of so 
alled overlaps needs to

be 
onsidered. There are two potential kinds of overlaps for the Sudoku rule

system. First, an appli
ation of Dedu
e and Con
i
t to some state. Se
ond, two

di�erent appli
ations of Dedu
e to a state. The below Proposition 1.1.4 shows

that the former 
ase 
an in fa
t be rejoined and Example 1.1.5 shows that the

latter 
annot. So in sum, the system is not lo
ally 
on
uent and hen
e not


on
uent. This fa
t has already shown up in the soundness and 
ompleteness

proofs.

Proposition 1.1.4 (Dedu
e and Con
i
t are 
on
uent). Given a state

(N ;D;>) out of whi
h two di�erent states (N ;D

1

;>) and (N ;D

2

;?) 
an be

generated by Dedu
e and Con
i
t, respe
tively, then the two states 
an be re-

joined to a state (N ;D

0

; �) via further rule appli
ations.
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Proof. Consider an appli
ation of Dedu
e and Con
i
t to a state (N ;D;>)

resulting in (N ;D ^ f(x; y) � 1;>) and (N ;D;?), respe
tively. We will now

show that in fa
t we 
an rejoin the two states. Noti
e that sin
e Con
i
t is

appli
able to (N ;D;>) it is also appli
able to (N ;D ^ f(x; y) � 1;>). So the

�rst sequen
e of rejoin steps is

(N ;D ^ f(x; y) � 1;>) ) (N ;D ^ f(x; y) � 1;?)

) (N ;D ^ f(x; y) � 2;>)

)

�

(N ;D ^ f(x; y) � 4;?)

where we subsequently applied Con
i
t and Ba
ktra
k to rea
h the state (N ;D^

f(x; y) � 4;?) and )

�

abbreviates those �nite number of rule appli
ations.

Finally applying Ba
ktra
k (or Fail) to (N ;D;?) and (N ;D ^ f(x; y) � 4;?)

results in the same state.

Example 1.1.5 (Dedu
e is not 
on
uent). Consider the Sudoku state (f(1; 1) �

1 ^ f(2; 2) � 1;>;>) and two appli
ations of Dedu
e generating the respe
-

tive su

essor states (f(1; 1) � 1 ^ f(2; 2) � 1; f(3; 3) � 1;>) and (f(1; 1) �

1 ^ f(2; 2) � 1; f(3; 4) � 1;>). Obviously, both states 
an be 
ompleted to a

solution, but don not have a 
ommon solution. Therefore, it will not be possible

to rejoin the two states, see Figure 1.3.

1

1

Start

1

1

1

1

1

1

Dedu
e: f(3; 3) � 1Dedu
e: f(3; 4) � 1

Figure 1.3: Divergen
e of Rule Dedu
e

C

Is it desirable that a rule set for Sudoku is 
on
uent? It depends on

the purpose of the algorithm. In 
ase of the above rules set for Sudoku,

strong 
ompleteness and 
on
uen
e 
annot both be a
hieved, be
ause

any solution of the Sudoku results in its own, unique, �nal state.

Exer
ises

(1.1) Improve the Sudoku rule system:
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(a) Re�ne the Dedu
e rule so that it does not generate an immediate 
on-

straint violation.

(b) Prove for the improved rule system that it is sound, 
omplete, and termi-

nating.

(1.2) Further improve the Sudoku rule system:

(a) In addition to the re�ned Dedu
e rule, add a rule Propagate to the rule

set that exploits all unique de
isions. For example, if a row, 
olumn, box

is �lled ex
ept one square, the appli
ation of the rule �lls the remaining

square with the 
orre
t value.

(b) Prove for the new rule system 
onsisting of Dedu
e, Propagate, Con
i
t,

Ba
ktra
k, and Fail that it is sound, 
omplete, terminating. Is it also

lo
ally 
on
uent? Note that the introdu
tion of the additional Propagate

rule may also require 
hanges to the other rules in order to obtain a system

enjoying the before mentioned properties.

(1.3) Modify the Sudoku rule set so that the rules be
ome 
on
uent and are

still sound and 
omplete.

