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will already fail for reasonably small n, if implemented in pratie. For example,

for the well-established 9�9-Sudoku puzzles the algorithm will in the worst ase

need about 9

81

� 2 �10

77

rule appliations to �gure out whether a given Sudoku

has a solution. This way, assuming a fast omputer that an perform 1 Million

rule appliations per seond it will take longer to solve a single Sudoku than the

urrently estimated age of the universe. Nevertheless, human beings typially

solve a 9 � 9-Sudoku in some minutes. So what is wrong here? First of all, as

I already said, the algorithm presented in Setion 1.1 is ompletely naive. This

algorithm will de�nitely not solve 9 � 9-Sudokus in reasonable time. It an be

turned into an algorithm that will work niely in pratie, see Exerise (1.2).

Nevertheless, problems suh as Sudokus are diÆult to solve, in general. Testing

whether a partiular assignment is a solution an be done eÆiently, in ase of

Sudokus in time O(n

2

). For the purpose of this book, I say a problem an be

eÆiently solved if there is an algorithm solving the problem and a polynomial

p(n) so that the exeution time on inputs of size n is O(p(n)). Although it is

eÆient for Sudokus to validate whether an assignment is a solution, there are

exponentially many possible assignments to hek in order to �gure out whether

there exists a solution. So if we are allowed to make guesses, then Sudokus an

be solved eÆiently. This property desribes the lass of NP (Nondeterministi

Polynomial) problems in general that I will introdue now.

A deision problem is a subset L � �

�

for some �xed �nite alphabet �.

The funtion hr(L; x) denotes the harateristi funtion for some deision

problem L and is de�ned by hr(L; u) = 1 if u 2 L and hr(L; u) = 0 otherwise.

A deision problem is solvable in polynomial-time i� its harateristi funtion

an be omputed in polynomial-time. The lass P denotes all polynomial-time

deision problems.

De�nition 1.3.2 (NP). A deision problem L is in NP i� there is a prediate

Q(x; y) and a polynomial p(n) so that for all u 2 �

�

we have (i) u 2 L i� there

is an v 2 �

�

with jvj � p(juj) and Q(u; v) holds, and (ii) the prediate Q is in

P.

A deision problem L is polynomial time reduible to a deision problem L

0

if there is a funtion g 2 P so that for all u 2 �

�

we have u 2 L i� g(u) 2 L

0

.

For example, if L is reduible to L

0

and L

0

2 P then L 2 P. A deision problem

is NP-hard if every problem in NP is polynomial time reduible to it. A deision

problem is NP-omplete if it is NP-hard and in NP. Atually, the �rst NP-

omplete problem [7℄ has been propositional satis�ability (SAT). Chapter 2 is

ompletely devoted to solving SAT.

1.3.4 Word Grammars

When G�odel presented his undeidability proof on the basis of arithmeti, many

people still believed that the onstrution is so arti�ial that suh problems will

never arise in pratie. This didn't hange with Turing's invention of the Turing

mahine and the undeidable halting problem of suh a mahine. However, then
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Post presented his orrespondene problem in 1946 [18℄ it beame obvious that

undeidability is not an arti�ial onept.

De�nition 1.3.3 (Finite Word). Given a nonempty alphabet � the set �

�

of

�nite words over � is de�ned by

1. the empty word � 2 �

�

2. for eah letter a 2 � also a 2 �

�

3. if u; v 2 �

�

so uv 2 �

�

where uv denotes the onatenation of u and v.

De�nition 1.3.4 (Length of a Finite Word). The length juj of a word u 2 �

�

is de�ned by

1. j�j := 0,

2. jaj := 1 for any a 2 � and

3. juvj := juj+ jvj for any u; v 2 �

�

.

De�nition 1.3.5 (Word Embedding). Given two words u, v, then u is embedded

in v written u v v if for u = a

1

: : : a

n

there are words v

0

; : : : ; v

n

suh that

v = v

0

a

1

v

1

a

2

: : : a

n

v

n

.

Reformulating the above de�nition, a word u is embedded in v if u an

be obtained from v by erasing letters. For example, higman is embedded in

highmountain.

De�nition 1.3.6 (PCP). Given two �nite lists of words (u

1

; : : : ; u

n

) and

(v

1

; : : : ; v

n

) the Post Correspondene Problem (PCP) is to �nd a �nite index

list (i

1

; : : : ; i

k

), 1 � i

j

� n, so that u

i

1

u

i

2

: : : u

i

k

= v

i

1

v

i

2

: : : v

i

k

.

