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will already fail for reasonably small n, if implemented in pra
ti
e. For example,

for the well-established 9�9-Sudoku puzzles the algorithm will in the worst 
ase

need about 9

81

� 2 �10

77

rule appli
ations to �gure out whether a given Sudoku

has a solution. This way, assuming a fast 
omputer that 
an perform 1 Million

rule appli
ations per se
ond it will take longer to solve a single Sudoku than the


urrently estimated age of the universe. Nevertheless, human beings typi
ally

solve a 9 � 9-Sudoku in some minutes. So what is wrong here? First of all, as

I already said, the algorithm presented in Se
tion 1.1 is 
ompletely naive. This

algorithm will de�nitely not solve 9 � 9-Sudokus in reasonable time. It 
an be

turned into an algorithm that will work ni
ely in pra
ti
e, see Exer
ise (1.2).

Nevertheless, problems su
h as Sudokus are diÆ
ult to solve, in general. Testing

whether a parti
ular assignment is a solution 
an be done eÆ
iently, in 
ase of

Sudokus in time O(n

2

). For the purpose of this book, I say a problem 
an be

eÆ
iently solved if there is an algorithm solving the problem and a polynomial

p(n) so that the exe
ution time on inputs of size n is O(p(n)). Although it is

eÆ
ient for Sudokus to validate whether an assignment is a solution, there are

exponentially many possible assignments to 
he
k in order to �gure out whether

there exists a solution. So if we are allowed to make guesses, then Sudokus 
an

be solved eÆ
iently. This property des
ribes the 
lass of NP (Nondeterministi


Polynomial) problems in general that I will introdu
e now.

A de
ision problem is a subset L � �

�

for some �xed �nite alphabet �.

The fun
tion 
hr(L; x) denotes the 
hara
teristi
 fun
tion for some de
ision

problem L and is de�ned by 
hr(L; u) = 1 if u 2 L and 
hr(L; u) = 0 otherwise.

A de
ision problem is solvable in polynomial-time i� its 
hara
teristi
 fun
tion


an be 
omputed in polynomial-time. The 
lass P denotes all polynomial-time

de
ision problems.

De�nition 1.3.2 (NP). A de
ision problem L is in NP i� there is a predi
ate

Q(x; y) and a polynomial p(n) so that for all u 2 �

�

we have (i) u 2 L i� there

is an v 2 �

�

with jvj � p(juj) and Q(u; v) holds, and (ii) the predi
ate Q is in

P.

A de
ision problem L is polynomial time redu
ible to a de
ision problem L

0

if there is a fun
tion g 2 P so that for all u 2 �

�

we have u 2 L i� g(u) 2 L

0

.

For example, if L is redu
ible to L

0

and L

0

2 P then L 2 P. A de
ision problem

is NP-hard if every problem in NP is polynomial time redu
ible to it. A de
ision

problem is NP-
omplete if it is NP-hard and in NP. A
tually, the �rst NP-


omplete problem [7℄ has been propositional satis�ability (SAT). Chapter 2 is


ompletely devoted to solving SAT.

1.3.4 Word Grammars

When G�odel presented his unde
idability proof on the basis of arithmeti
, many

people still believed that the 
onstru
tion is so arti�
ial that su
h problems will

never arise in pra
ti
e. This didn't 
hange with Turing's invention of the Turing

ma
hine and the unde
idable halting problem of su
h a ma
hine. However, then
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Post presented his 
orresponden
e problem in 1946 [18℄ it be
ame obvious that

unde
idability is not an arti�
ial 
on
ept.

De�nition 1.3.3 (Finite Word). Given a nonempty alphabet � the set �

�

of

�nite words over � is de�ned by

1. the empty word � 2 �

�

2. for ea
h letter a 2 � also a 2 �

�

3. if u; v 2 �

�

so uv 2 �

�

where uv denotes the 
on
atenation of u and v.

De�nition 1.3.4 (Length of a Finite Word). The length juj of a word u 2 �

�

is de�ned by

1. j�j := 0,

2. jaj := 1 for any a 2 � and

3. juvj := juj+ jvj for any u; v 2 �

�

.

De�nition 1.3.5 (Word Embedding). Given two words u, v, then u is embedded

in v written u v v if for u = a

1

: : : a

n

there are words v

0

; : : : ; v

n

su
h that

v = v

0

a

1

v

1

a

2

: : : a

n

v

n

.

Reformulating the above de�nition, a word u is embedded in v if u 
an

be obtained from v by erasing letters. For example, higman is embedded in

highmountain.

De�nition 1.3.6 (PCP). Given two �nite lists of words (u

1

; : : : ; u

n

) and

(v

1

; : : : ; v

n

) the Post Corresponden
e Problem (PCP) is to �nd a �nite index

list (i

1

; : : : ; i

k

), 1 � i

j

� n, so that u

i

1

u

i

2

: : : u

i

k

= v

i

1

v

i

2

: : : v

i

k

.

