24 CHAPTER 1. PRELIMINARIES

1.5 Induction

More or less all sets of objects in computer science or logic are defined induc-
tively. Typically, this is done in a bottom-up way, where starting with some
definite set, it is closed under a given set of operations.

Example 1.5.1 (Inductive Sets). In the following, some examples for induc-
tively defined sets are presented:

1. The set of all Sudoku problem states, see Section 1.1, consists of the set of
start states (IN; T; T) for consistent assignments N plus all states that can
be derived from the start states by the rules Deduce, Conflict, Backtrack,
and Fail. This is a finite set.

2. The set N of the natural numbers, consists of 0 plus all numbers that can
be computed from 0 by adding 1. This is an infinite set.

3. The set of all strings ¥* over a finite alphabet X. All letters of ¥ are
contained in ¥* and if u and v are words out of ¥* so is the word uv, see
Section 1.2. This is an infinite set.

All the previous examples have in common that there is an underlying well-
founded ordering on the sets induced by the construction. The minimal elements
for the Sudoku are the problem states (N; T; T), for the natural numbers it is
0 and for the set of strings it is the empty word. Now if we want to prove
a property of an inductive set it is sufficient to prove it (i) for the minimal
element(s) and (ii) assuming the property for an arbitrary set of elements, to
prove that it holds for all elements that can be constructed “in one step” out
those elements. This is the principle of Noetherian Induction.

Theorem 1.5.2 (Noetherian Induction). Let (M, =) be a well-founded order-
ing, and let @) be a predicate over elements of M. If for all m € M the implication

if Q(m'), for all m' € M so that m > m’, (induction hypothesis)
then Q(m). (induction step)

is satisfied, then the property Q(m) holds for all m € M.

Proof. Let X = {m € M | @(m) does not hold}. Suppose, X # . Since (M, ~
) is well-founded, X has a minimal element m,. Hence for all m’ € M with
m' < my the property @(m’) holds. On the other hand, the implication which
is presupposed for this theorem holds in particular also for m;, hence Q(m;)
must be true so that m; cannot be in X - a contradiction. O

Note that although the above implication sounds like a one step proof tech-
nique it is actually not. There are two cases. The first case concerns all elements
that are minimal with respect to < in M and for those the predicate () needs
to hold without any further assumption. The second case is then the induction
step showing that by assuming @ for all elements strictly smaller than some m,
we can prove it for m.



1.6. REWRITE SYSTEMS 25

Now for context free grammars. *** Motivate Further *** Let G =
(N, T, P,S) be a context-free grammar (possibly infinite) and let ¢ be a property
of T* (the words over the alphabet T of terminal symbols of G).

q holds for all words w € L(G), whenever one can prove the following two
properties:

1. (base cases)
g(w') holds for each w' € T* so that X ::= w' is a rule in P.

2. (step cases)
If X = weXowi ... wpXpwpy1 is in P with X; € N, w; € T*, n > 0,
then for all w} € L(G, X;), whenever ¢(w}) holds for 0 < i < n, then also
q(wowgwy . .. wpw wp41) holds.

Here L(G, X;) C T* denotes the language generated by the grammar G from
the nonterminal X;.

Let G = (N,T,P,S) be an unambiguous (why?) context-free grammar. A
function f is well-defined on L(G) (that is, unambiguously defined) whenever
these 2 properties are satisfied:

1. (base cases)
f is well-defined on the words w’ € T* for each rule X ::= w' in P.

2. (step cases)
If X = woXows ... wy, Xpwpiq isarulein P then f(wowjw ... wyw,wyy1)
is well-defined, assuming that each of the f(w}) is well-defined.

k3
Exercises

(1.19) Prove by Noetherian induction that for any n € N*: ¥ i = "'(’;H)

1.6 Rewrite Systems

The final ingredient to actually start the journey through different logical sys-
tems is rewrite systems. Here I define the needed computer science background
for defining algorithms in the form of rule sets. In Section 1.1 the rewrite rules
Deduce, Conflict, Backtrack, and Fail defined an algorithm for solving 4 x 4
Sudokus. The rules operate on the set of Sudoku problem states, starting with
a set of initial states (N; T; T) and finishing either in a solution state (N; D; T)
or a fail state (IV; T;L). The latter are called normal forms (see below) with
respect to the above rules, because no more rule is applicable to solution state
(N;D;T) or a fail state (N; T; L).

Definition 1.6.1 (Rewrite System). A rewrite system is a pair (M, —), where
M is a set and - C M x M is a binary relation on M. Figure 1.4 defines the
needed notions for —.



26 CHAPTER 1. PRELIMINARIES

=% ={(a,a)|a€e M} identity

S = i i + 1-fold composition

=T = Uiso ' transitive closure

=* = Uiso =" = 2T U= reflezive transitive closure
== = 3U=° reflexive closure

-7t =« ={(b,e)|ec— b} inverse

& = U«+ symmetric closure

ot = ()* transitive symmetric closure
F = (o) refl. trans. symmetric closure

Figure 1.4: Notation on —

For a rewrite system (M, —) consider a sequence of elements a; that are
pairwise connected by the symmetric closure, i.e., a; <> as < a3z... & a,. We
say that a; is a peak in such a sequence, if actually a; 1 < a; = a;11.

