1.3. BASIC COMPUTER SCIENCE PREREQUISITES 17

will already fail for reasonably small n, if implemented in practice. For example,
for the well-established 9 x 9-Sudoku puzzles the algorithm will in the worst case
need about 98! & 2-1077 rule applications to figure out whether a given Sudoku
has a solution. This way, assuming a fast computer that can perform 1 Million
rule applications per second it will take longer to solve a single Sudoku than the
currently estimated age of the universe. Nevertheless, human beings typically
solve a 9 x 9-Sudoku in some minutes. So what is wrong here? First of all, as
I already said, the algorithm presented in Section 1.1 is completely naive. This
algorithm will definitely not solve 9 x 9-Sudokus in reasonable time. It can be
turned into an algorithm that will work nicely in practice, see Exercise (1.2).
Nevertheless, problems such as Sudokus are difficult to solve, in general. Testing
whether a particular assignment is a solution can be done efficiently, in case of
Sudokus in time O(n?). For the purpose of this book, I say a problem can be
efficiently solved if there is an algorithm solving the problem and a polynomial
p(n) so that the execution time on inputs of size n is O(p(n)). Although it is
efficient for Sudokus to validate whether an assignment is a solution, there are
exponentially many possible assignments to check in order to figure out whether
there exists a solution. So if we are allowed to make guesses, then Sudokus can
be solved efficiently. This property describes the class of NP (Nondeterministic
Polynomial) problems in general that I will introduce now.

A decision problem is a subset L C ¥* for some fixed finite alphabet X.
The function chr(L,z) denotes the characteristic function for some decision
problem L and is defined by chr(L,u) =1 if u € L and chr(L,u) = 0 otherwise.
A decision problem is solvable in polynomial-time iff its characteristic function
can be computed in polynomial-time. The class P denotes all polynomial-time
decision problems.

Definition 1.3.2 (NP). A decision problem L is in NP iff there is a predicate
Q(z,y) and a polynomial p(n) so that for all u € ¥* we have (i) u € L iff there
is an v € ¥* with |v| < p(Ju|) and Q(u,v) holds, and (ii) the predicate @ is in
P.

A decision problem L is polynomial time reducible to a decision problem L'
if there is a function g € P so that for all u € ¥* we have u € L iff g(u) € L'.
For example, if L is reducible to L' and L' € P then L € P. A decision problem
is NP-hard if every problem in NP is polynomial time reducible to it. A decision
problem is NP-complete if it is NP-hard and in NP. Actually, the first NP-
complete problem [7] has been propositional satisfiability (SAT). Chapter 2 is
completely devoted to solving SAT.

1.3.4 Word Grammars

When Godel presented his undecidability proof on the basis of arithmetic, many
people still believed that the construction is so artificial that such problems will
never arise in practice. This didn’t change with Turing’s invention of the Turing
machine and the undecidable halting problem of such a machine. However, then

18 CHAPTER 1. PRELIMINARIES

Post presented his correspondence problem in 1946 [18] it became obvious that
undecidability is not an artificial concept.

Definition 1.3.3 (Finite Word). Given a nonempty alphabet ¥ the set ¥* of
finite words over ¥ is defined by

1. the empty word e € ¥*
2. for each letter a € ¥ also a € ©*
3. if u,v € ¥* so uv € ¥* where uv denotes the concatenation of u and v.

Definition 1.3.4 (Length of a Finite Word). The length |u| of a word u € £*
is defined by

1. |e| =0,
2. |a| :=1for any a € ¥ and
3. |uv| := |u| + |v| for any u,v € T*.

Definition 1.3.5 (Word Embedding). Given two words u, v, then u is embedded
in v written ©v C v if for u = a;...a, there are words vp,...,v, such that
V=00a101042 ...A0n0p-

Reformulating the above definition, a word w is embedded in v if u can
be obtained from v by erasing letters. For example, higman is embedded in
highmountain.