Take for example the two lists (a; b; bb) and (ab; ab; b) over alphabet � =

fa; bg. Then the index list (1; 3) is a solution to the PCP with 
ommon word

abb.

Theorem 1.3.7 (Post 1942). PCP is unde
idable.

Lemma 1.3.8 (Higman's Lemma 1952). For any in�nite sequen
e of words

u

1

; u

2

; : : : over a �nite alphabet there are two words u

k

; u

k+l

su
h that u

k

v

u

k+l

.

Proof. By 
ontradi
tion. Assume an in�nite sequen
e u

1

; u

2

; : : : su
h that for

any two words u

k

; u

k+l

they are not embedded, i.e., u

k

6v u

k+l

. Furthermore, I

assume that the sequen
e is minimal at any word with respe
t to length, i.e.,


onsidering any u

k

, there is no in�nite sequen
e with the above property that

shares the words up to u

k�1

and then 
ontinues with a word of smaller length

than u

k

. Next, the alphabet is �nite, so there must be a letter, say a that o
-


urs in�nitely often as the �rst letter of the words of the sequen
e. The words

starting with a form an in�nite subsequen
e au

0

k

1

; au

0

k

2

; : : : where u

k

i

= au

0

k

i

.
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This in�nite subsequen
e itself has the non-embedding property, be
ause it is

a subsequen
e of the originial sequen
e. Now 
onsider the in�nite sequen
e

u

1

; u

2

; : : : ; u

k

1

�1

; u

0

k

1

; u

0

k

2

; : : :. Also this sequen
e has the non-embedding prop-

erty: if some u

i

v u

0

k

j

then u

i

v au

0

k

j


ontradi
ting that the starting sequen
e is

non-embedding. But then the 
onstru
ted sequen
e 
ontradi
ts the minimality

assumption with respe
t to length, �nishing the proof.

De�nition 1.3.9 (Context-Free Grammar). A 
ontext-free grammar G =

(N;T; P; S) 
onsists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols T

3. a set P of rules A) w where A 2 N and w 2 (N [ T )

�

4. a start symbol S where S 2 N

For rules A) w

1

, A) w

2

we write A) w

1

j w

2

.

Given a 
ontext free grammarG and two words u; v 2 (N[T )

�

I write u) v

if u = u

1

Au

2

and v = u

1

w u

2

and there is a rule A ) w in G. The language

generated by G is L(G) = fw 2 T

�

j S )

�

wg, where )

�

is the re
exive and

transitive 
losure of ).

A 
ontext free grammar G is in Chomsky Normal Form [6℄ if all rules are if

the form A ) B

1

B

2

with B

i

2 N or A ) w with w 2 T

�

. It is said to be in

Greiba
h Normal Form [12℄ if all rules are of the form A) aw with a 2 T and

w 2 N

�

.

1.4 Orderings

An ordering R is a binary relation on some set M . Depending on parti
ular

properties su
h as

(re
exivity) 8x 2M R(x; x)

(irre
exivity) 8x 2M :R(x; x)

(antisymmetry) 8x; y 2M (R(x; y) ^ R(y; x)! x = y)

(transitivity) 8x; y; z 2M (R(x; y) ^ R(y; z)! R(x; z))

(totality) 8x; y 2M (R(x; y) _ R(y; x))

there are di�erent types of orderings. The relation = is the identity relation

onM . The quanti�er 8 reads \for all", and the boolean 
onne
tives ^, _, and!

read \and", \or", and \implies", respe
tively. For example, the above formula

stating re
exivity 8x 2M R(x; x) is a shorthand for \for all x 2M the relation

R(x; x) holds".
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C A
tually, the de�nition of the above properties is informal in the sense

that I rely on the meaning of 
ertain symbols su
h as 2 or !. While

the former is assumed to be known from s
hool math, the latter is \explained"

above. So, stri
tly speaking this book is neither self 
ontained, nor overall for-

mal. For the 
on
rete logi
s developed in subsequent 
hapters, I will formally

de�ne ! but here, where it is used to state properties needed to eventually

de�ne the notion of an ordering, it remains informal. Although it is possible

to develop the overall 
ontent of this book in a 
ompletely formal style, su
h

an approa
h is typi
ally impossible to read and 
omprehend. Sin
e this book is

about tea
hing a general framework to eventually generate automated reasoning

pro
edures this would not be the right way to go. In parti
ular, being informal

starts already with the use of natural language. In order to support this \mixed"

style, examples and exer
ises deepen the understanding and rule out potential

mis
on
eptions.

Now, based on the above de�ned properties of a relation, the usual notions

with respe
t to orderings are stated below.