(1.4) Prove the statement \But then eventually Con
i
t and Ba
ktra
k are ap-

pli
able to a state (N ;D^f(x; y) � 1^D

0

;?) where D

0

only 
ontains equations

of the form f(x

0

; y

0

) � 4 resulting in (N ;D^ f(x; y) � 2;>)." from the proof of

Proposition 1.1.1.

(1.5)� Develop a deterministi
 algorithm in some imperative while-style pseudo

programming language that solves 4� 4 Sudokus.

(a) Prove that this algorithm is sound, 
omplete and terminating.

(b) What is the di�eren
e between the rule-based and while-based formulation

and what are the 
onsequen
es when proving the desired properties of the

algorithm?

(1.6)� Implement one of the Sudoku algorithms. Think of an appropriate, �le

based simple input format. Think 
arefully of data stru
tures for representing

N , the board, D, the 
urrent solution attempt and in parti
ular for supporting

the ba
ktra
king pro
edure.

1.2 Basi
 Mathemati
al Prerequisites

The set of the natural numbers in
luding 0 is denoted by N, N = f0; 1; 2; : : :g,

the set of positive natural numbers without 0 by N

+

, N

+

= f1; 2; : : :g, and the

set of integers by Z. A

ordingly Q denotes the rational numbers and R the real

numbers, respe
tively.

Given a set M , a multi-set S over M is a mapping S : M ! N, where S

spe
i�es the number of o

urren
es of elements m of the base set M within the

multiset S. I use the standard set notations 2, �, �, [, \ with the analogous
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meaning for multisets, for example (S

1

[ S

2

)(m) = S

1

(m) + S

2

(m). I also write

multi-sets in a set like notation, e.g., the multi-set S = f1; 2; 2; 4g denotes a

multi-set over the set f1; 2; 3; 4g where S(1) = 1, S(2) = 2, S(3) = 0, and

S(4) = 1. A multi-set S over a set M is �nite if fm 2 M j S(m) > 0g is �nite.

For the purpose of this book I only 
onsider �nite multi-sets.

An n-ary relation R over some set M is a subset of M

n

: R � M

n

. For two

n-ary relations R;Q over some setM , their union ([) or interse
tion (\) is again

an n-ary relation, where R [ Q := f(m

1

; : : : ;m

n

) 2 M j (m

1

; : : : ;m

n

) 2 R or

(m

1

; : : : ;m

n

) 2 Qg and R \ Q := f(m

1

; : : : ;m

n

) 2 M j (m

1

; : : : ;m

n

) 2 R

and (m

1

; : : : ;m

n

) 2 Qg . A relation Q is a subrelation of a relation R if

Q � R. The 
hara
teristi
 fun
tion of a relation R or sometimes 
alled pred-

i
ate indi
ates membership. In addition of writing (m

1

; : : : ;m

n

) 2 R I also

write R(m

1

; : : : ;m

n

). So the predi
ate R(m

1

; : : : ;m

n

) holds or is true if in fa
t

(m

1

; : : : ;m

n

) belongs to the relation R.

Given a nonempty alphabet � the set �

�

of �nite words over � is de�ned

by the (i) empty word � 2 �

�

, (ii) for ea
h letter a 2 � also a 2 �

�

and, �nally,

(iii) if u; v 2 �

�

so uv 2 �

�

where uv denotes the 
on
atenation of u and v. The

length juj of a word u 2 �

�

is de�ned by (i) j�j := 0, (ii) jaj := 1 for any a 2 �

and (iii) juvj := juj+ jvj for any u; v 2 �

�

.

1.3 Basi
 Computer S
ien
e Prerequisites

1.3.1 Data Stru
tures

1.3.2 While Languages over Rules

When presenting pseudo
ode for algorithms in textbooks typi
ally so 
alled

while languages are used (e.g., see [15℄). I assume familiarity with su
h lan-

guages and spe
ialize it here to rules. So let Rule be a rule de�ned on some

state S. Then

Rule(S);

is a shorthand for

if Rule is appli
able to S then apply it on
e to S;

where in parti
ular nothing happens if Rule is not appli
able to S. There may

be several potential appli
ations ofRule to S. In this 
ase any of these is 
hosen.