Definition 1.3.6 (PCP). Given two finite lists of words (ug,...,u,) and
(v1,...,vp) the Post Correspondence Problem (PCP) is to find a finite index
list (7:1, .. .,ik), 1 S ’ij S n, so that Uiy Ujy -+ - Ujy, = Vi Vg - - - Vg, -

Take for example the two lists (a,b, bb) and (ab, ab,b) over alphabet ¥ =
{a,b}. Then the index list (1,3) is a solution to the PCP with common word
abb.

Theorem 1.3.7 (Post 1942). PCP is undecidable.

Lemma 1.3.8 (Higman’s Lemma 1952). For any infinite sequence of words

uy,Us,... over a finite alphabet there are two words wug, ugy; such that uy C
Uk -
Proof. By contradiction. Assume an infinite sequence wu,us,... such that for

any two words ug, ugy; they are not embedded, i.e., uy ug4;. Furthermore, I
assume that the sequence is minimal at any word with respect to length, i.e.,
considering any wuy, there is no infinite sequence with the above property that
shares the words up to ug—; and then continues with a word of smaller length
than uy. Next, the alphabet is finite, so there must be a letter, say a that oc-
curs infinitely often as the first letter of the words of the sequence. The words
starting with a form an infinite subsequence auy ,auy,, ... where uy, = auj, .

1.4. ORDERINGS 19

This infinite subsequence itself has the non-embedding property, because it is
a subsequence of the originial sequence. Now consider the infinite sequence
Uty U2y e ey Uky 1,y u;“ , ufw, ... Also this sequence has the non-embedding prop-
erty: if some u; C u) k; then u; C au) k; contradicting that the starting sequence is
non-embedding. But then the constructed sequence contradicts the minimality
assumption with respect to length, finishing the proof. O

Definition 1.3.9 (Context-Free Grammar). A context-free grammar G =
(N, T, P,S) consists of:

1. a set of non-terminal symbols N
2. a set of terminal symbols T
3. aset P of rules A = w where A€ N and w € (NUT)*
4. a start symbol S where S € N
For rules A = wy, A = we we write A = wy | wo.

Given a context free grammar G and two words u,v € (NUT)* I write u = v
if u =wu; Aus and v = u; wuy and there is a rule A = w in G. The language
generated by G is L(G) = {w € T* | S =* w}, where =* is the reflexive and
transitive closure of =.

A context free grammar G is in Chomsky Normal Form [6] if all rules are if
the form A = By B> with B; € N or A = w with w € T*. It is said to be in
Greibach Normal Form [12] if all rules are of the form A = aw with a € T and
we N*.

1.4 Orderings

An ordering R is a binary relation on some set M. Depending on particular
properties such as

(reflexivity) Vz € M R(z,z)
(irreflexivity) V2 € M —R(z,z)
(antisymmetry) Vz,y € M (R(z,y) A R(y,z) > = =vy)
(transitivity) Vz,y,2z € M (R(z,y) A R(y,z) = R(z,z2))
(totality) Vz,y € M (R(z,y)V R(y,))

there are different types of orderings. The relation = is the identity relation
on M. The quantifier V reads “for all”, and the boolean connectives A, V, and —
read “and”, “or”, and “implies”, respectively. For example, the above formula
stating reﬂex1v1ty Vx € M R(z,z) is a shorthand for “for all z € M the relation

R(z,x) holds”.

20 CHAPTER 1. PRELIMINARIES

Actually, the definition of the above properties is informal in the sense
that I rely on the meaning of certain symbols such as € or —. While
the former is assumed to be known from school math, the latter is “explained”
above. So, strictly speaking this book is neither self contained, nor overall for-
mal. For the concrete logics developed in subsequent chapters, I will formally
define — but here, where it is used to state properties needed to eventually
define the notion of an ordering, it remains informal. Although it is possible
to develop the overall content of this book in a completely formal style, such
an approach is typically impossible to read and comprehend. Since this book is
about teaching a general framework to eventually generate automated reasoning
procedures this would not be the right way to go. In particular, being informal
starts already with the use of natural language. In order to support this “mixed”
style, examples and exercises deepen the understanding and rule out potential
misconceptions.
Now, based on the above defined properties of a relation, the usual notions
with respect to orderings are stated below.