De�nition 1.4.1 (Orderings). A partial ordering � (or simply ordering) on

a set M , denoted (M;�), is a re
exive, antisymmetri
, and transitive binary

relation on M . It is a total ordering if it also satis�es the totality property. A

stri
t ordering � is a transitive and irre
exive binary relation on M . A stri
t

ordering is well-founded, if there is no in�nite des
ending 
hain m

0

� m

1

�

m

2

� : : : where m

i

2M .

Given a stri
t partial order � on some set M , its respe
tive partial order �

is 
onstru
ted by taking the transitive 
losure of (� [ =).

Example 1.4.2. The well-known relation � on N, where k � l if there is a j

so that k + j = l for k; l; j 2 N, is a total ordering on the naturals. Its stri
t

subrelation < is well-founded on the naturals. However, < is not well-founded

on Z.

De�nition 1.4.3 (Minimal and Smallest Elements). Given a stri
t ordering

(M;�), an element m 2M is 
alled minimal, if there is no element m

0

2M so

that m � m

0

. An element m 2 M is 
alled smallest, if m

0

� m for all m

0

2 M

di�erent from m.

Note the subtle di�eren
e between minimal and smallest. There may be

several minimal elements in a setM but only one smallest element. Furthermore,

in order for an element being smallest in M it needs to be 
omparable to all

other elements from M .

Example 1.4.4. In N the number 0 is smallest and minimal with respe
t to <.

For the set M = fq 2 Q j q � 5g the ordering < on M is total, has the minimal

element 5 but is not well-founded.

If < is the an
estor relation on the members of a human family, then <

typi
ally will have several minimal elements, the 
urrently youngest 
hildren of

the family, but no smallest element, as long as there is a 
ouple with more than

one 
hild. Furthermore, < is not total, but well-founded.
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Well-founded orderings 
an be 
ombined to more 
omplex well-founded or-

derings by lexi
ographi
 or multiset extensions.

De�nition 1.4.5 (Lexi
ographi
 and Multi-Set Ordering Extensions). Let

(M

1

;�

1

) and (M

2

;�

2

) be two stri
t orderings. Their lexi
ographi
 
ombination

�

lex

= (�

1

;�

2

) on M

1

�M

2

is de�ned as (m

1

;m

2

) � (m

0

1

;m

0

2

) i� m

1

�

1

m

0

1

or

m

1

= m

0

1

and m

2

�

2

m

0

2

.

Let (M;�) be a partial ordering. The multi-set extension �

mul

to multi-sets

over M is de�ned by S

1

�

mul

S

2

i� S

1

6= S

2

and 8m 2 M [S

2

(m) > S

1

(m) !

9m

0

2M (m

0

� m ^ S

1

(m

0

) > S

2

(m

0

))℄.

The de�nition of the lexi
ographi
 ordering extensions 
an be exapanded to

n-tuples in the obvious way. So it is also the basis for the standard lexi
ographi


ordering on words as used, e.g., in di
tionaries. In this 
ase theM

i

are alphabets,

say a-z, where a � b � : : : � z. Then a

ording to the above de�nition tiger �

tree.

Example 1.4.6 (Multi Set Ordering). Consider the multiset extension of (N; >

). Then f2g >

mul

f1; 1; 1g be
ause there is no element in f1; 1; 1g that is larger

than 2. As a border 
ase, f2; 1g >

mul

f2g be
ause there is no element that has

more o

urren
es in f2g 
ompared to f2; 1g. The other way round, 1 has more

o

urren
es in f2; 1g than in f2g and there is no larger element to 
ompensate

for it, so f2g 6>

mul

f2; 1g.

Proposition 1.4.7 (Properties of Lexi
ographi
 and Multi-Set Ordering Ex-

tensions). Let (M;�), (M

1

;�

1

), and (M

2

;�

2

) be orderings. Then

1. �

lex

is an ordering on M

1

�M

2

.

2. if (M

1

;�

1

) and (M

2

;�

2

) are well-founded so is �

lex

.

3. if (M

1

;�

1

) and (M

2

;�

2

) are total so is �

lex

.

4. �

mul

is an ordering on multi-sets over M .

5. if (M;�) is well-founded so is �

mul

.

6. if (M;�) is total so is �

mul

.

T

The lexi
ographi
 ordering on words is not well-founded if words of

arbitrary length are 
onsidered. Starting from the standard ordering

on the alphabet, e.g., the following in�nite des
ending sequen
e 
an

be 
onstru
ted: b � ab � aab � : : :. It be
omes well-founded if it is lexi
ograph-

i
ally 
ombined with the length oordering, see Exer
ise ??.

Lemma 1.4.8 (K�onig's Lemma). Every �nitely bran
hing tree with in�nitely

many nodes 
ontains an in�nite path.