The statement

whilerule(Rule(S)) do Body ;

is a shorthand for

while (Rule is appli
able to S) do

apply Rule on
e to S;

exe
ute Body ;
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where the s
ope of the while loop is shown by indentation. The 
ondition of

the whilerule statement may also be a disjun
tion of rule statements. In this


ase the disjun
tion is exe
uted in a non-deterministi
, lazy way. We use k to

indi
ate the disjun
tion. Furthermore, a single rule statement may be followed

by a negation, indi
ated by !. In this 
ase the rule is tested for appli
ation,

if it is appli
able it is applied and the 
ondition be
omes false. If the rule is

not appli
able the 
ondition be
omes true. Ex
ept for these extensions, boolean


ombinations over rule statements are not part of the language. Finally, the

statement

ifrule(Rule(S)) then Body ;

is a shorthand for

if (Rule is appli
able to S) then

apply Rule on
e to S;

exe
ute on
e Body ;

In Se
tion 1.1 I have already used the language for des
ribing an algorithm

solving sudokus, Algorithm 1, SimpleSudoku(S).

1.3.3 Complexity

This book is about algorithms solving problems presented in logi
. Su
h an al-

gorithm is typi
ally represented by a �nite set of rules, manipulating a problem

state that 
ontains the logi
al representation plus bookkeeping information. For

example, for solving 4 � 4-Sudokus, see Se
tion 1.1, we represented the board

by a �nite 
onjun
tion of equations. The problem state was given by the repre-

sentation of the board plus assignments for remaining empty squares, plus an

indi
ation whether two 
on
i
ting assignments have been dete
ted. The rules

then take a start problem state and eventually transform it into a solved form.

In order to 
ompare the performan
e of this rule set with a di�erent one or to

give an overall performan
e guarantee of the rule set, the 
lassi
al way in 
om-

puter s
ien
e is to 
onsider the (worst 
ase) running time until termination. A


onsequen
e of the Sudoku termination proof, Lemma 1.1.3, is that at most 2

49

rule appli
ations are needed. Generalizing this result, for a given n�n-Sudoku,

the running time would by of \order" n

n

2

, be
ause in the worst 
ase we need to

guess n di�erent numbers for ea
h square and there are n

2

squares of the board.

The so 
alled big O notation 
overs the term \order" formally.

De�nition 1.3.1 (Big O). Let f(n) and g(n) be fun
tions from the naturals

into the nonnegative reals. Then

O(f(n)) = fg(n) j 9 
 > 0 9n

0

2 N

+

8n � n

0

g(n) � 
 � f(n)g

Thus, the running time of the Sudoku algorithm for an n � n-Sudoku is

O(n

n

2

), if the number of rule appli
ations are taken to be the 
onstant time

units. This sounds somewhat surprising be
ause it means that the algorithm
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will already fail for reasonably small n, if implemented in pra
ti
e. For example,

for the well-established 9�9-Sudoku puzzles the algorithm will in the worst 
ase

need about 9

81

� 2 �10

77

rule appli
ations to �gure out whether a given Sudoku

has a solution. This way, assuming a fast 
omputer that 
an perform 1 Million

rule appli
ations per se
ond it will take longer to solve a single Sudoku than the


urrently estimated age of the universe. Nevertheless, human beings typi
ally

solve a 9 � 9-Sudoku in some minutes. So what is wrong here? First of all, as

I already said, the algorithm presented in Se
tion 1.1 is 
ompletely naive. This

algorithm will de�nitely not solve 9 � 9-Sudokus in reasonable time. It 
an be

turned into an algorithm that will work ni
ely in pra
ti
e, see Exer
ise (1.2).

Nevertheless, problems su
h as Sudokus are diÆ
ult to solve, in general. Testing

whether a parti
ular assignment is a solution 
an be done eÆ
iently, in 
ase of

Sudokus in time O(n

2

). For the purpose of this book, I say a problem 
an be

eÆ
iently solved if there is an algorithm solving the problem and a polynomial

p(n) so that the exe
ution time on inputs of size n is O(p(n)). Although it is

eÆ
ient for Sudokus to validate whether an assignment is a solution, there are

exponentially many possible assignments to 
he
k in order to �gure out whether

there exists a solution. So if we are allowed to make guesses, then Sudokus 
an

be solved eÆ
iently. This property des
ribes the 
lass of NP (Nondeterministi


Polynomial) problems in general that I will introdu
e now.