Take for example the two lists (a; b; bb) and (ab; ab; b) over alphabet � =

fa; bg. Then the index list (1; 3) is a solution to the PCP with ommon word

abb.

Theorem 1.3.7 (Post 1942). PCP is undeidable.

Lemma 1.3.8 (Higman's Lemma 1952). For any in�nite sequene of words

u

1

; u

2

; : : : over a �nite alphabet there are two words u

k

; u

k+l

suh that u

k

v

u

k+l

.

Proof. By ontradition. Assume an in�nite sequene u

1

; u

2

; : : : suh that for

any two words u

k

; u

k+l

they are not embedded, i.e., u

k

6v u

k+l

. Furthermore, I

assume that the sequene is minimal at any word with respet to length, i.e.,

onsidering any u

k

, there is no in�nite sequene with the above property that

shares the words up to u

k�1

and then ontinues with a word of smaller length

than u

k

. Next, the alphabet is �nite, so there must be a letter, say a that o-

urs in�nitely often as the �rst letter of the words of the sequene. The words

starting with a form an in�nite subsequene au

0

k

1

; au

0

k

2

; : : : where u

k

i

= au

0

k

i

.
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This in�nite subsequene itself has the non-embedding property, beause it is

a subsequene of the originial sequene. Now onsider the in�nite sequene

u

1

; u

2

; : : : ; u

k

1

�1

; u

0

k

1

; u

0

k

2

; : : :. Also this sequene has the non-embedding prop-

erty: if some u

i

v u

0

k

j

then u

i

v au

0

k

j

ontraditing that the starting sequene is

non-embedding. But then the onstruted sequene ontradits the minimality

assumption with respet to length, �nishing the proof.

De�nition 1.3.9 (Context-Free Grammar). A ontext-free grammar G =

(N;T; P; S) onsists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols T

3. a set P of rules A) w where A 2 N and w 2 (N [ T )

�

4. a start symbol S where S 2 N

For rules A) w

1

, A) w

2

we write A) w

1

j w

2

.

Given a ontext free grammarG and two words u; v 2 (N[T )

�

I write u) v

if u = u

1

Au

2

and v = u

1

w u

2

and there is a rule A ) w in G. The language

generated by G is L(G) = fw 2 T

�

j S )

�

wg, where )

�

is the reexive and

transitive losure of ).

A ontext free grammar G is in Chomsky Normal Form [6℄ if all rules are if

the form A ) B

1

B

2

with B

i

2 N or A ) w with w 2 T

�

. It is said to be in

Greibah Normal Form [12℄ if all rules are of the form A) aw with a 2 T and

w 2 N

�

.

1.4 Orderings

An ordering R is a binary relation on some set M . Depending on partiular

properties suh as

(reexivity) 8x 2M R(x; x)

(irreexivity) 8x 2M :R(x; x)

(antisymmetry) 8x; y 2M (R(x; y) ^ R(y; x)! x = y)

(transitivity) 8x; y; z 2M (R(x; y) ^ R(y; z)! R(x; z))

(totality) 8x; y 2M (R(x; y) _ R(y; x))

there are di�erent types of orderings. The relation = is the identity relation

onM . The quanti�er 8 reads \for all", and the boolean onnetives ^, _, and!

read \and", \or", and \implies", respetively. For example, the above formula

stating reexivity 8x 2M R(x; x) is a shorthand for \for all x 2M the relation

R(x; x) holds".
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C Atually, the de�nition of the above properties is informal in the sense

that I rely on the meaning of ertain symbols suh as 2 or !. While

the former is assumed to be known from shool math, the latter is \explained"

above. So, stritly speaking this book is neither self ontained, nor overall for-

mal. For the onrete logis developed in subsequent hapters, I will formally

de�ne ! but here, where it is used to state properties needed to eventually

de�ne the notion of an ordering, it remains informal. Although it is possible

to develop the overall ontent of this book in a ompletely formal style, suh

an approah is typially impossible to read and omprehend. Sine this book is

about teahing a general framework to eventually generate automated reasoning

proedures this would not be the right way to go. In partiular, being informal

starts already with the use of natural language. In order to support this \mixed"

style, examples and exerises deepen the understanding and rule out potential

misoneptions.

Now, based on the above de�ned properties of a relation, the usual notions

with respet to orderings are stated below.