Actually, in Definition 1.6.1 T overload the symbol — that has already
denoted logical implication, see Section 1.4, with a rewrite relation.
This overloading will remain throughout this book. The rule symbol
= is only used on the meta level in this book, e.g., to define the Sudoku algo-
rithm on problem states, Section 1.1. Nevertheless, this meta rule systems are
also rewrite systems in the above sense. The rewrite symbol — is used on the

formula level inside a problem state. This will become clear when I turn to more
complex logics starting from Chapter 2.

Definition 1.6.2 (Reducible). Let (M,—) be a rewrite system. An element
a € M is reducible, if there is a b € M so that a — b. An element a € M is in
normal form (irreducible), if it is not reducible. An element ¢ € M is a normal
form of b, if b —* ¢ and c is in normal form, notated ¢ = b| (if the normal
form of b is unique). Two elements b and ¢ are joinable, if there is an a so that
b —* a *< ¢, notated b | c.

Definition 1.6.3 (Properties of —). A relation — is called

Church-Rosser if b+* cimplies b | ¢

confluent if b *¢ a —* cimplies b | ¢

locally confluent if b < a — ¢ implies b | ¢

terminating if there is no infinite descending chain by — by ...
normalizing if every b € A has a normal form

convergent if it is confluent and terminating

Lemma 1.6.4. If — is terminating, then it is normalizing.



1.6. REWRITE SYSTEMS 27

The reverse implication of Lemma 1.6.4 does not hold. Assuming this
is a frequent mistake. Consider M = {a, b, c} and the relation a — b,

b — a, and b — c. Then (M, —) is obviously not terminating, because we can
cycle between a and b. However, (M, —) is normalizing. The normal form is
¢ for all elements of M. Similarly, there are rewrite systems that are locally

confluent, but not confluent, see Figure ??. *** to be done *** In the context
of termination the property holds, see Lemma 1.6.6.

Theorem 1.6.5. The following properties are equivalent for any rewrite system
(S, —):

(i) — has the Church-Rosser property.

(i) — is confluent.

Proof. (i) = (ii): trivial.
(ii) = (i): by induction on the number of peaks in the derivation b +* ¢. O

Lemma 1.6.6 (Newman’s Lemma [?]: Confluence versus Local Confluence).
Let (S,—) be a terminating rewrite system. Then the following properties are
equivalent:

(i) — is confluent

(ii) — is locally confluent

Proof. (i) = (ii): trivial.

(ii) = (i): Since — is terminating, it is a well-founded ordering (see Ex-
ercise ??). This justifies a proof by Noetherian induction where the property
Q(a) is “a is confluent”. Applying Noetherian induction, confluence holds for
all a’ € M with m —7 o' and needs to be shown for a. Consider the confluence
property for a: b *— m —* ¢. If b = a or ¢ = a the proof is done. For otherwise,
the situation is in more detail b *— b’ < a — ¢’ —* ¢. By local confluence there
is an @’ with ' —* a’ *< ¢'. Now d’, b, ¢ are strictly smaller than a, they are
confluent and hence can be rewritten so a single a”, finishing the proof. O

Lemma 1.6.7. If — is confluent, then every element has at most one normal
form.

Proof. Suppose that some element a € A has normal forms b and ¢, then b *«
a —* ¢. If — is confluent, then b —* d *< ¢ for some d € A. Since b and ¢ are
normal forms, both derivations must be empty, hence b =% d % ¢, so b, ¢, and
d must be identical. [l

Corollary 1.6.8. If — is normalizing and confluent, then every element b has
a unique normal form.

Proposition 1.6.9. If — is normalizing and confluent, then b <* ¢ if and only

if bl = cl.

Proof. Either using Theorem 1.6.5 or directly by induction on the length of the
derivation of b <* c. O



28 CHAPTER 1. PRELIMINARIES

Exercises

(1.20) Prove Corollary 1.6.8.

(1.21) Prove Proposition 1.6.9 by induction on the length of the derivation
without using the Church-Rosser Theorem.

(1.22)% A relation — is semi-confluent iff

Y1z ="y =y Ly

Prove: A relation — is semi-confluent iff it is confluent.

(1.23)% A relation — is strongly confluent (for all z,y,ys) iff
Y1 x>y = Jz.y1 27 27 Yo

Does the strong confluence imply the following property?
LT —y=> Az .y =~ 2 Yo

Give a proof or counterexample.
(1.24) Prove that the following term rewrite system is confluent:

flg(z)) — =
g(f(z) — =
fo) = ¢
b — gle)

(1.25) Is the rewrite system
{ fla) = f(b), F(b) = [(c), flc) = f(a), f(z) = a}

(i) terminating, (ii) normalizing, (iii) locally confluent, (iv) confluent? Give a
brief explanation.

(1.26) Prove or refute the following statement. There exists a rewrite system
(M,—) so that every a € M has exactly two normal forms.

(1.27) Given the rewrite system

R: z+0—x O+z—=x
z+(—x) =0 (—z)+z—0
-0—-0 —(—z) > x
—(z+y) = (-2) + (-y) (z+y)+z—= 2+ (y+2)
z+((—z)+y) =y (—z)+ (@@ +y) =y
compute the rewrite successors of s = —((—z) + (y + z)) and ¢t = ((—z) +
(=) + =

(1.28)% Show that the following property holds: Let —; and —» be two binary
relations over M, so that (—1 U —2) is transitive. Then (—1 U —3) is terminat-
ing if and only if —; and —4 are terminating. (Hint: Start with the assumption
that there is an infinite (—; U —3) chain.)