A de
ision problem is a subset L � �

�

for some �xed �nite alphabet �.

The fun
tion 
hr(L; x) denotes the 
hara
teristi
 fun
tion for some de
ision

problem L and is de�ned by 
hr(L; u) = 1 if u 2 L and 
hr(L; u) = 0 otherwise.

A de
ision problem is solvable in polynomial-time i� its 
hara
teristi
 fun
tion


an be 
omputed in polynomial-time. The 
lass P denotes all polynomial-time

de
ision problems.

De�nition 1.3.2 (NP). A de
ision problem L is in NP i� there is a predi
ate

Q(x; y) and a polynomial p(n) so that for all u 2 �

�

we have (i) u 2 L i� there

is an v 2 �

�

with jvj � p(juj) and Q(u; v) holds, and (ii) the predi
ate Q is in

P.

A de
ision problem L is polynomial time redu
ible to a de
ision problem L

0

if there is a fun
tion g 2 P so that for all u 2 �

�

we have u 2 L i� g(u) 2 L

0

.

For example, if L is redu
ible to L

0

and L

0

2 P then L 2 P. A de
ision problem

is NP-hard if every problem in NP is polynomial time redu
ible to it. A de
ision

problem is NP-
omplete if it is NP-hard and in NP. A
tually, the �rst NP-


omplete problem [7℄ has been propositional satis�ability (SAT). Chapter 2 is


ompletely devoted to solving SAT.

1.3.4 Word Grammars

When G�odel presented his unde
idability proof on the basis of arithmeti
, many

people still believed that the 
onstru
tion is so arti�
ial that su
h problems will

never arise in pra
ti
e. This didn't 
hange with Turing's invention of the Turing

ma
hine and the unde
idable halting problem of su
h a ma
hine. However, then
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Post presented his 
orresponden
e problem in 1946 [18℄ it be
ame obvious that

unde
idability is not an arti�
ial 
on
ept.

De�nition 1.3.3 (Finite Word). Given a nonempty alphabet � the set �

�

of

�nite words over � is de�ned by

1. the empty word � 2 �

�

2. for ea
h letter a 2 � also a 2 �

�

3. if u; v 2 �

�

so uv 2 �

�

where uv denotes the 
on
atenation of u and v.

De�nition 1.3.4 (Length of a Finite Word). The length juj of a word u 2 �

�

is de�ned by

1. j�j := 0,

2. jaj := 1 for any a 2 � and

3. juvj := juj+ jvj for any u; v 2 �

�

.

De�nition 1.3.5 (PCP). Given two �nite lists of words (u

1

; : : : ; u

n

) and

(v

1

; : : : ; v

n

) the Post Corresponden
e Problem (PCP) is to �nd a �nite index

list (i

1

; : : : ; i

k

), 1 � i

j

� n, so that u

i

1

u

i

2

: : : u

i

k

= v

i

1

v

i

2

: : : v

i

k

.

Take for example the two lists (a; b; bb) and (ab; ab; b) over alphabet � =

fa; bg. Then the index list (1; 3) is a solution to the PCP with 
ommon word

abb.

Theorem 1.3.6 (Post 1942). PCP is unde
idable.

De�nition 1.3.7 (Context-Free Grammar). A 
ontext-free grammar G =

(N;T; P; S) 
onsists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols T

3. a set P of rules A) w where A 2 N and w 2 (N [ T )

�

4. a start symbol S where S 2 N

For rules A) w

1

, A) w

2

we write A) w

1

j w

2

.

Given a 
ontext free grammarG and two words u; v 2 (N[T )

�

I write u) v

if u = u

1

Au

2

and v = u

1

wu

2

and there is a rule A ) w in G. The language

generated by G is L(G) = fw 2 T

�

j S )

�

wg, where )

�

is the re
exive and

transitive 
losure of ).

A 
ontext free grammar G is in Chomsky Normal Form [6℄ if all rules are if

the form A ) B

1

B

2

with B

i

2 N or A ) w with w 2 T

�

. It is said to be in

Greiba
h Normal Form [12℄ if all rules are of the form A) aw with a 2 T and

w 2 N

�

.