De�nition 1.4.1 (Orderings). A partial ordering � (or simply ordering) on

a set M , denoted (M;�), is a reexive, antisymmetri, and transitive binary

relation on M . It is a total ordering if it also satis�es the totality property. A

strit ordering � is a transitive and irreexive binary relation on M . A strit

ordering is well-founded, if there is no in�nite desending hain m

0

� m

1

�

m

2

� : : : where m

i

2M .

Given a strit partial order � on some set M , its respetive partial order �

is onstruted by taking the transitive losure of (� [ =).

Example 1.4.2. The well-known relation � on N, where k � l if there is a j

so that k + j = l for k; l; j 2 N, is a total ordering on the naturals. Its strit

subrelation < is well-founded on the naturals. However, < is not well-founded

on Z.

De�nition 1.4.3 (Minimal and Smallest Elements). Given a strit ordering

(M;�), an element m 2M is alled minimal, if there is no element m

0

2M so

that m � m

0

. An element m 2 M is alled smallest, if m

0

� m for all m

0

2 M

di�erent from m.

Note the subtle di�erene between minimal and smallest. There may be

several minimal elements in a setM but only one smallest element. Furthermore,

in order for an element being smallest in M it needs to be omparable to all

other elements from M .

Example 1.4.4. In N the number 0 is smallest and minimal with respet to <.

For the set M = fq 2 Q j q � 5g the ordering < on M is total, has the minimal

element 5 but is not well-founded.

If < is the anestor relation on the members of a human family, then <

typially will have several minimal elements, the urrently youngest hildren of

the family, but no smallest element, as long as there is a ouple with more than

one hild. Furthermore, < is not total, but well-founded.
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Well-founded orderings an be ombined to more omplex well-founded or-

derings by lexiographi or multiset extensions.

De�nition 1.4.5 (Lexiographi and Multi-Set Ordering Extensions). Let

(M

1

;�

1

) and (M

2

;�

2

) be two strit orderings. Their lexiographi ombination

�

lex

= (�

1

;�

2

) on M

1

�M

2

is de�ned as (m

1

;m

2

) � (m

0

1

;m

0

2

) i� m

1

�

1

m

0

1

or

m

1

= m

0

1

and m

2

�

2

m

0

2

.

Let (M;�) be a partial ordering. The multi-set extension �

mul

to multi-sets

over M is de�ned by S

1

�

mul

S

2

i� S

1

6= S

2

and 8m 2 M [S

2

(m) > S

1

(m) !

9m

0

2M (m

0

� m ^ S

1

(m

0

) > S

2

(m

0

))℄.

The de�nition of the lexiographi ordering extensions an be exapanded to

n-tuples in the obvious way. So it is also the basis for the standard lexiographi

ordering on words as used, e.g., in ditionaries. In this ase theM

i

are alphabets,

say a-z, where a � b � : : : � z. Then aording to the above de�nition tiger �

tree.

Example 1.4.6 (Multi Set Ordering). Consider the multiset extension of (N; >

). Then f2g >

mul

f1; 1; 1g beause there is no element in f1; 1; 1g that is larger

than 2. As a border ase, f2; 1g >

mul

f2g beause there is no element that has

more ourrenes in f2g ompared to f2; 1g. The other way round, 1 has more

ourrenes in f2; 1g than in f2g and there is no larger element to ompensate

for it, so f2g 6>

mul

f2; 1g.

Proposition 1.4.7 (Properties of Lexiographi and Multi-Set Ordering Ex-

tensions). Let (M;�), (M

1

;�

1

), and (M

2

;�

2

) be orderings. Then

1. �

lex

is an ordering on M

1

�M

2

.

2. if (M

1

;�

1

) and (M

2

;�

2

) are well-founded so is �

lex

.

3. if (M

1

;�

1

) and (M

2

;�

2

) are total so is �

lex

.

4. �

mul

is an ordering on multi-sets over M .

5. if (M;�) is well-founded so is �

mul

.

6. if (M;�) is total so is �

mul

.

T

The lexiographi ordering on words is not well-founded if words of

arbitrary length are onsidered. Starting from the standard ordering

on the alphabet, e.g., the following in�nite desending sequene an

be onstruted: b � ab � aab � : : :. It beomes well-founded if it is lexiograph-

ially ombined with the length oordering, see Exerise ??.

Lemma 1.4.8 (K�onig's Lemma). Every �nitely branhing tree with in�nitely

many nodes ontains an in�nite path.