Definition 1.4.1 (Orderings). A partial ordering > (or simply ordering) on
a set M, denoted (M,), is a reflexive, antisymmetric, and transitive binary
relation on M. It is a total ordering if it also satisfies the totality property. A
strict ordering > is a transitive and irreflexive binary relation on M. A strict
ordering is well-founded, if there is no infinite descending chain mgo > m; >
mo > ... where m; € M.

Given a strict partial order > on some set M, its respective partial order >
is constructed by taking the transitive closure of (> U =).

Example 1.4.2. The well-known relation < on N, where k <[if there is a j
so that k 4+ j =1 for k,[,j € N, is a total ordering on the naturals. Its strict
subrelation < is well-founded on the naturals. However, < is not well-founded
on Z.

Definition 1.4.3 (Minimal and Smallest Elements). Given a strict ordering
(M,), an element m € M is called minimal, if there is no element m' € M so
that m = m’. An element m € M is called smallest, if m’' = m for all m' € M
different from m.

Note the subtle difference between minimal and smallest. There may be
several minimal elements in a set M but only one smallest element. Furthermore,
in order for an element being smallest in M it needs to be comparable to all
other elements from M.

Example 1.4.4. In N the number 0 is smallest and minimal with respect to <.
For the set M = {q € Q| ¢ > 5} the ordering < on M is total, has the minimal
element 5 but is not well-founded.

If < is the ancestor relation on the members of a human family, then <
typically will have several minimal elements, the currently youngest children of
the family, but no smallest element, as long as there is a couple with more than
one child. Furthermore, < is not total, but well-founded.

1.4. ORDERINGS 21

Well-founded orderings can be combined to more complex well-founded or-
derings by lexicographic or multiset extensions.

Definition 1.4.5 (Lexicographic and Multi-Set Ordering Extensions). Let
(My, 1) and (Ma, >=23) be two strict orderings. Their lezicographic combination
=1ex= (>=1,>=2) on My x My is defined as (m1,ms) = (m},mb) iff my =1 m} or
my =m) and ma =2 m.

Let (M, >) be a partial ordering. The multi-set extension >, to multi-sets
over M is defined by Sy > Sz iff S; # Sy and Vm € M [S2(m) > Si(m) —
Am' € M (m' = mA Si(m') > Sa(m'))].

The definition of the lexicographic ordering extensions can be exapanded to
n-tuples in the obvious way. So it is also the basis for the standard lexicographic
ordering on words as used, e.g., in dictionaries. In this case the M; are alphabets,
say a-z, where a < b < ... < z. Then according to the above definition tiger <
tree.

Example 1.4.6 (Multi Set Ordering). Consider the multiset extension of (N, >
)- Then {2} >nu {1,1, 1} because there is no element in {1,1,1} that is larger
than 2. As a border case, {2,1} >mnu {2} because there is no element that has
more occurrences in {2} compared to {2,1}. The other way round, 1 has more
occurrences in {2,1} than in {2} and there is no larger element to compensate
for it, so {2} #mum {2, 1}.

Proposition 1.4.7 (Properties of Lexicographic and Multi-Set Ordering Ex-
tensions). Let (M,), (My, 1), and (Maz, >2) be orderings. Then

1. >lex is an ordering on M; x M>.

2. if (M;,>1) and (Ms,>2) are well-founded so is >ex.
3. if (M;,>1) and (Ms, >=2) are total so is >jex.

4. > is an ordering on multi-sets over M.

5. if (M,) is well-founded so i$ > -

6. if (M,) is total so is =mul-

The lexicographic ordering on words is not well-founded if words of
arbitrary length are considered. Starting from the standard ordering
on the alphabet, e.g., the following infinite descending sequence can

be constructed: b > ab > aab > It becomes well-founded if it is lexicograph-
ically combined with the length oordering, see Exercise ?7.

Lemma 1.4.8 (Konig’s Lemma). Every finitely branching tree with infinitely
many nodes contains an infinite path.

